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Abstract

In the present work, we propose a new kernel estimator of the regression function
based on the minimization of the mean squared relative error, when the response variable
is subject to both random left truncation and right censoring (LTRC). Such variables
typically appear in a medical or an engineering life test studies. Under classical conditions
we establish the uniform consistency with a rate and the asymptotic normality for the
estimator. The performance of the regression function estimator is evaluated on simulated
data sets.

Keywords: asymptotic normality, Kernel estimator, nonparametric regression, relative error,
strong uniform consistency rate, truncated−censored data.

1. Introduction

Survival analysis is a branch of statistics where the variable of interest, often a lifetime,
represents the time elapsed between two events. In many cases, it may be impossible to
observe this variable in its entirety. Among the various forms of incomplete data, random
left truncation and right censoring (LTRC) are common in several fields, particularly in
engineering and medicine. A detailed example is provided by Su and Wang (2012), who
analyzed data from a multicenter HIV study conducted in Italy. Similarly, in engineering,
Hong, Meeker, and McCalley (2009) used LTRC data to predict the remaining lifetime of
electrical transformers. Let (Y, T,W ) ∈ R∗

+ ×R×R denote a random vector which is defined
on a common probability space (Ω,A ,P), where Y represents the lifetime variable of interest
with continuous distribution function (df) F , T is the left truncation random variable with
a df L and W is the right censoring random variable with a df G. Here, we assume that
Y , T and W are mutually independent. On the one hand, and due to the right censoring
mechanism, one observe Z = min(Y,W ) and the censoring indicator δ = 1{Y≤W}, on the
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other hand, the left truncation mechanism requires that the probability of no truncation

µ := P(Z ≥ T ) (1)

be strictly positive. Hence, the observation of Z is possible only if Z ≥ T and the observed
triplet is (Z, T, δ). Let H denote the df of Z , then H = 1 − (1 − F )(1 −G).
As we observe Z only if Z ≥ T , then our results will be stated with respect to the conditional
probability P = P(.|Z ≥ T ), related to the space of observations.
Regarding the estimation method, we adopted a nonparametric approach which stands out for
its flexibility, allowing for the modeling of complex relationships without strict assumptions
about the functional form of the regression. This flexibility is particularly emphasized in the
work of Yu and Lin (2008), where a nonparametric regression method based on local kernel
estimating equations was successfully applied to analyze correlated failure time data. Com-
pared to parametric models, which can be sensitive to violations of structural assumptions,
nonparametric methods provide a robust and effective alternative, particularly for incomplete
data such as LTRC. Let X be an Rd-valued random vector of covariates with a joint proba-
bility density function (pdf) v.
We assume that the variables X and Y satisfy

Y = r(X) + ϵ

where r(.) is an unknown function and ϵ is a random error variable independent of X. In
classical predictions, we estimate the operator r by minimizing the Mean Squared Error
(MSE) :

E
[
(Y − r(X))2|X

]
,

and we obtain as predictor the quantity E[Y |X]. However this loss function is unsuitable when
the data contains some outliers, which is a relatively common case in practice. Therefore,
in this work, we consider an alternative to estimate the function r, which is based on the
minimization of the Mean Squared Relative Error (MSRE), defined for Y > 0, as

E
[(

Y − r(X)
Y

)2
|X
]
.

This choice is motivated by the higher resistance of the Mean Squared Relative Error (MSRE)
to outliers, as it evaluates proportional rather than absolute errors. While M-estimators
are also designed to be robust, they often result in implicit solutions that require iterative
procedures for computation. In contrast, the Relative Error Regression (RER) approach
provides an explicit expression for the regression function, simplifying both theoretical analysis
and practical implementation. Park and Stefanski (1998) showed that minimizing this loss
function leads to predicting the quantity

E[Y −1|X]
E[Y −2|X] ,

provided the first two conditional inverse moments of Y given X are finite. By way of notation,
we write rl(x) := E[Y −l|X = x], l = 1, 2, and we define the regression function as

r(x) = E[Y −1|X = x]
E[Y −2|X = x] = r1(x)

r2(x) .

Jones, Park, Shin, Vines, and Jeong (2008) introduced and studied local constant and local
linear nonparametric regression estimators when it is appropriate to assess performance in
terms of mean squared relative error of prediction and they studied its asymptotic properties.
Demongeot, Hamie, Laksaci, and Rachdi (2016) focused on the case where the explanatory
variables are of functional type, they established the strong uniform consistency of a kernel
estimator as well as its asymptotic normality. When the covariates are functional and the data
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are truncated, Altendji, Demongeot, Laksaci, and Rachdi (2018) constructed a new estimator
of the RER function and investigated its almost sure consistency as well as its asymptotic
normality. Khardani and Slaoui (2019) defined a new estimator of the RER when the response
random variable is right censored, they established the asymptotic properties over a compact
set, while Khardani (2019) considered this problem for twice censored data. Bouhadjera,
Ould Saïd, and Remita (2019) proposed a new kernel estimator based on synthetic data of
the mean squared relative error for the regression function. The authors establish the uniform
almost sure convergence with rate over a compact set and its asymptotic normality, Fetitah,
Attouch, Khardani, and Righi (2021) extended the RER framework to functional time series
data under random censorship, proving strong consistency and asymptotic properties for their
estimator. More recently, Khardani, Nefzi, and Thabet (2024) studied the relative error pre-
diction from censored data under a mixing condition, establishing strong consistency results
for the RER estimator. Bouhadjera, Ould Saïd, and Remita (2022) studied a local linear
nonparametric regression estimator for censorship model and they established the uniform
almost sure consistency result with rate over a compact set for the new estimate. In this
paper, we adapt the previously developed estimators to our specific context by constructing a
new estimator. The details of this construction are presented in Section 3. Subsequently, we
provide strong uniform consistency rates and establish the asymptotic normality of our RER
estimator under the LTRC model. The remainder of the paper is organized as follows. In
Section 2, we recall some notations and we present the estimators under LTRC model. The
main results, along with the assumptions, are listed in Section 3. In Section 4, we evaluate
the performance of the estimator on simulated data. The proofs of the results are relegated
to Section 5.

