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Abstract

Here we introduce a novel and versatile discrete distribution as an alternative to dis-
crete Pareto distribution and derive some noteworthy distributional properties. The pro-
posed distribution has some interesting characteristics, such as decreasing hazard rate,
unimodality, overdispersion and infinite divisibility. Some characterizations are also ob-
tained. We also consider different estimation procedures for estimating the model parame-
ters, namely: the maximum likelihood, least squares, weighted least squares, Cramer-von
Mises methods and compare them using a comprehensive simulation study. Lastly, to
illustrate the practical utility of the proposed model, we analyze four real datasets.

Keywords: characterizations, discrete Pareto, infinite divisibility, maximum likelihood estima-
tion, simulation, unimodality.

1. Introduction

The Pareto model is a widely recognized continuous distribution that has been extensively
employed over the past several decades for data modeling across various domains, notably in
income and inequality of wealth, engineering, actuarial science and biological sciences. Be-
cause of its versatility in data modeling, numerous statisticians have dedicated their efforts
to developing and thoroughly examining various generalizations of the Pareto distribution. A
broad spectrum of socio-economic variables exhibit heavy-tailed distributions that are suit-
ably approximated by Pareto distributions. Various forms of the Pareto distribution and their
generalizations exist in the literature. For instance, the name generalized Pareto distribution
(GPD) was first used by Pickands III (1975) when making statistical inferences about the
upper tail of a distribution function. Pareto distribution is a special case of the GPD. Pareto
distribution has been extended to the transformed Pareto distribution, otherwise called the
Burr distribution. To add flexibility to Pareto distribution, various generalizations of the dis-
tribution have been derived. Stoppa (1990) proposed a three-parameter generalization of the
Pareto distribution. The four parameter beta Pareto (BP) distribution was studied by Akin-
sete, Famoye, and Lee (2008). Arnold (2008) studied various properties of Pareto distribution
and its extensions using transformations of variables. Jayakumar, Krishnan, and Hamedani
(2020) introduced a generalization of Pareto distribution and studied its properties. Across
literature, numerous applications of the Pareto distribution can be observed in diverse fields
such as social studies, economics, and physics, see Jayakumar and Mathew (2008),Cifarelli,
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Gupta, and Jayakumar (2010) and Tahir, Cordeiro, Mansoor, Zubair, and Alzaatreh (2021).

We know that in numerous scenarios, data must be recorded on a discrete scale rather than
a continuous one. For instance, this might include the number of failures for a specific en-
gineering system per week, the daily count of COVID- 19 cases, the annual tally of fires in
a country, or the number of kidney cysts observed in patients undergoing steroid treatment.
Another example is studying the multi-system in- flammatory syndrome in children (MISC)
associated with COVID-19, where various body parts can become inflamed, such as the brain,
heart, eyes, lungs, or skin. So here we highlight some discrete counter parts of Pareto model
exist in the literature. For instance, Krishna and Pundir (2009) developed the discrete Burr
and discrete Pareto distributions for reliability modeling. Buddana and Kozubowski (2014)
studied a generalization of the discrete Pareto distribution. Prieto, Gémez-Déniz, and Sarabia
(2014) constructed another discrete generalized Pareto distribution, used to model the num-
ber of road crashes on blackspots. Para and Jan (2016) introduced discrete three-parameter
Burr type XII and discrete Lomax distributions for modeling count data of kidney cysts using
steroids. Ghosh (2020) developed the discrete Pareto type IV distribution. Jayakumar and
Jose (2022) developed a discrete new generalized Pareto distribution. Thus discrete Pareto
models have lots of application in many real life situations.

The aim of this paper is to propose a three parameter alternative discrete Pareto (ADP)
distribution for modeling count data in real life situations. This model is shown to perform
better than the traditional discrete Pareto models with respect to four real data applications
in the field of biology, medical science, reliability engineering and epidemology.

Let Y be a non negative integer random variable (rv) having Probability Mass Function
(PMF)

Fr(y: A Bov) = ploe(1+5y) _ log(1+5(y+1)) (1)

where A > 0,5 > 0,0 < v < 1 and y € Npg. It can be easily verified that Equation (1) is a
proper PMF. We call the rv following Equation (1) as alternative discrete Pareto distribution
and denote it as ADP(), 8, v).

The main motivations behind proposing the ADP distribution are as follows:

1. There are many data sets with discrete and heavy tailed property (for example, num-
ber of insurance claims and length of stay in hospitals), but not many discrete heavy
tailed distributions are available in the literature. The model is specifically designed for
modeling the probability distribution of count data with heavy tails.

2. We know that there are several distributions that are frequently used in practice, such
as exponential, Erlang and Weibull distributions, in the continuous cases, for modeling
system reliability. But a discrete approach can be appropriate for modeling the evolution
of the systems over time. The discrete model can be used to model reliability in series
system.

3. Infinite divisibility have a permanent position in the theory of probability. This is mainly
due to its importance in solving the general central limit problem and its applications
to stochastic processes with stationary independent increments. The model we propose
is infinitely divisible and has compound Poisson representation.

4. In every discipline where the current discrete Pareto models fails, including reliability
engineering, epidemiology, insurance, medicine and biology a new discrete Pareto model
is much needed.
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5. To achieve consistently superior fitting performance compared to other existing dis-
crete Pareto distributions as well as compared to other popular discrete distributions
documented in the literature.

The remaining parts of this article are as follows: In Section 2, the ADP distribution is
presented by reparameterizing one of its parameter v. Some statistical characteristics such as
limiting behaviour, stochastic ordering, failure rate, infinite divisibility and characterizations
of the ADP distribution are derived in Section 3. The ADP parameters are estimated by
utilizing different methods of estimation such as maximum likelihood method, least squares
method, weighted least squares and Cramer-von Mises estimation and testing of hypothesis
in Section 4. A simulation study is performed to examine how the estimators perform with
regard to estimating the parameters of the proposed model in Section 5. In Section 6, the
goodness-of-fit of the proposed model to four real datasets is demonstrated. In Section 7,
discussion with other method is done. Finally, Section 8 provides some conclusions.

2. Structure of ADP distribution

We start with an alternative parameterization of the ADP model, which helps to study some
of its properties in an easy way. In 1, reparameterizing, v = exp(—a), we get

iy Boo) = (1+ ;w 1+ g<y+ 1)@ (2)

where A > 0,5 > 0, > 0 and y € Ng and in this case we write Y 4 ADP()\, B,«). The
interpretation of the parameters of the ADP distribution is as follows. For this model, A and
[ are the scale parameters and « is the shape parameter. From the plots in Figure 1, the
following observations can be made: a) the distribution is always unimodal and the unique
mode at 0. b) positively skewed.
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Figure 1: The PMF plots of ADP(\, 8, v) for different values of A, 8 and v
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The Cumulative Distribution Function (CDF) and Survival Function (SF) of ADP(), 5,v)
distribution can be obtained as

Fy (4 A, B,0) = 1 = o050 3)

and \
Sy (y; A, B,0) = 'R (4)

respectively, and y € Np.

o If A = 3 =1, ADP reduces to Discrete Pareto distribution studied in Krishna and
Pundir (2009).

o If 5 =1, ADP reduces to Discrete Lomax distribution discussed in Prieto et al. (2014).

