
AJS

Austrian Journal of Statistics
2025, Volume 54, 1–27.
http://www.ajs.or.at/
doi:10.17713/ajs.v54i5.1909

Optimal Variable Acceptance Sampling Plan under
Progressive Type-II Censoring for the Mixture of

Exponential-Rayleigh Distributions

A. M. Mathai
National Institute of Technology

Calicut

M. Kumar
National Institute of Technology

Calicut

Abstract

Mixture distributions are widely utilized in various practical problems, such as clin-
ical experiments and electronic component life testing. Despite this, the literature does
not extensively cover acceptance sampling plans associated with these distributions. In
this paper, variable acceptance sampling plans are designed for a mixture of exponential-
Rayleigh distributions using partially accelerated life tests. Under progressive Type-II
censoring scheme, the maximum likelihood estimators of the unknown parameters of the
mixture distribution are derived for Arrhenius and linear life-stress relationships. Based
on these relationships, optimal variable sampling plans are formulated. The plan pa-
rameters are determined by solving corresponding optimization problems. The study
presents numerical findings, a comparative analysis, and sensitivity assessments. Finally,
the practical applicability and relevance of the proposed acceptance sampling plans are
demonstrated using real-world datasets. These datasets include breast cancer patients’
records and failure lifetime data from communication transmitter-receivers in a commer-
cial aircraft.

Keywords: Arrhenius life-stress relation, partially accelerated life test, linear life-stress rela-
tion, maximum likelihood estimation, optimal test plan.

1. Introduction
In today’s global economy, quality has transitioned from being optional to becoming an
essential need. An acceptance sampling plan (ASP) is an essential tool in statistical quality
control to ensure quality. It enables consumers or manufacturers to determine whether to
accept or reject a product lot based on the findings from a random sample. It is economically
efficient when conducting a 100% examination of each unit is impractical or testing might
cause damage to items. Furthermore, in clinical trials, sampling strategies are of utmost
importance in evaluating the efficiency and safety of novel medicines.
Censoring schemes are integral in life testing due to the various constraints like time, cost,
availability, etc. The two commonly utilized approaches are Type-I, involving termination at
a predefined time, and Type-II, which concludes testing after a specific number of observed
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failures (see Aslam, Azam, and Jun 2017; Gui and Aslam 2017). Later, a mixture of Type-I
and Type-II called hybrid censoring schemes was introduced to reduce the testing time.
In contrast, progressive censoring schemes allow the removal of surviving items before a test’s
predetermined time. It is an appropriate censoring scheme in medical survival analysis, where
unpredicted and uncontrolled removal of items occurs at intermediate stages of treatment. For
example, suppose, for a clinical test, n cancer patients undergo chemotherapy post-surgery.
The objective is to track the lifespan of m patients out of n. However, in such studies, patients
frequently discontinue participation by missing follow-up appointments or failing to report
their time of death. This persists even in hospital settings, where, following the first patient’s
demise, others might withdraw due to personal reasons of faith in medical staff, dissatisfaction
with hospital facilities, or seeking alternate treatments. Subsequent patient withdrawals occur
following subsequent deaths, shaping observations until the lifetimes of m (pre-fixed number)
patients are recorded. Notably, the random nature of patient dropouts at each stage impedes
predictability. Technically, the aforementioned can be restated as follows: Testing begins
with a sample of size n. After observing the first failure, X(1,m,n), R1 (0 ≤ R1 ≤ n − m)
surviving units are removed. At the second failure, X(2,m,n), R2 (0 ≤ R2 ≤ n − m − R1)
units are removed from surviving units. The testing continues until the occurrence of the mth

failure, X(m,m,n), and at this point, the remaining Rm = n−m−
∑m−1
i=1 Ri units are removed.