2. Model and notations
Let {(Xi, Yi); i = 1, ..., N} be a sequence of independently and identically distributed (iid)
random vectors distributed as (X, Y ) ∈ Rd×R∗

+. Let {Ti; i = 1, ..., N} and {Wi; i = 1, . . . , N}
be two iid sequences of rv’s sampled from G and L, respectively. In what follows, the star
notation (⋆) relates to any characteristic of the actually observed data (conditionally on
n =

∑N
i=1 1{Zi≥Ti}). Then without possible confusion, we still denote by {(Xi, Zi, Ti, δi); i =

1, . . . , n} the observed vectors from the original N -sample. It is clear that n is random but
known and N is unknown but deterministic.
Furthermore, throughout this study, E and E will denote the expectation operators related
to P and P, respectively. Then conditionally on n, estimation results are stated considering
n → ∞ which remain true with respect to the probability P since n ≤ N .
Now let us define

C(y) = P(T ≤ y ≤ Z) = P(T ≤ y ≤ Z|Z ≥ T ), (2)

which can be estimated empirically by

Cn(y) = 1
n

n∑
i=1

1{Ti≤y≤Zi}.

Note that from (2), an elementary algebra calculus gives

C(y) = 1
µ
L(y)F̄ (y)Ḡ(y), (3)

with Q̄(·) := 1 −Q(·), for any df Q and µ is that defined in (1).
Tsai, Jewell, and Wang (1987) proposed the well-known product limit estimator (PLE) Fn
for F defined by

1 − Fn(y) = 1 −
∏

i:Zi≤y

(
1 − 1

nCn(Zi)

)δi
=: F̄n(y),
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the same authors showed that the estimator is asymptotically normal when the data are
iid. Gijbels and Wang (1993) explained that this estimator can be seen as an average of
iid random variables. Recall that Guessoum and Tatachak (2020) established asymptotic
consistency results for the same estimators for associated data. the concomitant PLE of the
df G, is defined by

1 −Gn(y) = 1 −
∏

i:Zi≤y

(
1 − 1

nCn(Zi)

)1−δi
=: Ḡn(y)

while the PLE for the truncating law L proposed by Lynden-Bell (1971) is

Ln(t) =
∏
i:Ti>t

(
1 − 1

nCn(Ti)

)
.

Remark 1. When there is no left truncation (T = 0), Fn reduces to the Kaplan-Meier PLE,
and when there is no right censoring (W = ∞) Fn simplifies to the Lynden-Bell PLE.

For any df Q, let aQ := inf{u : Q(u) > 0} and bQ := sup{u : Q(u) < 1} denote the endpoints
of its support. In the present model, Gijbels and Wang (1993) highlighted that F can be
estimated only if aL < aH , bL < bH , where aH = aF ∧ aG, bH = bF ∧ bG. Throughout this
paper, we assume that (T,W ) as independent from (X, Y ). On the other hand, the ratio
which represent the proportion of (no) truncated data n

N can not be used to estimate µ since
N is unknown. Hence, from (3) and following the idea in He and Yang (1998), an estimator
for µ can be defined, namely

µn = Ln(y)F̄n(y)Ḡn(y)
Cn(y) , (4)

for any argument y such that Cn(y) ̸= 0. Under this model, the conditional sub-distribution
function of (X, Z) is

F ⋆1
X,Z(x, z) = P(X ≤ x, Z ≤ z, δ = 1)

= 1
µ
P(X ≤ x, Y ≤ z, Y ≤ W,Y ≥ T )

= 1
µ

∫
u≤x

∫
aL≤s≤z

L(s)Ḡ(s)fX,Y (u, s)duds.

where fX,Y (., .) is the joint density function of (X,Y ). By differentiation, we obtain

fX,Y (x, z) = µ

L(z)Ḡ(z)
f⋆1

X,Z(x, z) z > aL. (5)

3. Definition of the estimator
To construct an estimator for r(·), let us define the function

Ψϕ(x) :=
∫
ϕ(z)fX,Y (x, z)dz,

where ϕ(·) is any function from R to R for which Ψϕ(·) is well defined. Further, ϕ(·) will be
explicitly defined if necessary. Using (5) and the kernel estimator of the sub-density f⋆1

X,Z(., .),
we have, as an estimator for Ψϕ(·),

Ψ̃ϕn(x) := 1
nhdn

n∑
i=1

µδi

L(Zi)G(Zi)
ϕ(Zi)Kd

(x − Xi

hn

)
, (6)
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for the i′s such that L(Zi) ̸= 0 and Ḡ(Zi) ̸= 0. Here Kd : Rd → R+ is a multivariate kernel
such that for any tℓ = (t1ℓ , . . . , tdℓ )⊤ ∈ Rd and a real-valued univariate kernel K

1
hdn
Kd

( tℓ
hn

)
:=

d∏
k=1

1
hn
K

(
tkℓ
hn

)
.

Furthermore, hn is a sequence of positive constants tending to zero when n tends to infinity,
known as a bandwidth sequence which is assumed to be the same regardless of the k-th
direction.
If we take ϕ(Z) = 1 in (6) we can define an estimator ṽn(·) of v(·)

ṽn(x) = µ

nhdn

n∑
i=1

δi

L(Zi)Ḡ(Zi)
Kd

(x − Xi

hn

)
.

By taking ϕ(Z) = Z−l, l = 1, 2 and Z > 0 in (6) we define an estimator for rl(·), namely

r̃ln(x) = µ

nhdn

n∑
i=1

δiZ
−l
i

L(Zi)Ḡ(Zi)
Kd

(x − Xi

hn

)
.

Consequently, an estimator for rl(x) can be defined as

r̃ln(x) = r̃ln(x)
ṽn(x) 1{ṽn(x)̸=0}.