3. Some distributional properties

3.1. Limiting behaviour

The limiting behaviour of ADP (A, 3, v) distribution corresponding to various parameter choices
at the boundary are:

lima 0,00 fy (Y3 A, B,v) =0

o limgofy (y; A, B,v) =0, limpoo fy (y; A, B, v) = 00
o limy—o0,1fy(y; A, B,v) =0

o Asy— o0, fy(y; A, B,v) =0

o Asy — oo, % becomes 1, which implies ADP is a long tailed distribution.

3.2. Stochastic ordering

Stochastic ordering serves as a fundamental tool for assessing the comparative behaviours of
random variables. Numerous stochastic orders exist, each with diverse applications. Theorem
1 and Corollary 1 (below) present results regarding the stochastic orderings of ADP distribu-
tion. The orders under consideration here are the stochastic order <, and the expectation
order <g .

Theorem 1. The ADP(\, 3,v) has the following properties.

o Suppose Y1 ~ ADP (A1, 3,v) and Yo ~ ADP (Ao, 5, v).
If )\1 < )\27 then }/2 <St Yl

o Suppose Y1 ~ ADP (X, B1,v) and Yo ~ ADP (A, B2,v).
If B1 < B2, then Y1 <gq Ya.

o Suppose Y1 ~ ADP (X, B,v1) and Yo ~ ADP (X, 3,v2).
If v1 < g, then Y1 <4 Y.

Proof. Follows easily and hence is omitted. O



Austrian Journal of Statistics 55

Corollary 1. From Theorem 1, the expectation ordering are as follows:

o Suppose Y1 ~ ADP (A1, 3,v) and Yo ~ ADP (\a, B,v).
If)\l < )\2, then Yo <g Y1.

o Suppose Y1 ~ ADP (X, B1,v) and Yo ~ ADP (A, B2,v).
If B1 < B2, then Y1 <g Ya.

o Suppose Y1 ~ ADP (X, B,v1) and Yo ~ ADP (X, 3,v2).
If v1 < vg, then Y1 <g Yo.

3.3. Failure rates

The failure rate is given by

fy (y; A, B, v)
Y — .
v (A By) Sy (y; A, B, v) (5)
—®W _1
A
where ®(y) = log % . Note that ry(1; A, 8,v) = ry(0; A, B,v) < A/B = 0. But this

cannot happen since A > 0 and 5 < co. Then ry (y; A, 8,v) < ry(y — 1; A, B,v) for all choices
of \/B=1,\/ > 1,and A\/B < 1. Thus ADP(\, 3,v) has decreasing failure rate for all y.

The reverse failure rate is given by

A A
o8 +5y) _ log(l+5(y+1))

v (A By 0) | OB (1)

Since failure rate is decreasing, the reverse failure rate is also decreasing.

In discrete distributions, the failure rate ry (y; A, 5,v) is a conditional probability with unity
as its upper bound. Xie, Gaudoin, and Bracquemond (2002) highlighted that labeling this
as the failure rate function could contribute to the existing confusion in the industry, where
failure rate and failure probability are occasionally conflated. To address this issue, they
introduced a second rate of failure 73*(y; A, 8, v) with the same monotonicity as ry (y; A, 5, v).
For ADP(\, 3,v) we have,

Sy (y; A, B,v) }
SY(y + 1;)‘76’U)

. 143 (y+1) (7)
— _log Uog 145 (y+2)

r (y: A, B, 0) = —log [

According to Kemp (2004), one can establish the following relationships for discrete distribu-
tions, which are applicable to the ADP distribution is given below:

DFR (Decreasing Failure Rate)= DFRA (Decreasing Failure Rate Average) =

NWU ((New Worse than Used) = NWUE ((New Worse than Used in Expectation) = IMRL
(Increasing Mean Residual Life).
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Figure 2: The failure rate plots of ADP(), 3,v) for different values of A, § and v

3.4. Moments

The 7" moment of the ADP (), 8,v) is given by
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In particular, the mean lifetime of ADP(), 3, v) can be obtained as

3 (y+1)

V=30
g: y+U)

—

where v = e This series is convergent if @ > 1. Consequently, we have the following

theorem:

Theorem 2. E(Y") exist iff exp(—r) > v.

Proof. Follows from the previous discussion. O

3.5. Discrete aging intensity and Discrete alternative aging intensity

The aging intensity L is defined as the ratio of instantaneous failure rate to failure rate
average. The discrete aging intensity and discrete alternative aging intensity of ADP(A, 3, v)

are
logS(y - 1;)\76’U):|
Y(y, ’/877)) y|: 1ogS(y;)\,ﬁaU)
X log (1 + %y) )
— Y log(l—i-%(y‘i‘l))
and 0 iy T
L* .A — o8 YT LAY
V(A B, v) log(y/y — 1) (9)
B log <log(1 + %(ZJ + 1))) — log <1og(1 + %y))
logy — log(y — 1)
respectively.

Remark 1. If for a discrete rv Y, discrete aging intensity L has the form in Equation (8)
fork=1,2,3,..., \,8 >0, then Y follows ADP(\, B,v) distribution.

From Table 1, it is noted that the ADP model can be used as a probability tool for modeling
positively skewed data with leptokurtic shape. Moreover, it can be used to model over dis-
persed data.

57
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Table 1: Mean, Variance, Skewness and Kurtosis for various values of A\, 5 and v

Parameter Mean Variance Skewness Kurtosis
A=0.5
8=0.5 0.4076 1.6119 49.9028 79.9414
v=0.1
A=0.5
B8 =0.5 2.6584 21.9575 6.2451 9.3161
v =205
A=0.5
B8=0.5 1.6975 19.9875 10.1187 12.9989
v=10.9
A=1.0
6=0.5 1.8510 15.7551 10.1603 14.0555
v=20.5
A=0.1
6=25.0 2.7641 36.6448 4.9357 6.7892
v=20.5

3.6. Theorems related to ADP distribution

Theorem 3. LetY/s (i = 1,2,3,...n) be non-negative independent and identically distributed
(iid) distributed integer valued rvs, and Z = minj<i<, Y;. Then Y is ADP(X, B,v") iff

Y; is ADP (), B,v).

Proof. Let Y;(i =1,2,3,...n) beiid ADP (A, 3,v). Then Sy (y; A, 5,v) = UIOg(H%(yH));y =
0,1,2,3,. ..