Note that here Ri is a random variable. By assuming a probability,p, for the removal of each
remaining unit at every stage, the number of units removed at the ith failure, Ri, follows a
binomial distribution as described by Tse, Yang, and Yuen (2000). This censoring scheme is
called the progressive Type-II censoring scheme with binomial removals (PTIICS-BR) and is
illustrated in Fig. 1. For i = 1, 2, · · · ,m, Ri = 0, this scheme reduces to complete sampling,
and for i = 1, 2, · · · ,m − 1,Ri = 0 and rm = n − m, progressive Type-II censoring scheme
(PTIICS) becomes Type-II censoring.
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Figure 1: Progressive Type II censoring model

In recent years, the estimation of parameters for different distributions under PTIICS has been
studied by researchers like Vishwakarma, Kaushik, Pandey, Singh, and Singh (2018), Wu and
Chang (2002), and Pathak, Kumar, Singh, Singh, Tiwari, and Kumar (2023). Under PTIICS-
BR, Singh, Singh, and Kumar (2016) proposed the maximum likelihood estimation and Bayes
estimation of Poisson-exponential distribution with an application in cancer patients’ data.
Ahmadi Nadi, Gildeh, Kazempoor, Tran, and Tran (2023) developed a conditional reliability
sampling plan for the quantile of the Weibull distribution based on PTIICS-BR with three
cost models. Balakrishnan and Cramer (2014) investigated PTIICS in detail, covering both
the theoretical principles and practical techniques related to progressive censoring schemes.
Nowadays, products exhibit higher reliability, and acquiring life test data under normal con-
ditions requires a longer duration. This prompted the use of accelerated and partially accel-
erated life testing, as they help to reduce cost and time than traditional tests. In an accel-
erated life test (ALT), units undergo testing only at accelerated stress conditions, whereas
in a partially accelerated life test (PALT), test units are tested under both accelerated and
normal conditions. PALT is mostly used when there is no prior information about the stress-
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dependent model. Hassan, Assar, and Zaky (2015) explored constant-stress PALT using
multi-censored data. They considered the inverted Weibull distribution for the lifetime of
the test unit. Also, obtained the maximum likelihood estimator (MLE) of the parameters
and the accelerating factor. On a related note, Ismail (2016) investigated the estimation of
Weibull distribution parameters based on hybrid censored data under constant-stress partially
accelerated test model.
Srivastava and Mittal (2013) proposed a sampling plan for products having truncated logis-
tic distribution truncated at point zero under Type-I censoring under constant PALT. They
focused on determining the optimal allocation of sample proportion to both conditions by
minimizing the generalized asymptotic variance of MLE of the acceleration factor and model
parameters. Meanwhile, Kumar, Bajeel, and Ramyamol (2020) designed an optimal ASP
for Weibull distribution under PALT based on the Type-II censoring scheme. They consid-
ered two different life-stress relationships, namely, linear relation and Arrhenius. A detailed
comparative study based on testing cost is also presented.
Recently, researchers have been paying attention to the application of mixture distributions
for modeling failure data. Failures can be classified into two or more subclasses based on
their reasons. Like in the above-mentioned example, for cancer patients, demise (failure)
might result from different causes, such as the progression of cancer itself, an accidental
event, or another unrelated disease. Statistical analysis addresses such complexities by em-
ploying mixture distributions, combining two or more component distributions to create a
more comprehensive model for failure events.
Muralidharan and Lathika (2005) introduced a mixture of exponential-Rayleigh distributions
and compared the estimators of the parameters obtained via maximum likelihood estimation
and the method of moments. Some of the other studies in the parameter inference can be seen
in Mendenhall and Hader (1958), Muralidharan (2000), Kharazmi, Kumar, and Dey (2023),
and Mathai and Kumar (2023). Despite the significance of mixture distributions in several
practical statistical areas, variable ASPs for mixed distributions are not well addressed in
the literature. Ramyamol and Kumar (2019) derived single and sequential variable sampling
plans for a mixture of two exponential distributions. They have also defined two different
sequential sampling plans, and optimal plan parameters are obtained by minimizing total
testing cost. However, they have used the primitive censoring schemes, Type-I and Type-II
schemes, which are no longer considered in practical applications.
In this work, we propose a variable repetitive group sampling plan for units whose lifetime fol-
lows the mixture of exponential-Rayleigh distributions (MERD) under PTIICS using PALT.
This is a novel concept in the ASPs for mixture distribution as there are no works available in
the literature, using PALT or PTIICS for any mixture distributions. Moreover, the MLE of
the distribution parameters serves as the deciding factor by utilizing the lifetime of the units
in the lot. Under PALT, two different life stress relationships, namely, Arrhenius and linear
relationship are considered for deriving ASPs. The main purpose of this study is to obtain
the optimal values of plan parameters in the two different ASPs by minimizing the expected
total cost (ETC) and satisfying the Type-I and Type-II error constraints.
The rest of the article is organized as follows in different sections: Section 2 discusses the
derivation of the likelihood function for the MERD based on PTIICS. MLE of the mixture
distribution parameters and design of an optimal ASP using linear life-stress relation, which
minimizes the ETC, are explained in Section 3. In Section 4, mixture distribution parame-
ters are estimated, and an optimal ASP is proposed based on Arrhenius life-stress relation.
Analysis of numerical results, comparative study, and sensitivity analysis are presented in
Section 5. Also illustrates a real-life case study of two different data sets: cancer patients’
lifetime data and failure data of communication transmitter-receivers of a single commercial
airline. The concluding remarks are presented in Section 6.
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2. Progressive Type-II censoring scheme
Consider a random sample of n independent and identically distributed (i.i.d.) units with
lifetime following the MERD in the proportion ρ and 1 − ρ are put to test. The cumulative
distribution function (CDF) of the MERD is