Hence, an estimator for r(x) can be given by

r̃n(x) =
µ
nhdn

∑n
i=1

δiZ
−1
i

L(Zi)Ḡ(Zi)
Kd

(
x−Xi
hn

)
µ
nhdn

∑n
i=1

δiZ
−2
i

L(Zi)Ḡ(Zi)
Kd

(
x−Xi
hn

) =: r̃1n(x)
r̃2n(x) . (7)

Note that from (3), the estimators r̃ln, l = 1, 2 can be rewritten as

r̃ln(x) = 1
nhdn

n∑
i=1

δiZ
−l
i F̄ (Zi)
C(Zi)

Kd

(x − Xi

hn

)
(8)

Remark 2. Since r̃n(·) in (7) depends upon unknown quantities which make it useless in
practice, we define a useful estimator rn(·) by replacing G, L, µ, F and C by their estimates
Gn, Ln, µn, Fn and Cn, respectively, i.e.

rn(x) =
µn
nhdn

∑n
i=1

δiZ
−1
i

Ln(Zi)Ḡn(Zi)
Kd

(
x−Xi
hn

)
µn
nhdn

∑n
i=1

δiZ
−2
i

Ln(Zi)Ḡn(Zi)
Kd

(
x−Xi
hn

) =: r1n(x)
r2n(x) . (9)

Likewise, using (4) we have

rln(x) = 1
nhdn

n∑
i=1

δiZ
−l
i F̄n(Zi)
Cn(Zi)

Kd

(x − Xi

hn

)
, l = 1, 2.

Remark 3. The construction of the estimators in (7) was inspired by the estimators in the
censored case cited in Bouhadjera et al. (2019), as well as by those in the truncated case
presented in Altendji et al. (2018).

Remark 4. The following function will be of a great interest in the sequel and it is a special
case of the function Ψϕ(·). Set ϕ0(y) = µy−2l

L(y)Ḡ(y) , we obtain

Ψϕ0(x) =
∫

µy−2l

L(y)Ḡ(y)
fX,Y (x, y)dy =: r∗

l (x), l = 1, 2.
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4. Main results
This section addresses the main results of the paper. We first introduce some related notations
and commonly used assumptions.
Firstly, let Ω0 be a compact subset of Γ0 = {x ∈ Rd; inf

x
v(x) =: γ > 0} and then, assume

that 0 = aL < aH and bL < bH .

Remark 5. Note that the restriction aL < aH implies L(Y ) ≥ L(aH) > 0 which guarantees
Ln(Yi) ̸= 0 eventually, and then, the given estimators are well-defined.

Throughout this paper, the letter C will denote a finite positive constant which is allowed to
change from line to line.
The asymptotic results are derived under the following conditions.

4.1. Assumptions

(A1) For all d ≥ 1, the bandwidth satisfies

(i) nhdn → ∞ and log5 n
nhdn

→ 0 as n → ∞;

(ii) hdn log logn = o(1);
(iii) nhd+4

n → ∞.

(A2) The kernel Kd satisfies

(i) Kd is a bounded pdf, compactly supported and Lipschitz continuous multivariate
function.

(ii)
∫
Rd ukKd(u)du = 0 for k = 1, . . . , d.

(A3) The functions rl(x) and r∗
l (x) are bounded, of class C2 in Ω0 with bounded first and

second derivatives.

(A4) There exists ν > 2 such that
∫
R

y−lν

(L(y)Ḡ(y))(ν−1) f(x, y) dy < +∞.

Comments on the assumptions

Assumptions (A1) and (A2) are quite usual in kernel estimation setting. Assumption (A3)
is classical in studying bias terms and variance calculus under LTRC structure. Assumption
(A4) is needed for get asymptotic normality.

Proposition 1. Under assumptions (A1)(i),(A2)-(A3) we have

sup
x∈Ω0

|r̃ln(x) − E [r̃ln(x)]| = O

(√
logn
nhdn

)
P-a.s., as n → ∞.

Theorem 1. Under assumptions (A1)(i), (A2)-(A3) we have

sup
x∈Ω0

|rn(x) − r(x)| = O

√ logn
nhdn

+

√
log logn

n
+ h2

n

 = O

(√
logn
nhdn

+ h2
n

)
P-a.s., as n → ∞,

The proof of Theorem 1 is mainly based on the decomposition in (18) below. It uses in part
Proposition 1 and Lemmas 1 and 2. These lemmas deal with upper bounding |r̃ln(x)−rln(x)|
and the bias term |E[r̃ln(x, y)) − rl(x]| , respectively.



34 Relative Error for LTRC Data

Theorem 2. Under assumptions (A1)-(A4), for n large enough we have√
nhdn (rn(x) − r(x)) D−→ N

(
0, σ2(x)

)
,

where D−→ denotes the convergence in distribution and N
(
0, σ2(x)

)
is the centered gaussian

distribution with variance

σ2(x) = µκ
[
r2

2(x)Σ2(x) − 2r1(x)r2(x)Σ3(x) + r2
1(x)Σ4(x)

]
r−4

2 (x),

where

κ =
∫
K2
d(u)du , Σk(x) =

∫
t−k

f(x, t)
L(t)G(t)

dt; k = 2, 3, 4.

Remark 6. For simulation needs, the covariances Σk; k=2,3,4 will be estimated at x by

Σk,n(x) = µn
nhdn

n∑
i=1

δiKd

(
x−Xi
hn

)
(Ln(Zi)Gn(Zi))2 (Zi)−k; k = 2, 3, 4.

Remark 7. Using Theorem 2, we can construct confidence intervals for r(x). For that we
define a plug-in-type estimator of σ2(x)

σn
2(x) = µnκ

[
r2

2n(x)Σ2n(x) − 2r1n(x)r2n(x)Σ3,n(x) + r2
1n(x)Σ4,n(x)

]
r−4

2n (x),

and we obtain the following corollary.

Corollary 4.1.1. Under the assumptions of Theorem 2, a confidence interval of asymptotic
level (1 − ξ) for r(x) is[

rn(x) − q(1− ξ
2 )σn(x)

(
nhdn

)− 1
2 , rn(x) + q(1− ξ

2 )σn(x)
(
nhdn

)− 1
2
]
,

where q(1−ξ/2) denotes the (1 − ξ/2)-quantile of the standard normal distribution.

5. Numerical application
This section is divided in three parts where we consider that the covariate variable is uni-
dimensional (d = 1). The first one deals with the behavior of our RER estimator viz the
target regression function r(x) = exp(x/2). In the second part, we illustrate the robustness of
our estimator by introducing outliers in the sample and we compare with classical regression
estimator obtained with the same data. The last part concerns the asymptotic normality of
the estimator rn(x) for which we construct confidence intervals and we calculate the coverage
probability.