Consider
Sz(z; N\, B,v)=P(Z > z)=[P (Y1 = 2)|"

_ (vn>1og(1+g(z+1))

Thus, Z ~ ADP (A, 3,v") for all z=0,1,2,3,...
Conversely, let Sz(z; \, B,v) = v" log (1 + %(z + 1)) 12=0,1,2, ...
We know that,

Sy (y; A, B,v) = P[Y1 > y] =[P[Z = y]]"/"
:vlog(1+%(y+l)); y =0,1,2,3,...

Hence the theorem. O

This property is useful as it will allow modeling reliability of a series system with identical
components having the ADP distribution.

Theorem 4. Let Y/s (i = 1,2,3,...n) be non-negative iid integer valued random vari-
ables, and Z = mini<;<,Y;. Then Z is ADP (\,f,v) if Y/s are ADP(X,B,v;) where
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Proof. Follows easily. O
Theorem 5. If Y ~ ADP(\, 5,v), then Z = log(gY + 1) ~ Geo(v).

Proof.
P(Z > z) = Pllog(2Y +1) > 2
=P[Y > ((e* = 1)B/))]
— plog(1+A/B((e*=1)B/X))
=0, 2z=0,1,2,3,...
which is the SF of Geometric r.v. This completes the proof. O

Theorem 6. If Y ~ Geo (v), then Z = [%(ey —1)—1] ~ ADP(\, 3, v).

Proof. Consider

Hence the theorem. O

Theorem 7. If Y, and Yy are independent and follow Geo(v) and ADP(X, 3,v) and A/ =1,
respectively, then Z = min(Y1,Ys) ~ NGDP(v,«) of Bhati and Bakouch (2019).

Proof. The SF of Y; ~ Geo (v) and Ys ~ ADP (), 8,v) are v¥ and v/9((¥+2)) respectively.
Hence the SF of min(Y1,Ys) is
Sz(z) = P(min(Y1,Y2) > z)
— 07 % vlog(z+2)
UZ
(24 2)e

where a = —Inv and this is the SF of NGDP (v, a). O
Theorem 8. IfY ~ ADP (), 3,v), then

P(Y >t)

(1+30+1)

— —~ last — co.

Proof. As t — oo, we consider a = a(t) be a unique integer such that a(t) <t < a(t) + 1.

As a consequence,
Sy (a(t); A, B,0) 2 P(Y > t) = Sy(a(t) + 1; A, B, ).

Therefore,

A+ A/BA+1) 1% P(Y >t) S [ 1+AB0+1 77
1+ X/B(A+a®)] ~ 1+XBA+)]> 7 [14+A/B(2+a(t)

The term in the middle is bounded by two terms which converges to 1 as ¢ — oo, since
t/a(t) — 1. O



60 On an Alternative to Discrete Pareto Model

3.7. Quantile function and random number generation

Definition 1. The point y, is known as the ¢"" quantile of a discrete random variable Y
if it satisfies P(Y < yq) = ¢ and P(Y > y,) > 1 — ¢, that is, Fy(y, — 11X, 8,a) < ¢ <
Fy (yg; A, B, ).

Theorem 9. The ¢'" quantile of the ADP distribution is

Yy = § {(1 —q) Ve — 1} — 1, where a = —Inw. (10)
Proof.
P(Y <yq) 2¢q
implies
B ~1/a
Yqg 2 X[(l—Q) Y -1 -1
and

P(Y > y,) > 1—q gives

B ~1/a
ve< K-V
Combining these we get,
| < L) L

and therefore, y, is an integer given by

T S|

Hence the proof. O

A random integer can be generated from the suggested model using the conventional inverse
transformation technique. Suppose g represents a randomly selected number from a uniform
distribution across the unit interval. When X, 8 and « are fixed, a number adhering to the
ADP distribution can be obtained by evaluating the expression on the right side of Equation
(10).

3.8. Infinite divisibility
Considering fZ(y; A, 8,v) — fy (y — L; A, B,v) x fy(y+ 1; A, B,v) for ADP distribution, we get

L2 1oe(1+5v) I p2loe(1+5(w+1) _ log(1+3y)+Hog(145(y+1)) _  log(1+5(y—1))+log(1+5 (y+1))

1 o5 (y=1)+log(1+5(y+2)) _ log(1+5y)+log(1+5 (y+2)) ()
The expression given in Equation (11) can be negative for A > 0,8 > 0,0 < v < 1 and
for all y € Ng and also fy(1; ), 8,v) # 0, fy (0; A\, 5,v) # 0. According to Steutel and
van Harn (2003), a discrete model with PMF fy (y; A, B, v) is log convex if f2(y; A, 8,v) <
fy(y — ;0 8,0)fy(y + 157, 8,v). The ADP distribution satisfies fZ(y; A, 8,v) < fy(y —
LA B,0)fy(y+ 1; A, B8,v) and is log convex. As a direct consequence of log convexity, ADP
distribution is infinitely divisible, see Steutel and van Harn (2003), for details.

Moreover, as any infinitely divisible distribution defined on non-negative integers is a com-
pound Poisson distribution (see Karlis and Xekalaki (2005)), we conclude that the ADP dis-
tribution is a compound Poisson distribution. Additionally, the concept of infinitely divisible
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distribution holds significance across various statistical domains, such as stochastic processes
and actuarial statistics. In cases where a distribution G is infinitely divisible, it implies that
for any integer n > 2, there exist a distribution G,, such that G is n-fold convolution of Gy,
namely G = G}

Moreover, in the case of infinitely divisible distributions, a maximum limit for the variance
can be determined when A > 0,5 > 0,0 < v < 1 (see, Johnson and Kotz (1982), page 75).
This upper bound for ADP distribution is

V(Y) < fy (1N, B,v)  wleg(+A/B) _ y)log(1+22/5)
s (02, B0) 1 — plog(1+X/B)

3.9. Model diagnostics
Consider the SF of ADP distribution

Sy(y; A\, Bya) =14+ Z(y +1)]7%

™| >

That is, log [[Sy (y; A, B,@)] /" = 1] = log(5) + log(y + 1),

@[ >

which can be written as
z=b+u (12)

where z = log {[Sy(y; A B, a)]fl/a - 1} b= log(%) and u = log(y + 1). Note that Equation
(12) presents a crucial means for assessing model adequacy. By calculating the empirical SF,
Sy (y; A, B, «), from the dataset and plotting z against u, one can determine the suitability
of the ADP distribution as a model for the given data. A nearly straight line plot indicates
that the ADP distribution adequately represents the data. The parameters A, 8, and « can
be estimated by considering Equation (12) as a linear regression equation and first estimating
the constant b by using the ordinary least squares method.