F (x | ϑ, φ) = ρ ·
(

1 − exp

(
−x

ϑ

))
+ (1 − ρ) ·

(
1 − exp

(
−x2

φ

))
, (1)

where ϑ, φ > 0, x ≥ 0 and 0 ≤ ρ ≤ 1, and the probability density function (PDF) is

f(x | ϑ, φ) = ρ ·
( 1
ϑ
exp

(
−x

ϑ

))
+ (1 − ρ) ·

(
2x
φ
exp

(
−x2

φ

))
. (2)

This is a combination of Weibull distributions with parameters (ϑ, 1), and (φ, 2). The mixture
shows a varying hazard rate, as the hazard rate of the exponential distribution remains
constant while the hazard rate of the Rayleigh distribution is monotonically increasing.
Under PTIICS, suppose that after the initial failure, X(1,m,n), R1 items are removed. After
the second failure X(2,m,n), R2 items are removed, and so on, until Rm items are removed,
followed by mth failure in random from the test. The sample thus obtained are represented as[
X(1,m,n), R1

]
,
[
X(2,m,n), R2

]
, · · ·

[
X(m,m,n), Rm

]
(see Fig. 1). As explained in Section 1, the

number of items removed at ith stage, Ri is a binomial random variable. But, if the number of
items removed at each stage is fixed, i.e, Ri = ri for i = 1, 2, · · · ,m, the conditional likelihood
function can be expressed as follows (see Balakrishnan, Cramer, and Kamps 2001)

L(ϑ, φ;x | R = r) = f(X(1,m,n),··· ,X(m,m,n)) (x1, · · · , xm)

= a
m∏
i=1

f (xi) [1 − F (xi)]ri , 0 ≤ xi < ∞,
(3)

where xi is the realization of the random variable X(i,m,n), i = 1, · · · ,m, a =
m∏
i=1

m∑
j=i

(rj + 1),

n,m ∈ N , ri ∈ N0, and n = m+
m∑
i=1

ri.

As previously stated, the number of items removed at each stage is random and independent,
with each unit having a probability p. Therefore, the number of units Ri that are eliminated
at the ith failure X(i,m,n); i = 1, 2, · · · , (m − 1), follows to a binomial distribution, i.e.,

Ri ∼
(
n−m−

i−1∑
j=0

rj , p

)
and r0 = 0. Thus,

P (R1 = r1; p) =
(
n−m
r1

)
pr1(1 − p)n−m−r1 , (4)

and for i = 2, 3, · · · ,m− 1,

P (Ri = ri | Ri−1 = ri−1, · · ·R1 = r1) =
(
n−m−

i−1∑
j=0

rj

ri

)
pri(1 − p)

n−m−
i∑

j=0
rj

. (5)

Therefore,

P (R = r; p) = P (R1 = r1)P (R2 = r2 | R1 = r1)P (R3 = r3 | R2 = r2, R1 = r1)
· · ·P (Rm−1 = rm−1 | Rm−2 = rm−2, · · ·R1 = r1) . (6)
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Substituting equations (4) and (5) in equation (6), we get

P (R = r; p) = (n−m)!p

m−1∑
i=1

ri

(1 − p)
(m−1)(n−m)−

m−1∑
i=1

(m−i)ri(
n−m−

m−1∑
i=1

ri

)
!
m−1∏
i=1

ri!
. (7)

Then the complete likelihood function is given by

L(ϑ, φ, p;x) = L(ϑ, φ;x | R = r) P (R = r; p)

= a(n−m)!p

m−1∑
i=1

ri

(1 − p)
(m−1)(n−m)−

m−1∑
i=1

(m−i)ri(
n−m−

m−1∑
i=1

ri

)
!
m−1∏
i=1

ri!

m∏
i=1

f (xi) [1 − F (xi)]ri .
(8)

Further, the computation of the MLE of the parameters ϑ and φ, uses only the conditional
likelihood, L(ϑ, φ;x | R = r). This is because P (R = r; p), is independent of ϑ and φ (from
equation (7)) and hence remains constant.