Algorithm of sampling
In order to obtain an observed LTRC sequence (Xi, Zi, Ti, δi); i = 1, . . . , n, we follow the steps
below.

step 1 Generate Xi from N (1, 1).

step 2 Compute Yi = exp(Xi/2) + ϵi; ϵi ⇝ N (0, 0.01).

step 3 Generate Ti and Wi from exponential distributions with parameters λ1 and λ2 re-
spectively, (λ1 and λ2 are adjusted to get different values of truncation percentage (TP)
and censoring percentage (CP)).
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step 4 For Zi = min(Yi,Wi) and δi = 1{Yi≤Wi}, if Zi < Ti, reject the vector (Xi, Zi, Ti, δi)
and go back to step 1 until Zi ≥ Ti. Hence we get the observed sample (Xi, Zi, Ti, δi).

step 5 Repeat the above four steps to obtain a sample (Xi, Zi, Ti, δi); i = 1, 2 . . . , n.

5.1. Consistency of rn(.)

Procedure

The above procedure is repeated B = 200 times for each n-sample (n = 50, 100, 300). The
values of λ1 and λ2 are adjusted to get CP ≈ 20%, 40% for fixed TP ≈ 10% and TP ≈
20%, 40% for fixed CP ≈ 10%. The Gaussian kernel was used along a grid of points xp; p =
1, . . . ,M belonging to the range [−0.5; 2.5].

1. For each n-sample, along a grid of points h(u);u = 1, . . . , U belonging to the interval
[0.01; 2], we choose hn,s which minimizes the cross-validation criterion, commonly called
leave-one-out, namely

CVRER(h(u)) = 1
n

n∑
i=1

δi

[
Zi − r

(−i)
n,s (Xi;h(u))
Zi

]2

,

where r−i
n,s(.) is the estimator of r(.) calculated with the (n−1) observations {(Xj , Zj , Tj , δj); j =

1, ..., i − 1, i + 1, ..., n} at iteration s with s = 1, . . . , B. The B = 200 curves of
rn,s(x(p);hn,s) are plotted in Figures 1-3, where rn,s(x(p);hn,s) is the estimator of r(x(p))
calculated with hn,s at iteration s.
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Figure 1: B = 200 curves (2D) of rn,s(x;hn,s) for n = 100 and TP ≈ 10% with CP ≈ 20%
and 40% respectively

2. Moreover, for better visualization of the curves, the rn,s(x(p);hCVn,s ) are plotted separately
in three dimensions in Figures 4-6.

3. Then we calculate

rn(x(p)) = 1
B

B∑
s=1

rn,s(x(p);hn,s),

and for different values of TP , CP and n, the obtained estimators are plotted and
compared with the target regression function r(x) = exp(x/2), in Figures 7-9.

4. To comfort this comparison, the performance of our estimator is quantified via the
Global Mean Squared Error (GMSE) criterion (computed along B = 200 Monte Carlo
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Figure 2: B = 200 curves (2D) of rn,s(x;hn,s) for n = 100 and CP ≈ 10% with TP ≈ 20%
and 40% respectively
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Figure 3: B = 200 curves (2D) of rn,s(x;hn,s) for TP ≈ 40% and CP ≈ 40% with n = 50, 100
and 300 respectively

trials), namely

GMSE = 1
BM

B∑
s=1

M∑
p=1

[
rn,s(x(p);hn,s) − r(x(p))

]2
. (10)

The corresponding results are summarized in Tables 1- 3, with the global bandwidth

hn = 1
B

B∑
s=1

hn,s.

Comments on consistency simulation results

1. Censorship effect: From Figures 1, 4 and 7, it is clear that the quality of the estimate
degrades for a greater CP which is quantified by the GMSE values in Table 1. Indeed,

Figure 4: B = 200 curves (3D) of rn,s(x;hn,s) for n = 100 and TP ≈ 10% with CP ≈ 20%
and 40% respectively
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Figure 5: B = 200 curves (3D) of rn,s(x;hn,s) for n = 100 and CP ≈ 10% with TP ≈ 20%
and 40% respectively

Figure 6: B = 200 curves (3D) of rn,s(x;hn,s) for TP ≈ 40% and CP ≈ 40% with n = 50, 100
and 300 respectively

the quality of the estimate is influenced by the CP (for a fixed TP ) but it remains
satisfactory nonetheless.

2. Truncation effect: From Table 2, we see that the effect of truncation on the estimate
is slightly visible for a small size of n(=50) and attenuates when the sample size increase.
In this case, for the LTRC model, the effect of truncation on the estimate is hidden by
the presence of censoring as shown in Figures 2, 5 and 8.

3. Sample size effect: It is not surprising that the behavior of the estimation improves
as the sample size n increases, as shown in Figures 3, 6 and 9. Indeed, Tables 1- 2
confirm this finding with the decrease of the GMSE when n increases.

4. Bandwidth: According to Tables 1- 2, the value of hn decreases when n increases,
since hn is a sequence that tends to zero. Moreover, we see that it is influenced by
truncation but not by censorship as shown in Table 3.
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Figure 7: rn(x) vs r(x) for n = 100 and TP ≈ 10% with CP ≈ 20% and 40% respectively
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Figure 8: rn(x) vs r(x) for n = 100 and CP ≈ 10% with TP ≈ 20% and 40% respectively
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Figure 9: rn(x) vs r(x) for TP ≈ 40% and CP ≈ 40% with n = 50, 100 and 300 respectively

5.2. Robustness of rn(.)
In order to highlight the efficiency of the relative error regression estimator rn(.), we compare it
with the classical regression (CR) estimator mn(.) proposed by Bey, Guessoum, and Tatachak
(2022) and defined as follows

mn(x) =
∑n
i=1

δiZi
Ln(Zi)Ḡn(Zi)

Kd

(
x−Xi
hn

)
∑n
i=1

δi
Ln(Zi)Ḡn(Zi)

Kd

(
x−Xi
hn

) . (11)

For this purpose, we have followed the procedure described above and we have chosen hn,s
which minimizes the following cross-validation criterion

CVCR(hn) = 1
Bn

B∑
s=1

n∑
i=1

δi
[
Zi −m(−i)

n,s (Xi;hn,s)
]2
.

The sensitivity to outliers, between the RER estimator defined by (9) and the CR estimator
given in (11), is compared on a sample of size n = 100 with TP ≈ 20% and CP ≈ 20% fixed.
In order to obtain the outliers, we randomly choose A = 10 points of the sample which will
be disturbed by a multiplying factor (MF = 5, 15, 30).