3.10. Mean of excess over threshold and tail value at risk

Significant focus has been dedicated to quantifying operational risk in the last few decades.
In this section, we derive several risk measures for the ADP(\, 8, «) distribution, including
mean excess over the threshold (MT) and tail value at risk (TV). The MT of the random
variable Y following ADP(\, 3, «) distribution is given as

m(y) =EY —y|Y >y)

=0+ 5D+ 30 I ve N
=y

Based on an arbitrary choice of the parameters, we can get m(0) < m(y), then the ADP
distribution belongs to a class of discrete distributions having new worse than used in expec-
tation, for more details refer Marshall and Proschan (1970). Hence, the ADP distribution
plays an vital role in the reliability theory. Regarding the TV, for any quantile y,, the TV of
ADP(), B, o) distribution can be derived as

TVq(Y)

=EY |Y >y,

= Yo+ T oy (U Ya) [y (s X B )

=Y+ TR GoEa) (:U’ll —yg+ X0 (g — ) fy (s A, B, a))

=y + [+ 3+ D7 (B —ve + SU5%" (g — ) 1+ 307 = L+ 3w+ 1] ™)
y € Np.

(13)
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3.11. Entropy

The degree of uncertainty linked with a rv Y is termed as Entropy. This concept finds broad
applicability across various domains, including information theory, econometrics, survival
analysis, computer science, and quantum information. For further insights, refer to Rényi
(1961). The Rényi and Shannon entrophy for the rv Y is

0 k
()= 7= los Y ({14 50~ 1+ 50+ D7) 5 we o
y=0

and
1Y) == o ([L+ 07 = L+ Al + D7)
log ([1+ 3917~ [1+ 3w+ D) 1y € Ny,

respectively, where k € (0,00) and k # 1. It is notable that the Shannon entropy can be
derived as a specific case of the Rényi entropy if & — 1, that is, I(Y") = limy_1 I(Y).

3.12. L-moments

Given any random variables Y7, Ys,...,Y,, the order statistics Yi., < Yo, < ... <Y, are
also rv. Let the rv Y follows ADP (), 3,v) distribution. Then the CDF of the i** order
statistics is

Fin(y; X, B,0) = i ( ;l ) [Fi(y; A, B,0)) [1 — Fy(y; A, B,0)]"

n—j j+k

=33 > - Fiy; A, B,mw)],

j=i k=0 m=0

where ‘IJEZLJI? = (=1)ktm ( 7]1 ) ( n;] ) ( J ;;k ) The corresponding PMF of the it?

order statistics is given by

fi:n(y;)\,B,U)Z zn(yv)\ﬁa ) ( -1 )‘67 )
n n—j j+k

=33 S W (Fily — 1A, Bomw) — Fi(y; A, B.mw)).

j=1 k=0m=0

Thus, the 7" Root Mean Square (RMS) of Y., can be computed as:

o n n—j j+k

=333 Sy (B - L Bomw) - Fi(y: A Bomw) . (14)

y=0 j=1 k=0 m=0

Similar to the conventional ordinary moments, L-moments can be derived. However, L-
moments can also be estimated using a linear combination of order statistics. Whenever the
distribution has a defined mean, L-moments exist as well. Explicit expressions for L-moments,
represented as infinite weighted linear combinations of the means of appropriate ADP order
statistics, can be derived. These L-moments can be expressed as a linear function of the
expected order statistics and based on Equation (14), can be defined by,

rz_izz_jl(—ni(Z_.l )E(Yz_izz);z—l,z&... (15)

7

According to Equation (15), some statistical measures can be derived like mean, Skewness

(Sk), and Kurtosis (Ku) where mean =I', Sk = %, and Ku = %.
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3.13. Characterizations

In order to comprehend the patterns exhibited by data generated through a specific process, it
is essential to articulate its behavior through an appropriate probability distribution. Hence,
characterizing a distribution becomes a crucial challenge in applied sciences, as investigators
are keen to ascertain whether their model adheres to the correct distribution. In pursuit of
this goal, investigators depend on conditions that determine whether their model aligns with
the chosen distribution. Here we obtain three characterizations of the ADP distribution based
on: a) the conditional expectation of certain function of the random variable; b) the hazard
rate function and c) reverse hazard rate function.

Based on conditional expectation of certain function of the random variable

Proposition 1. Y ~ ADP(\, B,v) if and only if

E {vlog(lJrgy) + Ulog(1+%(y+1))‘y > k} _ vlog(1+%(k+1))_ (16)

Proof. If Y has PMF given in Equation (1), then LHS of Equation (16) will be
[1 — FY(k)]_l 730=k+1 vlog[l-‘r%y} + Ulog[l-}-%(y_t,_l)]

{Ulog [1+%y] _ Ulog [1+%(y+1)]

X

— (1= By (B)] 7 35y 0?8 0] g2 roe 1450 )
_ {021og[1+g(k+1)]]1/ |:Ulog[1+g(k+l)]

_ o8 [1+3 (k+1)] .

Conversely, if Equation (16) holds, then

vlog[l+%y] +v10g[1+%(y+1)] Fry)

log[l—l-%y] _'_Ulog[l—l—é(y—i—l)]} x

o0
y=k+1

=D skt |V

|:Ulog[1+gy] _ plog[1+3 (w+1)]

=Y, 2log[1+§y] _v210g[1+%(y+1)]
y=

2log[1+ (k+1)]

(1 - Fy (ke ) (17)
= (1= By (k+1) + fy (k + 1)p'sl+50+0]
Also we have,
2 yeht2 pos[H5Y] 4 los[1+5 4] fy(y) (18)

Now, substracting Equation (18) from Equation (17), we arrive at

Ulog[1+6(k+2)} Fr(k+1)

(1 o FY k + 1 ) [Ulog 1+ (k+1 _ vlog[l+%(k+2)]

Ak A
fy(k-‘rl) _ ’Ulog[l-&-g(k-ﬁ»l)] _Ulog[l+ﬁ(k:+2):|
1-Fy (k+1) Ulog[1+%(k+2)]

Hence, ry(k+1) =

which, in view of Equation (5), implies that ¥ has PMF in Equation (1). O
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Based on hazard rate function

Proposition 2. Y ~ ADP(\, B,v) if and only if its hazard rate function satisfies the differ-
ence equation

142 (k+1) 1+2k
log B log Aiﬂ
1+5(k+1) | |

ry(k+1)—ry(k)=v {Hg(k“) —v ; ke Np (19)

with boundary condition
ry(0) = JoelTmEl

Proof. 1f Y has PMF in Equation (1) then clearly Equation (19) holds. Now if Equation (19)
holds, then for every y € N, we have

142 (kt1 143k
y—1 y—1 10g|:1+§ik+2;:| 0g|:1+>‘(i+1):|
Zry(k+1)—ry(k)22v B -0 B .
k=0 k=0

) |: 1+Ay :|
1 og| —x2—
ry(y) —ry(0) = —roslmsl gy LR

1
In view of the fact ry(0) = °8IT7375] — 1) from the last equation we have

: 1+ 3y
08 L5 (u+D)
ry(y) =v -1

which in view of Equation (5), implies Y has PMF in Equation (1). O

Based on reverse hazard rate function

Proposition 3. Y ~ ADP(\, B,v) if and only if its reverse hazard rate function satisfies the
difference equation

vlog(lJr%(kJrl) B Ulog(lJr%(kJr?)) Ulog(1+§k) _ Ulog(1+§(k+1))

Sk+1) —ry(k) = — : keN
ry (k4 1) =3 (k) | os(t 3 (k12) | Joes+3 (k) € No

(20)
with boundary condition r3-(0) = 1.