3. ASP under progressive Type-II censoring using PALT:
Linear life-stress relation

This section presents the design of an ASP for the MERD using PALT. The plan is based
on a linear life-stress relation between a unit’s lifespan under accelerated stress conditions
(represented as Y ) and its lifespan under normal stress conditions (represented as X). The
relationship is given by Y = X

ζ , where ζ is the acceleration factor and ζ > 0.
According to the PALT procedure, initially, a sample of n i.i.d. units is taken. Subsequently,
the sample is divided into proportions of δ and (1−δ) for testing under accelerated and normal
stress conditions, respectively. Accordingly, from a set of n units, nδ units are allocated
randomly for accelerated stress testing, while n(1 − δ) units are chosen for normal stress
testing. Subsequent testing procedures using PTIICS are conducted separately for samples
under both stress conditions.

3.1. Progressive Type-II censoring for normal stress condition

Suppose that random variable X denotes the lifetime of units under normal stress condition
following the MERD with unknown parameters ϑ and φ. The PDF of X is given by

f1(x | ϑ, φ) = ρ1 · g1(x | ϑ) + (1 − ρ1) · h1(x | φ), (9)

where ϑ, φ > 0, x ≥ 0, 0 ≤ ρ1 ≤ 1,

g1(x | ϑ) = 1
ϑ
exp

(
−x

ϑ

)
and h1(x | φ) = 2x

φ
exp

(
−x2

φ

)
. (10)

The corresponding CDF of X is

F1(x | ϑ, φ) = ρ1 ·G1(x | ϑ) + (1 − ρ1) ·H1(x | φ), (11)

where G1(x | ϑ) = 1 − exp

(
−x

ϑ

)
and H1(x | φ) = 1 − exp

(
−x2

φ

)
. (12)

Under PTIICS, n(1 − δ) units are tested in normal stress condition until the ηth failure,
X(η,η,n(1−δ)) occurs and η ≤ n(1 − δ) is fixed in prior. Let ri, i = 1, 2, · · · , η − 1 denotes
the number of items removed after ith failure, X(i,η,n(1−δ)). Let xi be the realization of the
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random variable X(i,η,n(1−δ)). Then, by using equation (3), the conditional likelihood under
normal stress condition is given by

LN(ϑ, φ;x) = a1

η∏
i=1

f1 (xi) [1 − F1 (xi)]ri (13)

where a1 =
η∏
i=1

η∑
j=i

(rj + 1) and n(1 − δ) = η +
η∑
i=1

ri.

As in (Muralidharan and Lathika 2005; Mathai and Kumar 2023), define,

U(x) =
{

1, if X ∼ Exponential(ϑ)
0, if X ∼ Rayleigh(φ) and among η failures, let η0 (η0 < η) be the observed

number of units following exponential life. Hence,
η∑
i=1

U(xi) = η0.

Thus, equation (13) becomes,

LN(ϑ, φ;x) = a1

η∏
i=1

(
{ρ1g1(xi) [1 −G1(xi)]ri}U(xi)

{(1 − ρ1)h1(x) [1 −H1(x)]ri}1−U(xi)
)
. (14)

By substituting equations (10) and (12) in equation (14), we get

LN(ϑ, φ;x) = a1

(
ρ1
ϑ

)η0 (2(1 − ρ1)
φ

)η−η0

exp

−
η0∑
i=1

xi + xiri
ϑ

−
η∑

i=η0+1

x2
i + x2

i ri
φ

 η∏
i=η0+1

xi (15)

3.2. Progressive Type-II censoring for accelerated stress condition

Let the random variable Y be the lifetime of units tested under accelerated stress condition
with acceleration factor ζ. Let Y = X

ζ , based on linear life-stress relation, with CDF given
by

F2(y | ϑ, φ) = P (Y ≤ y) = P

(
X

ζ
≤ y

)
= P (X ≤ ζy) . (16)

Therefore,
F2(y | ϑ, φ, ζ) = ρ2G2 (X ≤ ζy) + (1 − ρ2)H2 (X ≤ ζy) , (17)

where G2(y | ϑ, ζ) = G2 (X ≤ ζy) = 1 − exp

(
−ζy

ϑ

)
H2(y | φ, ζ), = H2 (X ≤ ζy) = 1 − exp

(
−(ζy)2

φ

)
.