1. The influence of the MF on the behavior of our estimator rn(x), particularly in compar-
ison with mn(x), is implemented through Figures 10-12 where MF=5,15,30 respectively.

Table 1: hn and GMSE of rn(x) for TP ≈ 10%

CP ≈ 20% CP ≈ 40%
hn GMSE hn GMSE

n=50 0.0998 0.5648×10−2 0.1112 1.4362×10−2

n=100 0.0743 0.1626×10−2 0.0855 0.3852×10−2

n=300 0.04785 0.0224×10−2 0.0521 0.0611×10−2
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Table 2: hn and GMSE of rn(x) for CP ≈ 10%

TP ≈ 20% TP ≈ 40%
hn GMSE hn GMSE

n=50 0.0907 0.4081×10−2 0.0864 0.2849×10−2

n=100 0.0663 0.0948×10−2 0.0643 0.0806×10−2

n=300 0.0442 0.0140×10−2 0.0438 0.0140×10−2

Table 3: hn and GMSE of rn(x) for n = 100

CP ≈ 20% CP ≈ 40%
hn GMSE hn GMSE

TP ≈ 20% 0.0945 0.1563×10−2 0.0855 0.4201×10−2

TP ≈ 40% 0.0690 0.1074×10−2 0.0765 0.4046×10−2

In each of these figures, we have represented B = 200 rn,s(x(p);hn,s) in (a), r(x) with
rn(x) in (b) and r(x) with rn(x) and mn(x) in (c).
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(c) r(x), rn(x) and mn(x)

Figure 10: TP ≈ 20%, CP ≈ 20% and n = 100 with MF = 5
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Figure 11: TP ≈ 20%, CP ≈ 20% and n = 100 with MF = 15

2. The influence of MF on the behavior of rn and mn is visualized through Figure 13. In
this figure, we have represented r(x) with rn(x) in (a) and r(x) with mn(x) in (b).

3. The comparison between the GMSE’s of rn(x) and mn(x) is presented in Table 4.

Comments on the robustness simulation results

From graphs (b) in Figures 10-12, we clearly notice that the curve of the RER estimator
is very close to the theoretical curve despite the presence of outliers. On the other hand,
in graphs (c) of the same figures, when the value of MF increases, the CR estimator curve
departs from the theoretical curve. However, the difference between the behavior of our robust



40 Relative Error for LTRC Data

-0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

(a) B = 200 curves of rn,s(x;hn,s)
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(c) r(x), rn(x) and mn(x)

Figure 12: TP ≈ 20%, CP ≈ 20% and n = 100 with MF = 30

-0.5 0 0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

3

3.5

4

True curve
Estimated curve RER (MF=5)
Estimated curve RER (MF=15)
Estimated curve RER (MF=30)

(a) r(x) vs rn(x)
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(b) r(x) vs mn(x)

Figure 13: TP ≈ 20%, CP ≈ 20% and n = 100 with MF=5(green), MF=15(blue) and
MF=30 (red)

estimator rn(x) and the CR estimator mn(x) is more visible by comparing graphs (a) and (b)
of Figure 13 (see the scale of the graphs). Furthermore, better visibility of the behavior of
the RER estimator in the presence of outliers on graphs (a) in Figures 10-12 indicates a slight
deterioration in the quality of our estimator despite its robustness. Finally, and according to
Table 4, the GMSE of the RER estimator increases slightly along with MF, while that of the
CR estimator increases considerably.

5.3. Asymptotic normality of rn(.)

The aim of this section is to highlight the theoretical findings from theorem 2 by investigat-
ing asymptotic normality through simulations. To achieve this, we apply the Kolmogorov-
Smirnov test to assess whether our data set follows a normal distribution. For B = 500
iid-samples n = 50 for, TP = 20% and CP = 20% at x = 0.5 the goodness-of-fit test does

not reject the hypothesis that the quantity D =
√

nhdn
σ2(x) (rn(x) − r(x)) comes from a normal

distribution, with a p-value equal to 0.26. Then, we draw 300 samples of sizes n = 50, 100,
and 300 with censorship rates (CR) approximately 10%, 40%, and truncation rates (TR) ap-
proximately 20%, 40%. From these replications, we calculate the coverage probabilities (CP )
and the average lengths (AL) of 95% confidence intervals for the RER based on rn(0.5). The

Table 4: hn and GMSE of rn(x) and mn(x) for fixed n = 300, TP ≈ 20% and CP ≈ 20%

Relative Error Regression Classical Regression
hn GMSE hn GMSE

MF=5 0.2451 0.0065 0.6510 1.5764
MF=15 0.1414 0.1127 1.3340 15.4298
MF=30 0.1044 0.7947 1.1590 74.8510
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different values are reported in Table 5.
To examine how the estimator behaves for various values of x, we construct 95% confidence

Table 5: The coverage probabilities and average lengths of 95% confidence intervals of r(0.5)

CR = 10% CR = 40%
n TR AL CP AL CP

50 20% 0.123 0.946 0.134 0.917
40% 0.141 0.913 0.156 0.900
20% 0.066 0.951 0.083 0.929

100 40% 0.068 0.944 0.074 0.927
20% 0.031 0.957 0.037 0.944

300 40% 0.032 0.959 0.046 0.933

intervals for the RER function using different sample sizes (n = 50, 100, and 300) by varying
x in the range [0, 2] with an increment of 0.01. This is performed for (TR = 20% and CR =
20%) and (TR = 40% and CR = 40%), as illustrated in Figures 14 and 15.
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Figure 14: 95% confidence intervals of rn(x) for TR ≈ 20% and CR ≈ 20% with n = 50, 100
and 300 respectively
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Figure 15: 95% confidence intervals of rn(x) for TR ≈ 40% and CR ≈ 40% with n = 50, 100
and 300 respectively

Comments on asymptotic normality simulation results

As seen from Table 5, the coverage probabilities of the confidence intervals are more affected by
an increasing percentage of censorship. We also observe that the average lengths decrease as
the sample size increases. Additionally, we can discern the effects of censorship and truncation
for each fixed n.