Proof. If Y has PMF in Equation (1) then clearly Equation (20) holds. Now if Equation (20)
holds, then for every y € N, we have

y—1 Ulog(1+%(k+1) B Ulog(1+%(k+2)) vlog(l—l—%k) B vlog(1+%(k+1))

y—1
ry(k+1)—ry (k) = -
kz::o Y Y kz::() 1_ Ulog(1+%(k+2)) 1— Ulog(1+§(k+1))

This implies,
A A
108+ 5y _ log(l+5(y+1))

£ (y) — 15 (0) = .y
rY(y) TY( ) 1_v10g(1+%(y+1))

In view of the fact that r§-(0) = 1, from the last equation we have

A A
o8+ 5y log(l+5(y+1))

| loe(1+3 1)

which in view of Equation (6), implies Y has PMF in Equation (1). O
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4. Different methods of estimation and testing of hypothesis

4.1. Maximum likelihood estimation

In this section, the estimation of ADP distribution parameters is carried out by using the
method of the maximum likelihood (ML) based on a complete sample. Let yi,y2, ...y, be
random sample from ADP(), 8,v) distribution. Then log-likelihood function (L) can be
formulated as .
I — Zlog |:Ulog(1+gyi) _ vlog(l-ﬁ-%(yi-&-l)) ) (21)
i=1
Differentiating Equation (21) with respect to A, 8 and v respectively, we get the likelihood
equations as follows:

B v -1 Ay
10%71 [yz (1 + %%) Ulog(1+ﬁyl) - (yi + 1) (1 + %(yz + 1)) leg<1+5(yz+1))

0L &
o\ ; Ulog(1+%y¢) . Ulog(lJr%(yHrl))
1 1 22)
— N — A
o o s [y (14 3u) " =00 39) (g 1) (14 3w + 1) vl°g(1+5<yi+1))]
B~ ot plos(1+gui) _ log (145 (wit1))
(23)
oL . 1og (1 + %yz-) pos(IH53:) 1 1og (1 + 5 (i + 1)) os(1+ 3wt D) -1
- — 24
o o vlog(1+%yi) B Ulog(l—‘,—%(yi—i-l)) (24)

As closed-form solutions for the log-likelihood Equations (22-24) do not exist, the ML esti-
mates can be derived through numerical methods or a direct search for the global maximum
on the log-likelihood surface. The asymptotic covariance matrix of the ML estimates for
parameters A, 8 and v can be calculated using the inverse of the Fisher information matrix.

4.2. Least squares estimation

This method is based on the observed sample 1,92, ..., y, from n ordered random sample of
any distribution with CDF, where F(.) denotes the CDF, we get
B(F(y) = .

! (n+1)

The least sqaures (LS) estimators are obtained by minimizing

J— / 2
LS = Z —y 1) (25)
Putting the CDF of ADP in Equation (25) we get
Cq2
I log(1+3 <y+1>>> __J } _ 9
=3[~ (v 20

After differentiating Equation (26) with respect to the parameters A\, § and v and equating
to zero, the normal equations are as follows:

. .
3 5 _ 22 [ (vlog(1+g(y+1)>) - - i 1]

o [IOEU

(¥ +1) <1 2+ 1))_1 vlog(1+2<yi+1))]

8
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8[/5 _2i{ ( log( 1+ (y—i—l))) i }

= (28)
y [/\logv(yi L) (1 N ) Jos(1+3 y,+1))1

62
8LS _ " . log(lJr (y+1) > :|
= Z [1 <v n+1

Pl o

The above non-linear equations cannot be solved analytically. So the LS estimators of A, beta
and v can be obtained by using some iterative techniques likes Newton-Raphson method.

E\y

(29)

4.3. Weighted least squares estimation

The weighted least squares (WLS) estimators can be obtained by minimizing

n .
J
WLS = w;i(F(y;) — 1)2 (30)
= n—+
with respect to the unknown parameters, where w; = Var( }(Yj = %Efﬁﬁ).
Putting the CDF of ADP distribution in Equation (30), we get
© 92
WIS — log 1+ﬂ(y+1))) ] } . 31
Z { ( n+1 (31)

After differentiating Equation (31) with respect to the parameters A, 8 and v and equating
to zero, the normal equations are as follows:

8WLS _ 227”] [ B (Ulog(1+g(y+1))> o J ]

n+1
o ) T (42 (32)
‘ 2 i log (145 (yi+1)
Xlﬁ(%+ﬂ@+ﬁ@+n> Sos(1+3 ]
8WLS B n B log(1+2 5( +1)) L
=2 Z wWj l: ( g ( Y ) 2 1:|
= A - A (33)
X [;gv(% +1) (1 + B(yl 4 1)> vlog(1+ﬁ(yi+1))‘|
GWLS lo 1+ (y+1)) ]
-2 Z w; |1 — ('8 e
= (i) - ] )

X {log (1 + g(yz + 1)) vlog(“%(%“))—l}

The above non-linear equations cannot be solved analytically. So the WLS estimators of A,
B and v can be obtained by using some iterative techniques likes Newton-Raphson method.

4.4. Cramer-von Mises estimation

The Cramer-von Mises (CVM) estimates of the parameter A, 5 and v are obtained by mini-
mizing the following expression with respect to the parameters A\, 8 and v respectively.

1425
. 35
L) (35)

CVM——+Z
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For in the case of ADP distribution, put CDF of ADP in Equation (35).

1 _ o143 (1) _ —1+23'>2
CVM = - 2n + 2:: ( —5 ) (36)

By differentiating Equation(36) with respect to the parameters A\, 8 and v and equating to
zero, we get the normal equations as follows:

v Qi 1 (gt =122

2n

1 A ! A o

y [ ogv(yZ +) ( ﬂ(yi n 1)) Ulog(1+6(yi+l))1

8CVM - log( 1+ (y+1)) —1 + 2j

e ()22

y [Mgfv(y +1) (1 2( +1)) l°g(”2(y’“))]

oCV M _ n o log(1+3(y+1) ) —1+25

ov 2; [1 (v ’ ) 2n ] (39)

o (1 g4 1)) el 1)

These Equations (37-39) cannot be solved analytically. The estimates of A, 5 and v can be
obtained by setting the normal equations equations equal to zero and solving simultaneously
with the help of statistical packages like optim or nlm in R programming.