(18)

The PDF is given by,

f2(y | ϑ, φ, ζ) = d
dyF2(y | ϑ, φ, ζ) = ρ2g2 (y | ϑ, ζ) + (1 − ρ2)h2 (y | φ, ζ) , (19)

where g2 (y | ϑ, ζ) = ζ

ϑ
exp

(
−ζy

ϑ

)
and h2(y | φ, ζ) = 2ζ2y

φ
exp

(
−(ζy)2

φ

)
. (20)

It can be seen that Y follows the MERD with known parameter ζ and unknown parameters
ϑ and φ.
Suppose out of n samples, nδ are randomly chosen and tested with accelerated stress con-
ditions under PTIICS. The test is terminated after the occurrence of µth failure, Y(µ,µ,nδ).
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Let si, i = 1, 2, · · · , µ, be the number of units removed after the ith failure where sµ =

nδ − µ−
µ−1∑
i=1

si and hence, nδ = µ+
µ∑
i=1

si.

As explained in Subsection 3.1, the conditional likelihood under accelerated stress test is
derived as follows

LA(ϑ, φ, ζ; y) = a2

µ∏
i=1

f2 (yi) [1 − F2 (yi)]si (21)

where yi is the realization of the random variable Y(i,µ,nδ), si ∈ N0, 1 ≤ i ≤ µ, a2 =
µ∏
i=1

µ∑
j=i

(sj + 1), and µ ∈ N.

By defining, V (y) =
{

1, if Y ∼ Exponential(ϑ)
0, if Y ∼ Rayleigh(φ) , we get

µ∑
i=1

V (yi) = µ0, where µ0 (µ0 <

µ) is the number of failures observed, out of µ following exponential distribution.
Using equations (17), (18), (19), and (20) in equation (21), we get

LA(ϑ, φ, ζ; y) = a2

(
ρ2ζ

ϑ

)µ0
(

2ζ2(1 − ρ2)
φ

)µ−µ0

exp

−ζ
µ0∑
i=1

yi + yisi
ϑ

− ζ2
µ∑

i=µ0+1

y2
i + y2

i si
φ

 µ∏
i=µ0+1

yi. (22)

3.3. Maximum likelihood estimation of parameters

In this section, MLE of the unknown parameters ϑ and φ of the MERD are derived, where
units are tested under PALT based on PTIICS. The conditional likelihood function for ob-
served data under PALT is given by (see Kumar et al. 2020)

L (ϑ, φ;x, y) = LN (ϑ, φ;x)LA (ϑ, φ; y) . (23)

Using equations (15) and (22), equation (23) becomes

L (ϑ, φ;x, y) = a1a2

(
ρ1
ϑ

)η0 (ρ2ζ

ϑ

)µ0 (2(1 − ρ1)
φ

)η−η0
(

2ζ2(1 − ρ2)
φ

)µ−µ0

exp

−
η0∑
i=1

xi + xiri
ϑ

−
η∑

i=η0+1

x2
i + x2

i ri
φ

− ζ
µ0∑
i=1

yi + yisi
ϑ

− ζ2
µ∑

i=µ0+1

y2
i + y2

i si
φ


η∏

i=η0+1
xi

µ∏
i=µ0+1

yi (24)

Then, the log-likelihood function is given by

ln L = lnLN + lnLA.

= ln a1 + ln a2 + η0 (ln ρ1 − lnϑ) + µ0 [ln (ρ2ζ) − lnϑ] +
η∑

i=η0+1
ln xi +

µ∑
i=µ0+1

ln yi

(η − η0) [ln (2(1 − ρ1)) − lnφ] + (µ− µ0)
[
ln
(
2ζ2(1 − ρ2)

)
− lnφ

]
−

η0∑
i=1

xi + xiri
ϑ

−
η∑

i=η0+1

x2
i + x2

i ri
φ

− ζ
µ0∑
i=1

yi + yisi
ϑ

− ζ2
µ∑

i=µ0+1

y2
i + y2

i si
φ

(25)

Differentiating both sides of equation (25),with respect to ϑ and φ and equating to zero, we
get

∂

∂ϑ
ln L = 0 and ∂

∂φ
ln L = 0.