6. Auxiliary results and proofs

6.1. Proofs for consistency results

For notational convenience we set

ψi(x) = µδi

L(Zi)G(Zi)
Z−l
i Kd

(x − Xi

hn

)
− E

[
µδi

L(Zi)G(Zi)
Z−l
i Kd

(x − Xi

hn

)]
=: ψi.
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Then it is clear that we have

r̃ln(x) − E [r̃ln(x)] = 1
nhdn

n∑
i=1

ψi.

Proof of Proposition 1. The proof is based on the decomposition in (13) below. Then, to
upper-bound each term we use covering set techniques and Bernstein inequality.
Indeed, since Ω0 is a compact set, it can be covered by a finite number dn of balls Bk centered
at xk ∈ Rd such that

max
1≤k≤dn

∥x − xk∥ ≤ n− 1
2h

d
2 +1
n =: ωdn. (12)

Let M0 be a positive constant such that dnωdn ≤ M0.
It follows from (12)

sup
x∈Ω

|r̃ln(x) − E[r̃ln(x)]| ≤ max
1≤k≤dn

sup
x∈Bk

|r̃ln(x) − r̃ln(xk)| + max
1≤k≤dn

sup
x∈Bk

|E[r̃ln(x)] − E[r̃ln(xk)]|

+ max
1≤k≤dn

|r̃ln(xk) − E[r̃ln(xk)]|

=: I1n + I2n + I3n. (13)

Note that the terms I1n and I2n are upper-bounded similarly. Under assumptions (A1)(i)
and (A2)(i) we have

|r̃ln(x) − r̃ln(xk)| ≤ C
µ

nhdnL(aH)G(bH)
∥x − xk∥

hn

≤ C
ωdn

hd+1
n L(aH)G(bH)

= O

((
nhdn

)−1/2
)
. (14)

Now, to upper-bound the term I3n we use a Bernstein inequality. Since (ψi)1≤i≤n is a
sequence of independent and centered random variables, and if there exists a positive constant
M < ∞ such that |ψi| ≤ M , we have

∀ε > 0, P
(∣∣∣∣∣

n∑
i=1

ψi(xk)
∣∣∣∣∣ ≥ nε

)
≤ exp

− nε2

2σ2
ψ

(
1 + Mε

σ2
ψ

)
 , (15)

where σ2
ψ := var (ψ1(xk)) . It is clear that E(ψi(xk)) = 0 and |ψi(xk)| ≤ 2C∥Kd∥∞

L(aH)G(bH) =: M .
Let us evaluate σ2

ψ.

σ2
ψ = var

(
µδ1

L(Z1)G(Z1)
Z−l

1 Kd

(xk − X1
hn

))

=
{

E
[

µ2δ2
1

L2(Z1)G2(Z1)
(Z−l

1 )2K2
d

(xk − X1
hn

)]
− E2

[
µδ1

L(Z1)G(Z1)
Z−l

1 Kd

(xk − X1
hn

)]}
=: {V1 − V2} .

Then using (5), a change of variable, a Taylor expansion, assumptions (A1)(i), (A2)(i) and
(A3) we get

V1 =
∫
Rd

∫
R

µ2

L2(z)G2(z)
(z−l)2K2

d

(xk − u
hn

)
f⋆1

X,Z(u, z)dudz

= hdn

∫
Rd

∫
R

µ

L(z)G(z)
z−2lK2

d (s) fX,Y (xk − shn, z)dsdz

= hdn

∫
Rd
K2
d(s)r∗

l (xk − shn)ds

= O(hdn).
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For V2 we proceed as for V1. Under assumptions (A1)(i), (A2)(i), (A3), a change of variable
and a Taylor expansion, we get

V2 =
[∫

Rd

∫
R

µ

L(z)G(z)
(z−l)Kd

(xk − u1
hn

)
f⋆1

X,Z(u, z)dudz
]2

= O(h2d
n ),

which together with V1 yield σ2
ψ = O(hdn). Now, we are ready to apply Bernstein’s inequality

given in (15).

P (I3n ≥ ε) = P
(

max
1≤k≤dn

∣∣∣∣∣
n∑
i=1

ψi(xk)
∣∣∣∣∣ ≥ εnhdn

)

≤
dn∑
i=1

P
(∣∣∣∣∣

n∑
i=1

ψi(xk)
∣∣∣∣∣ ≥ εnhdn

)

≤ dn exp

− (εhdn)2n

2σ2
ψ

(
1 + Mhdnε

σ2
ψ

)


Next, for any ε0 > 0, if we choose ε = ε0
√

logn
nhdn

, then

P
(

I3n ≥ ε0

√
logn
nhdn

)
≤ M0(ωdn)−1 exp

− ε2
0 logn

2
(
C +Mε0

(√
logn
nhdn

))


≤ C

(
n− 1

2h
d
2 +1
n

)−1
n

−

 ε2
0

2

(
C+Mε0

(√
logn
nhdn

))


=
(
nhd+2

n

)− 1
2 O

(
n−(Cε2

0−1)) . (16)

Whence, for sufficiently large n, using assumption (A1)(i) and for a suitable choice of ε0 (i.e.
ε2

0 >
2
C ), the term in (16) becomes of order O(n−θ0) with θ0 > 1. Consequently

P
(

I3n ≥ ε0

√
logn
nhdn

)
= O(n−θ0), (17)

and, according to (13),(14) and (17), it follows that

∑
n≥1

P
(

sup
x∈Ω0

|r̃ln(x) − E[r̃ln(x)]| ≥ ε

√
logn
nhdn

)
≤
∑
n≥1

P
(

I3n ≥ ε0

√
logn
nhdn

)
< ∞.

Thus by the Borel-Cantelli lemma, we conclude that

sup
x∈Ω0

|r̃ln(x) − E [r̃ln(x)]| = O

(√
logn
nhdn

)
P-a.s., as n → ∞.