4.5. Testing of hypothesis

Here we present a procedure-the generalized likelihood ratio test for testing the significance
of the additional parameter 3 of the ADP(\, 8,v), since when 8 = 1, ADP reduces to Dis-
crete Lomax distribution. Thus, we consider the null hypothesis as Hy : § = 1 against the
alternative Hy : 8 # 1.

The test statistic for generalized likelihood ratio test is,

—2logw = 2[L(y; 1) — L(y;7")] (40)

where 7 is the ML estimator of n = (A, 5,v) and #* is ML estimator of 5 = 1. The test
statistic —2logw given in Equation (40) is asymptotically distributed as chi-square with one
degree of freedom.

5. Simulation study

In this section, we evaluate the performance of the estimators by employing a simulation
technique across various sample sizes (n). The simulation is conducted using the optim()
function in R Core Team (2023) software. We generated 2,000 samples of three different
sizes (n = 50, 100, 250) from ADP(A, 8,v) distribution, considering different values of model
parameters using different methods of estimation outlined in Table 2 and Table 3. The average
values of estimates, bias and MSEs of ML, LS, WLS and CVM are obtained and displayed in
Table 2 and Table 3. Initial values are chosen to compute the estimates in such way that the
optimization function have minimum bias. The steps are:

1. Compute the estimates for the 2000 samples, say 7 for j = 1, 2, ..., 2000.
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2.Compute Bias by using the formula, Bias(f) = 5555 22000( 7).

3. Compute MSE by using the formula, M SE(f) = 2000 22000( n)2.

Also, graphs for MSE for simulation results obtained in Table 2 and Table 3 are illustrated
in Figure 3 and Figure 4.

Notably, as the sample size (n) increases, there is a consistent decrease in bias and MSE for
different methods of estimations. From Table 2 and Table 3, we observe that all the estimates
show the property of consistency i.e., the MSEs decrease as sample size increase. Comparing
the different methods of estimation, the results show that the ML produces the best results
for estimating the parameters A, 8 and v in terms of MSEs in all of the cases.

Table 2: Simulation results of A = 0.5, 8 =0.5 and v = 0.5

Sample size(n) Parameter| ML LS WLS CVM

A 0.52037 0.44922  0.32636  0.70819

Bias 0.02037 0.05077  0.17363  -0.20818

MSE 0.00041 0.00258  0.03014  0.04334

g 0.48271 0.45732  0.39961  0.71271

50 Bias 0.01773 0.04268  0.10038 -0.21271
MSE 0.00182 0.00597  0.01007  0.04524

b 0.55431 0.55953  0.38934  0.75185

Bias 0.05430 -0.05952  0.11065 -0.25185

MSE 0.00295 0.00354  0.01224  0.06342

A 0.48769 0.53079  0.53109  0.40496

Bias 0.01230 -0.03079  -0.03109  0.09503

MSE 0.00015 0.00095  0.00097  0.00903

B 0.50196 0.53122  0.53112  0.47658

100 Bias -0.00196 -0.03122 -0.03119  0.08341
MSE 3.867 x 1075 0.00097  0.00097  0.00695

0 0.51736 0.53589  0.533938 0.64773

Bias -0.01736 -0.03589  -0.03986 -0.01477

MSE 0.00030 0.00128  0.00155  0.02183

A 0.49770 0.48860  0.47600  0.45795

Bias 0.00229 0.01139  0.02399  0.04205

MSE 5.2754 x 1075 0.00013  0.00057  0.00177

B 0.50431 0.48958  0.47889  0.55093

250 Bias -0.00431 0.01042  0.0211  -0.05093
MSE 1.8535 x 10~°  0.00011  0.00044  0.00259

o 0.50926 0.47798  0.51817  0.57900

Bias -0.00926 0.02201  0.01817 -0.07900

MSE 8.5833 x 1075 0.00048  0.00033  0.00624

6. Applications

For application, we have considered four real data sets. The parameters are estimated by
using the method of maximum likelihood (using R software). We compare the fit of the
ADP distribution with Discrete Pareto (DP)(see Krishna and Pundir (2009)), Discrete Lo-
max (DL)(see Prieto et al. (2014)) , Discrete Pareto type (IV) (DP IV) (see Ghosh (2020)),
Discrete Burr XII (DB XII) (see Para and Jan (2016)) and Discrete exponentiated Weibull
(EDW)(see Nekoukhou and Bidram (2015)) distributions. The values of estimates, the log-
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Table 3: Simulation results of A =0.2, 8 =0.9 and v = 0.5

Sample size(n) Parameter]| ML LS WLS CVM

A 0.18111 0.18001 0.12951  0.34823

Bias 0.01889 0.01999 0.07048 -0.14823

MSE 0.00036 0.00039 0.00496 0.02197

bA’ 0.93075 0.85183  0.74811 1.20102

50 Bias -0.03075 0.04816  0.15189 -0.30106
MSE 0.00095 0.00232  0.02307  0.09061

v 0.48072 0.52129  0.55207  0.59135

Bias 0.01928 -0.02129 -0.05207 -0.09135

MSE 0.00037 0.00045  0.00271  0.00834

A 0.20767 0.18115  0.22510  0.22649

Bias -0.00765 0.01885 -0.02510 -0.02649

MSE 5.8760 x 1075 0.00035  0.00063  0.00070

B 0.91302 0.93195 0.76488  1.05226

100 Bias -0.01302 -0.03195 0.13512 -0.15226
MSE 0.00017 0.00102  0.01826  0.02318

v 0.51334 0.52209 0.54984 0.42914

Bias -0.01334 -0.02209 -0.04984 -0.07085

MSE 0.00017 0.00048  0.00248  0.00502

A 0.20544 0.18820 0.17961  0.22491

Bias -0.00544 0.01179  0.02038 -0.02491

MSE 2.9615 x 1075 0.00014  0.00042  0.00062

3 0.90342 0.88095 0.83621  0.76002

250 Bias -0.00342 0.01904 0.06397  0.13997
MSE 1.1758 x 10~°  0.00036  0.00409  0.01959

v 0.50413 0.51610  0.47365  0.46949

Bias -0.00413 0.01610  0.02635 0.03051

MSE 1.7076 x 107°  0.00026  0.00069  0.00093

Sample Size

—e— MLE
—*— LS
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v=0.5
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Figure 3: MSE graphs for A =0.5, 3 =0.5 and v = 0.5
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likelihood function (-LogL), the Kolmogrov-Smirnov (K-S) statistic, Akaike Information Cri-
terion (AIC), Akaike Information Criterion with correction (AICc), Bayesian Information
Criterion (BIC) and Hannon-Quinn Information Criterion (HQIC) are calculated for the six
distributions in order to verify which distribution fits better to the data.
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Figure 4: MSE graphs for A =0.2, 3 =0.9 and v = 0.5

Data set I: Medical data

A data set is taken from Ramana, Babu, and Venkateswarlu (2012), which is a critical com-
parative study of liver patients from USA and India. This data set contains records of 583
patients, and there are 10 variables per patient: age, gender, total bilirubin, direct bilirubin,
total proteins, albumin, A/G ratio, SGPT, SGOT and alkphos. Here, we have taken the data
of total bilirubin content in patients. Since the data set is continuous, we have taken the
integer part of observations. The summary statistics of data set I is given below.