8 Acceptance Sampling Plan for the Mixture of Exponential-Rayleigh Distributions

The normal equations are obtained as,

−η0 + µ0
ϑ

+ 1
ϑ2

[ η0∑
i=1

(xi + xiri) + ζ
µ0∑
i=1

(yi + yisi)
]

= 0 (26)

− 1
φ

[(η − η0) + (µ− µ0)] + 1
φ2

 η∑
i=η0+1

(
x2
i + x2

i ri
)

+ ζ2
µ∑

i=µ0+1

(
y2
i + y2

i si
) = 0. (27)

Finally, the expressions for the MLEs of ϑ and φ are obtained, respectively, as

ϑ̂ = P1 + ζ P2
η0 + µ0

, (28)

φ̂ = Q1 + ζ2 Q2
(η − η0) + (µ− µ0) , (29)

where P1 =
η0∑
i=1

Xi (1 + ri), P2 =
µ0∑
i=1

Yi (1 + si), Q1 =
η∑

i=η0+1
X2
i (1 + ri) and

Q2 =
µ∑

i=µ0+1
Y 2
i (1 + si).

Next, for developing the ASP, the distribution of the estimators is to be derived. Here,
X(i,η,n(1−δ)), i = 1, 2, · · · , η0 follows an exponential distribution with mean ϑ and variance ϑ2,
and Y(i,µ,nδ), i = 1, 2, · · · , µ0 follows an exponential distribution with mean ϑ

ζ and variance(
ϑ
ζ

)2
. Also, X(i,η,n(1−δ)), i = η0 + 1, · · · , η follows a Rayleigh distribution with mean

√
φπ
2

and variance 4−π
4 φ, and Y(i,µ,nδ), i = µ0 + 1, · · · , µ follows a Rayleigh distribution with mean

√
φπ

2ζ and variance 4−π
4

φ
ζ2 .

Let A(Xi) = Xi (1 + ri), i = 1, 2, · · · , η0. Then, A(Xi) follows an exponential distribution
with mean ϑ (1 + ri) and variance (1 + ri)2 ϑ2. Here, ri’s need not always be distinct, so
the sum of the independent exponential random variables involves a combination of Erlang
and hypo exponential distributions, whose expression for closed-form density is not available
explicitly. Hence, by the Lindeberg central limit theorem, P1 =

η0∑
i=1

A(Xi) follows a normal

distribution with mean ϑ
η0∑
i=1

(1 + ri) and variance ϑ2
η0∑
i=1

(1 + ri)2. Similar approximations

are considered in the literature (see Kumar and Bajeel 2018; Rajgopal and Mazumdar 1997,
1996). Similarly, we get P2 =

µ0∑
i=1

Yi (1 + si) ∼ N

(
ϑ
ζ

µ0∑
i=1

(1 + si) ,
(
ϑ
ζ

)2 µ0∑
i=1

(1 + si)2
)

.

For i = η0 + 1, · · · , η, X2
i follows an exponential distribution with mean φ and variance

φ2. Thus, X2
i (1 + ri) follows an exponential distribution with mean φ (1 + ri) and variance

(1 + ri)2 φ2. Again, invoking the Lindeberg central limit theorem, we get

Q1 =
η∑

i=η0+1
X2
i (1 + ri) ∼ N

(
φ

η∑
i=η0+1

(1 + ri) , φ2
η∑

i=η0+1
(1 + ri)2

)
. Similarly,

Q2 =
µ∑

i=µ0+1
Y 2
i (1 + si) ∼ N

(
φ
ζ2

µ∑
i=µ0+1

(1 + si) , φ
2

ζ4

µ∑
i=µ0+1

(1 + si)2
)

.