The proof of Proposition 1 is complete.
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Proof of Theorem 1. A classical decomposition allows to write

sup
x∈Ω0

|rn(x) − r(x)| ≤ 1
γ − sup

x∈Ω0

|r2n(x) − r2(x)|

{
sup

x∈Ω0

|r1n(x) − r̃1n(x)|

+ sup
x∈Ω0

|r̃1n(x) − E[r̃1n(x)]|

+ sup
x∈Ω0

|E[r̃1n(x)] − r1(x)|

+r−1
2 (x) sup

x∈Ω0

r1(x) × sup
x∈Ω0

|r2n(x) − r2(x)|
}
. (18)

In addition

sup
x∈Ω0

|r2n(x) − r2(x)| ≤ sup
x∈Ω0

|r2n(x) − r̃2n(x)| + sup
x∈Ω0

|r̃2n(x) − E[r̃2n(x)]| + sup
x∈Ω0

|E[r̃2n(x)] − r2(x)|

The proof of Theorem 1 follows by using Proposition 1 and Lemmas 1-2 below.

Lemma 1. Under assumptions (A2), we have

sup
x∈Ω0

|rln(x) − r̃ln(x)| = O

√ log logn
n

 P-a.s., as n → ∞.

Proof of Lemma 1. We have

|rln(x) − r̃ln(x)| =
∣∣∣∣∣ 1
nhdn

n∑
i=1

(
µn

Ln(Zi)Gn(Zi)
− µ

L(Zi)G(Zi)

)
δiZ

−l
i Kd

(x − Xi

hn

)∣∣∣∣∣
=
∣∣∣∣∣ 1
nhdn

n∑
i=1

(
Fn(Zi)
Cn(Zi)

− F (Zi)
C(Zi)

)
δiZ

−l
i Kd

(x − Xi

hn

)∣∣∣∣∣
=
∣∣∣∣∣ 1
nhdn

n∑
i=1

(
(Fn(Zi) − F (Zi))

Cn(Zi)

+F (Zi)(C(Zi) − Cn(Zi))
Cn(Zi)C(Zi)

)
δiZ

−l
i Kd

(x − Xi

hn

)∣∣∣∣∣ (19)

Thus, using the law of iterated logarithm (LIL), according to the result of Gijbels and Wang
(1993), we have

sup
y≥aH

|Fn(y) − F (y)| = O

√ log logn
n

 P-a.s., as n → ∞. (20)

and

sup
y≥aH

|Cn(y) − C(y)| = O

√ log logn
n

 P-a.s., as n → ∞. (21)

Moreover, since C(y) > 0 and Cn(y) > 0 , so there exists M1 > 0 and M2 > 0 such that
C(y) ≥ M1 and Cn(y) ≥ M2 respectively,we obtain

sup
x∈Ω0

|rln(x) − r̃ln(x)| ≤ a−l
H

{
1
M1

sup
x∈Ω0

|Fn(x) − F (x)| + 1
M1M2

sup
x∈Ω0

|Cn(x) − C(x)|
}
v⋆n(x).

The function v⋆n(x) := 1
nhdn

∑n
i=1Kd

(
x−Xi
hn

)
is a consistent kernel estimator, under the inde-

pendence hypothesis, for the density of an Rd-valued random vector X in the case of complete
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data (no truncation and no censoring), by using the strong law of large numbers (SLLN) and
assumption (A2), we can easily prove that

v⋆n(x) = O(1) (22)

Finally, by combining (20), (21) and (22) we obtain the result.

Lemma 2. Under assumptions (A2) and (A3) we have

sup
x∈Ω0

|E [r̃ln(x)] − rl(x)| = O(h2
n).

Proof of Lemma 2. Using equality (5), an integration by parts, a change of variable and a
Taylor expansion, we have

E [r̃ln(x)] − rl(x) = E
[
µ

nhdn

n∑
i=1

δi

L(Zi)G(Zi)
(Zi)−lKd

(x − Xi

hn

)]
− rl(x)

= 1
hdn

∫
Rd
Kd

(x − u
hn

)(∫
R
z(−l)f(u, z)dz

)
du − rl(x)

=
∫
Rd
Kd (s) (rl(x − shn) − rl(x)) ds.

Then under assumptions (A2) and (A3) we obtain

sup
x∈Ω0

|E [r̃ln(x)] − rl(x)| = O(h2
n).

The proof of lemma 2 is finished.

Now in order to prove Theorem 2, we write

rn(x) = µ−1
n r1n(x)
µ−1
n r2n(x)

.

Then, we write

µ−1
n rln(x) − µ−1rl(x) =

(
µ−1
n rln(x) − µ−1r̃ln(x)

)
+
(
µ−1r̃ln(x) − E

[
µ−1r̃ln(x)

])
+

(
E
[
µ−1r̃ln(x)

]
− µ−1rl(x)

)
=: Λln(x) + Γln(x) + χln(x).

We begin by demonstrating that Λln(x) and χln(x) are negligible, followed by establishing the
asymptotic normality of the leading term Γln(x). The proofs are divided into the following
several lemmas

Lemma 3. Under assumptions (A1), (A2) and (A3), for n large enough we have

i)
√
nhdn |Λln(x)| = oP(1),

ii)
√
nhdn |χln(x)| = oP(1),

Proof of Lemma 3. i) We proceed as in the proof of Lemma 1 with the help of Assumption
(A1)(ii). Then we get√

nhdn |Λln(x)| = O

(√
hdn log logn

)
= oP(1).
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ii) We use assumption (A1)(iii) and we follow step by step the proof of Lemma 2. Then we
get √

nhdn |χln(x)| = O

(
h2
n

√
nhdn

)
= oP(1).

Before proceeding with the asymptotic normality of the leading terms, it will be necessary to
derive expressions and/or bounds for variances and covariances on several occasions below.
To initiate this process, we present the following lemma:

Lemma 4. Under assumptions (A1)(i),(A2),(A3), and for n large enough it holds that:

i) var
(√

nhdnΓ1n(x)
)

−→ κ
µΣ2(x).

ii) var
(√

nhdnΓ2n(x)
)

−→ κ
µΣ4(x).

iii) cov
(√

nhdnΓ1n(x),
√
nhdnΓ2n(x)

)
−→ κ

µΣ3(x).