Mean Variance Skeweness Kurtosis
2.722 39.239 4.853 39.497

Data set II: Biological data

The data set includes 171 molecules designed for functional domains of a core clock protein,
CRY1, responsible for generating circadian rhythm. 56 of the molecules are toxic and the
rest are non-toxic. Here we used period lengthening dataset called "nHBin" of 10-Fold cross
validation accuracies, (for more details of data see Gul, Rahim, Isin, Yilmaz, Ozturk, Turkay,
and Kavakli (2021)). The summary statistics of data set II is given below.

Mean Variance Skeweness Kurtosis
0.316 0.582 2.828 11.566

Data set 111: Reliability data

The data used is failure time data of an air conditioning system on an airplane sourced from
Linhart and Zucchini (1986).The mean value of the data is 53.7407, which is smaller than the
variance, 4087.7380 this indicates over dispersion. Also, the skewness is 1.6632 and kurtosis
is 2.1453.

Data set IV: Epidemological data

This data represents the daily new cases of COVID-19 in Egypt. The data is available at
https://covid19.who.int/ and contains the daily new cases between 15 March and 10 June
2020. The data set along with R codes for computations are given in the Appendix.

From Table 4, Table 5, Table 6 and Table 7, it is clear that ADP distribution provides a good
fit to these data sets. For the data set I ADP distribution has highest p value when compared
with other five models and lowest -LogL, AIC, BIC, AICc, HQIC and K-S statistic values.
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Table 4: Parameter estimates and goodness of fit for various models fitted to the dataset I.

Model MLEs -LogLL AlIC BIC AlCc HQIC K-S p-value

DP p = 0.013 1277.736 2557.472 2561.840 2557.479 2559.175 0.761 0.00

DL & = 0.107 1229.895 2463.790 2472.526 2463.811 2467.195 0.312 0.067

DP IV 0=0.765 1690.572 3387.144 3400.249 3387.185 3392.252 0.594 0.01

DB XII 3 =0.365 1501.676 3009.352 3022.457 3009.393 3014.460 0.499 0.07

EDW p= 0.917 1333.916 2673.832 2686.937 2673.873 2678.940 0.648 <0.00

ADP A =0.103 1221.147 2448.294 2461.399 2448.335 2453.402 0.292 0.431

Also, in case of data set II, data set III and data set IV, ADP distribution has highest p value
when compared to others and lowest -LogL, AIC, BIC, AICc, HQIC and K-S statistic values.

For testing, Hp : 8 = 1 against Hy : 5 # 1 by generalized likelihood ratio test procedure we
have computed the values of L(7;y) and L(7*;y) as -1221.147 and -1229.895 respectively for
data set I. The test statistic value is computed as 8.748. Since the critical value for the test
at 5% level of significance is 3.84 at one degree of freedom, the null hypothesis is rejected in
this case.

For data set II, the values of L(7;y) and L(7*;y) are - 123.2164 and -125.7054 respectively.
The test statistic value is 4.978. The null hypothesis is rejected since critical value 3.84 at
0.05 level of significance is less than the calculated value.

For data set III, the values of L(7;y) and L(7*;y) are - 134.5773 and -136.5341 respectively.
The test statistic value is 3.914. Thus the null hypothesis is rejected at 5% level of significance
since the critical value is 3.84 at one degree of freedom.

7. Discussion with other method

Cordeiro, Ortega, Popovié, and Pescim (2014) proposed a class of distributions called Lomax
generator with two positive parameters to generalize any continuous baseline distributions.
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Table 5: Parameter estimates and goodness of fit for various models fitted to the dataset II.

Model MLEs -LogL AIC BIC AlICc HQIC K-S p-value
DP p = 0.1757 128.9439 259.8878 263.0295 259.9115 261.1626 0.7004 0.010
DL a = 0.1154 125.7054 255.4108 261.6941 255.4822 257.9603 0.5446 0.120
A =0.2018

DP IV 6=0.1324 123.9902 253.9804 263.4054 254.1241 257.8047 0.7367 0.074
o = 1.0512
4 = 0.7410

DB XII B =0.0723 123.7497 253.4994 262.9244 253.6431 257.3237 0.8312 0.02
4 =1.0471
¢ =0.7104

EDW p= 0.8577 128.8873 263.7746 273.1996 263.9183 267.5989 0.8715 <0.00
& =0.6497
4 =0.0705

ADP X\ =0.1539 123.2164 252.4328 261.8578 252.5765 256.2571 0.4536 0.287
B = 0.4551
0= 0.1256

The Probability Density Function (PDF) and its SF are
0 g9(z)
r)=20 x>0 41
T =0 = G — tog(1 = Gl 2 4
and
" 0
S(z) = ;2 >0,0,u>0 (42)

i~ log(1 — G(x))

respectively, where G(x) is the CDF of the baseline model.

The Lomax generator family of distributions can generalize all classical continuous distribu-
tions. The density funtion of Lomax generator allows greater flexibility of tails and can be
widely applied in many areas of engineering and biology. Also the moments of this family
play an important role for measuring inequality, for example, income quantiles and Lorenz
and Bonferroni curves, which depend upon the incomplete moments of a distribution.

Here we consider the Survival Discretization (SD) method. Let X be a continuous rv. Then
the discerte analogue Y of X can be derived by using the SF as follows: Let S(.) be the SF

of the rv X. According to the SD approach, the PMF can be expressed as

PY=y)=Sky) —Sky+1); y=0,1,2,3,....

(43)
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Table 6: Parameter estimates and goodness of fit for various models fitted to the dataset III.

Model MLEs -LogL AIC BIC AlICc HQIC K-S p-value
DP p = 0.7444 151.4199  304.8398  306.1356  304.9998  305.2251 0.3829 0.0007
DL & = 0.1655 136.5341 277.0682 279.6599  277.5682 277.8388  0.2511 0.0665

A =0.0273

DP IV 0=0.0445 155.3150 316.6300 320.5175 317.6735 317.7890 0.8520 0.0000

DB XII B =0.4065 167.6467 341.2934 345.1809 342.3369 342.4494 0.5671 0.0000

EDW p= 0.3410 154.5298 315.0596 318.9471 316.1031 316.2156 0.3361 0.0045
& =0.1478

4 =3.1741

ADP A =0.1100 134.5773 275.1466 279.0341 276.1901 276.3026 0.1197 0.8338

= 0.0016

@

9= 0.1250

Employing SD approach on Equation (41), the PMF of discrete Lomax generator family can
be obtained as,

y € No (44)

0 0
p —log(1 — G(y))} - LL —log(1 - G(y + 1)))} ’
where p1,0 € (0,00) and Ng ={0,1,2,...}.
By putting CDF of geometric distribution, G(y) =1 —4Y; 0 < § < 1, y € Ny, in Equation
(44), we obtain

fr(y) = { a 2

0

{u—log(lﬁ(l—dy))r N {u*log(ljzlféy“))} - [u—yulowr N {u—(yfl)log‘sla
-] - ok

By reparameterization, 6 = e~ 7, we get

fy(y) = {1+Zy}_0— {1+Z(y+1)}_9; y € No.