Proof of Lemma 4. i) According to the notations in Theorem 2, it is easily seen that

var
(√

nhdnΓn1(x)
)

= 1
hdn

var
(

δ1

L(Z1)G(Z1)
(Z1)−1Kd

(x − X1
hn

))

= 1
hdn

1
µ

(∫
Rd

∫
R

(z)−2

L(z)G(z)
K2
d

(x − u
hn

)
fX,Y (u, z)du dz

)
− 1
hdn
O(h2d

n )

n−→∞−→ κ

µ
Σ2(x) + o(1). (23)

ii) We have

var
(√

nhdnΓn2(x)
)

= 1
hdn

var
(

δ1

L(Z1)G(Z1)
(Z1)−2Kd

(x − X1
hn

))

= 1
hdn

1
µ

(∫
Rd

∫
R

(z)−4

L(z)G(z)
K2
d

(x − u
hn

)
fX,Y (u, z)du dz

)
− 1
hdn
O(h2d

n )

n−→∞−→ κ

µ
Σ4(x) + o(1). (24)

iii) Under (A2),(A3), change of variables and Taylor expansion we obtain

cov
(√

nhdn Γn1(x),
√
nhdn Γn2(x)

)
= nhdn cov (Γn1(x),Γn2(x))

= 1
hdn

cov
(

δ1Z
−1
1

L(Z1)G(Z1)
Kd

(x − X1
hn

)
,

δ1Z
−2
1

L(Z1)G(Z1)
Kd

(x − X1
hn

))

= 1
hdn µ

(∫
Rd

∫
R

z−3

L(z)G(z)
K2
d

(x − u
hn

)
fX,Y (u, z) du dz

)
−O(hdn)

n→∞−→ κ

µ
Σ3(x) + o(1). (25)
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Lemma 5. Under assumptions (A1)(i),(A2)-(A4), and for n large enough it holds that:

√
nhdn (Γn1(x),Γn2(x)) D−→ N

(
0, µ−1κΣ(x)

)
,with Σ =

[
Σ2 Σ3
Σ3 Σ4

]
.

Proof of Lemma 5. We have to prove that for sufficiently large n, any linear combination of√
nhdnΓn1(x) and

√
nhdnΓn2(x) is asymptotically Gaussian for a vector a⊤ = (a1, a2) ∈ R2

with a2
1 + a2

2 ̸= 0, √
nhdK (a1Γn1(x) + a2Γn2(x)) D−→ N

(
0, µ−1κa⊤Σ(x)a

)
.

To do so, let

∆n(x) =
√
nhdn [a1Γn1(x) + a2Γn2(x)]

=
n∑
i=1

a1
1√
nhdn

[
δiZ

−1
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

)
− E

(
δiZ

−1
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

))]

+ a2
1√
nhdn

[
δiZ

−2
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

)
− E

(
δiZ

−2
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

))]
=:

n∑
i=1

∆ni(x)

It is clear that the ∆ni(x) are iid. We will apply Lyapunov’s Central Limit Theorem to the
sequence ∆ni(x). Let ρνni(x) = E [|∆ni(x)|ν ], for ν > 2. By the Cr-inequality (see Loève
(1963), p.156), we obtain

ρνni(x) = E

∣∣∣∣∣∣a1
1√
nhdn

{
δiZ

−1
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

)
− E

(
δiZ

−1
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

))}

+ a2
1√
nhdn

{
δiZ

−2
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

)
− E

(
δiZ

−2
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

))}∣∣∣∣∣∣
ν

≤ 2ν−1
(
hdn
n

) ν
2
{
aν1E

[∣∣∣∣∣ 1
hdn

δiZ
−1
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

)∣∣∣∣∣
ν]

+

+ aν2E
[∣∣∣∣∣ 1
hdn

δiZ
−2
i

Ln(Zi)Gn(Zi)
Kd

(x − Xi

hn

)∣∣∣∣∣
ν]}

which implies that, under assumption (A4) and the fact that ν > 2

ρνn(x) :=
n∑
i=1

ρνni(x) = O

(
n1− ν

2 h
dν
2
n

)
= o(1). (26)

On the other hand, by using (23), (24) and (25), we get

s2
n(x) := V ar(∆n(x)) = a2

1V ar

(√
nhdnΓn1(x)

)
+ a2

2V ar

(√
nhdnΓn2(x)

)
+2a1a2Cov

(√
nhdnΓn1(x),

√
nhdnΓn2(x)

)
= a2

1
κ

µ
Σ2(x) + a2

2
κ

µ
Σ4(x) + 2a1a2

κ

µ
Σ3(x) + o(1).

thus,
s2
n(x) −−−−−→

n→+∞
µ−1κ aTΣ(x) a > 0, (27)
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for all a ̸= 0.
Then, (26) and (27) give

1
(V ar (∆n(x)))

ν
2

n∑
i=1

E [|∆ni(x)|ν ] = ρνn(x)
sνn(x) −−−−−→

n→+∞
0.

Hence, the result is a consequence of Berry Esseen’s Theorem (see Chow and Teicher (1978),
p. 322).

Proof of Theorem 2. Let Θ : R2 → R be a mapping defined, for any (x, y), by Θ(x, y) =
x
y for y ̸= 0. As r(x) = µ−1r1(x)

µ−1r2(x) , remark that rn(x) and r(x) are the respective images
of
(
µ−1
n r1n(x), µ−1

n r2n(x)
)

and
(
µ−1r1(x), µ−1r2(x)

)
by Θ. So, from Lemmas 3-5 and from

the δ-method Theorem we deduce that
√
nhdK (rn(x) − r(x)) converges in distribution to

N
(
0,∇Θ⊤ κ

µΣ(x)∇Θ
)
, with

∇Θ
(
µ−1r1(x), µ−1r2(x)

)
= µ

(
r−1

2 (x),−r−2
2 (x)r1(x)

)⊤
.

Then an elementary calculation gives

σ2(x) = µκ
[
r2

2(x)Σ2(x) − 2r2(x)Σ3(x)r1(x) + Σ4(x)r2
1(x)

]
r−4

2 (x).

The proof of Theorem 2 is complete.

Proof of Corollary 4.1.1. The proof is an immediate consequence of Theorem 2.

7. Conclusion
In this study, we developed a new kernel estimator for the regression function, minimizing the
mean squared relative error when the data are LTRC. We thoroughly investigated its asymp-
totic behavior, establishing almost sure uniform convergence with a rate and demonstrating
asymptotic normality. The convergence rate was obtained through Bernstein’s inequality,
while Lyapunov’s central limit theorem was applied to prove the asymptotic distribution.
Simulation studies confirmed the theoretical findings, emphasizing the reliability and effi-
ciency of the proposed estimator in handling incomplete data scenarios.
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