This is same as the PMF of ADP distribution.

8. Conclusions and future works

Here we introduce a new discrete distribution which is an alternative to discrete Pareto distri-
bution. Various properties of ADP distribution are studied. This distribution is a competing
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Table 7: Parameter estimates and goodness of fit for various models fitted to the dataset IV.

Model MLEs -LogL AlIC BIC AlCc HQIC K-S p-value

DP p = 0.8205 675.674 1353.347 1355.824 1353.394 1354.345 0.368 0.000

DL a = 0.9983 619.267 1242.533 1247.488 1242.675 1244.530 0.162 0.019

DP IV 6=0.9980 685.136 1376.272 1383.704 1376.558 1379.266 0.873 0.000

DB XII  $=0.6360 657.638 1321.277  1328.709  1321.563  1324.271  0.362  0.000
4 =5.5837

¢ =0.7216

ADP A =0.0620  617.399  1240.799  1248.231  1241.085  1243.794  0.099 0.350
B = 0.0003

= 0.2168

model when compared with other existing discrete Pareto models. The proposed model offers
the ability to model a hazard rate function that exhibits a decreasing failure rate patterns and
is suitable for modeling with overdispersed datasets. From the application of real datasets,
it is clear that ADP distribution may serve as a viable alternative to discrete Pareto models
available in the literature for modeling count data arising in various fields of scientific in-
vestigation such as reliability theory, hydrology, medicine, meteorology, survival analysis and
engineering. This paper identifies several promising paths for future investigation, offering
substantial potential to enhance comprehension and utilization of the proposed model across
diverse domains. These avenues include extending the analysis to encompass bivariate scenar-
ios, investigating alternative censored methods, embracing Bayesian techniques for parameter
estimation, exploring various loss functions, and exploring the application of neutrosophic
statistics. Also, considering that the hazard rate function of the ADP distribution decreased,
for modeling real-world scenarios with increasing and bathtub-shaped hazard rates, we were
unable to apply this distribution. This facilitates the development of better adapted versions
of discrete Pareto models.
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Appendix

R code for the data set IV.

#Data set
>  y<—c (17, 16, 40, 30, 14, 46, 29, 9, 33, 39, 76,14, 39, 41, 40,
33, 47, 54, 69, 86, 120, 85, 103, 149, 128, 110,139, 95, 145,
126, 125, 160, 155, 168, 171, 188, 112, 189,157, 169, 433, 0,
997,463, 260, 226,269, 358, 0, 298, 272.736, 387, 0, 393, 495,
924, 346, 0, 685, 398, 0, 399, 491,510,535, 1465, 0, 774, 783,
727, 752, 702, 789,910, 1127, 1289,1367, 1536, 1399, 1152,
1079,1152, 1348, 1497, 1467, 1365,1385)
>  y<—sort(y)
> w<—length(y)
>  hist(y)
H#ADP distribution

f<—function (par){

—sum(log (par[1]  (log(l+(par[2]/par[3])*y))

—par (1]~ (log(1+(par [2] /par [3]) *(y+1)))))

}
out<lm(f ,p=c(0.12, .1, .1),hessian=T)
pdlog<—function (y,v,lambda , beta){
1-v7(log (1+((lambda/beta)*x(y+1))))
}

ks.test (y,"pdlog", 0.0620280034 ,0.0002732876, 0.2168630137)
L=617.399
k<—3
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ATC<—(2%L) +(2%k)
BIG<—(2*L)+(k*log(n)
AICG<—(2#L)+((2xk*n)
HQIG<—(2*L)+(2*kxlog

#DP distribution

f<—function (par){

| —sum (108 (par 1] (log(1+))—pr 1] (18 (s+2)))

out<—nlm (f ,p=c(0.75) , hessian=T)

pdlog<—function (y,v){

} 1-v~(log(y+2))

ks.test (y,"pdlog", 0.820534)

L=675.6735

k<—1

AIC<—(2%L)+(2k)

BIG<—(2*L)+(k*log(n))

AICG<—(2#L)+((2*k*n) /(n—k—1))

HQIG<—(2*L)+(2xk*log (log(n)))

#DB distribution

f<—function (p){
—sum( log ((1+((y/p[2]) " p[3])))*log(p[1]) +
log ((1—(p[1]” (log ((1+(((y+1)/p[2])"p[3]))/

)
/(n=k—1))
(log(n)))

(I+((y/p[2])7P[3]))))))) )

out=optim (p=c (.001,0.01,0.004) ,f)
pdb3<—function (y, beta ,gamma, c){
1—(beta"log( (1+(((y+1)/gamma)”c))))

}
ks.test (y,"pdb3", 0.6360314, 5.5837399, 0.7216526)

L=657.6385

k<—3

AIG<—(2%L)+(2x*k)

BIG<—(2*L)+(k*log(n))

AICCG<—(2#L)+ ((2*k*n)/(n—k—1))

HQIG<—(2*L)+(2*kxlog(log(n)))

f<—function (p){

} —sum(log( p[1]7(14+p[2]*y)—p[1] (1+p[2]*(y+1))))

out=optim (p=c(0.1,0.2),f)

pdlog<—function (y,alpha ,lambda){
1—alpha™(14+lambdax*(y+1))

}

ks.test (y, "pdlog", 0.9982677, 1.3725924)
L=619.267

k<—2

ATCG<—(2*L)+(2xk)

AIC

BIG<—(2*L)+(k*log(n))

BIC
AICG<—(2#L)+((2xk*n)/(n—k—1))
AICC

HQIG<—(2*L)+(2xk*log (log(n)))
HQIC

#DP type IV distribution
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f<—function (p){
—sum(log (p 1]~ (log (1+(y/p[2])~(1/p[3]))) -

| PIL(og (LG4 /pI21) (1 /w1a])))

out=optim (p=c(0.5,0.5,0.1),f)

pdpIlV<—function (y, theta ,sigma ,gamma) {

} 1— theta " (log (14 ((y+1)/sigma™(1/gamma))))

ks.test (y,"pdpIV",0.99801714, 0.50304968 ,0.01130628)
I= 685.1361

k<=3

ATG<—(2xL)+(2xk)

BIG<—(2%L)+(k*log(n))

ATOC<—(25L) 4 ((2%ksn ) / (n—k—1))

HQIG<—(2*L)+(2*xk*log (log(n)))
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