Moreover, from equations (28) and (29), we get that,

ϑ̂ = P1 + ζ P2
η0 + µ0

∼ Normal distribution with mean, ϑ

η0 + µ0

[ η0∑
i=1

(1 + ri) +
µ0∑
i=1

(1 + si)
]

and variance,
(

ϑ

η0 + µ0

)2 [ η0∑
i=1

(1 + ri)2 +
µ0∑
i=1

(1 + si)2
]
, (30)
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and φ̂ = Q1 + ζ2 Q2
(η − η0) + (µ− µ0) ∼ Normal distribution with

mean, φ

(η − η0) + (µ− µ0)

 η∑
i=η0+1

(1 + ri) +
µ∑

i=µ0+1
(1 + si)


and variance, φ2

[(η − η0) + (µ− µ0)]2

 η∑
i=η0+1

(1 + ri)2 +
µ∑

i=µ0+1
(1 + si)2

 . (31)

3.4. ASP under linear life-stress relation

In this section, an ASP is derived under PTIICS based on linear life-stress relation. For that,
consider a lot of units with failure lifetime following the MERD with PDF given by equation
(2). Let ϑA and, φA denote the acceptance quality level (AQL) and ϑR and, φR denotes the
rejection quality level (RQL) of an item in the lot. The lot is accepted or rejected depending
on the following probability conditions:

P (Reject the lot | ϑ ≥ ϑA and φ ≥ φA) ≤ α,

P (Accept the lot | ϑ ≤ ϑR and φ ≤ φR) ≤ β,
(32)

where α is the producer’s risk and β is the consumer’s risk.

The ASP is outlined as follows:

1. Take a random sample of n units from the lot under consideration. According to the
PALT scheme, nδ units are tested under accelerated stress condition and n (1 − δ) under
normal stress condition.

2. In both stress conditions under PTIICS, as elaborated in Subsections 3.1 and 3.2, testing
is terminated upon attaining a pre-determined number of failures, µ and η out of nδ
and n (1 − δ) units, respectively.

3. From the data obtained, calculate the MLEs ϑ̂ and φ̂ of the parameters ϑ and φ,
respectively.

4. Let ψ̂ = ϑ̂+ φ̂. Accept the lot, if ψ̂ ≥ t2. Reject the lot, if ψ̂ < t1.
5. If t1 ≤ ψ̂ < t2, continue the process by repeating Steps 1 to 3.

Let pa, pr, and pc denote the probability of accepting the lot, rejecting the lot, and continuing
the process, respectively, while observing a sample from the lot. The probabilities of long-run
acceptance and rejection are obtained as PA = pa

1−pc
and PR = pr

1−pc
, respectively, and the

expected number of samples involved in testing is 1
1−pc

(see Sherman 1965).

According to the plan, for deriving the probabilities pa, pr, and pc, the distribution of ψ̂ is
required and from equations (30) and (31), we get that,

ψ̂ ∼ N
[
E
(
ϑ̂
)

+ E (φ̂) , V
(
ϑ̂
)

+ V (φ̂)
]
. (33)

Then the required probabilities are given by,

pa = P
(
ψ̂ ≥ t2

)
= P

Z ≥
t2 − E

(
ψ̂
)

√
V
(
ψ̂
)
 , (34)

pr = P
(
ψ̂ < t1

)
= P

Z <
t1 − E

(
ψ̂
)

√
V
(
ψ̂
)
 , (35)
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pc = P
(
t1 ≤ ψ̂ < t2

)
= P

 t1 − E
(
ψ̂
)

√
V
(
ψ̂
) ≤ Z <

t2 − E
(
ψ̂
)

√
V
(
ψ̂
)
 , (36)

where Z denotes the standard normal random variable.
Next, the optimal values of the unknown parameters of the sampling plan, namely, t1, t2, η, µ,
ri, i = 1, 2, · · · , η and si, i = 1, 2, · · · , µ, are determined by solving a nonlinear optimization
problem. The objective of this problem is to minimize the ETC of testing while satisfying the
conditions in equation (32). Note that here the total cost is the sum of the cost associated
with testing and the cost of the items that have failed. The cost of testing is determined by
multiplying the cost of testing a sample per unit of time by the overall testing duration. Due
to the random nature of both the decision time ψ̂ and the number of samples, the total testing

time becomes a random variable, with expectation E
(
ψ̂
)

1−pc
. Also, the total expected number

of failed items is η+µ
1−pc

. As the total testing time and number of failed items are random
quantities, here we have to consider the ETC. Thus, the ETC for conducting this sampling
plan is

ETC = Expected cost of testing + Expected cost of failed items

= Ct
E
(
ψ̂
)

1 − pc
+ Cf

η + µ

1 − pc
,

(37)

where Ct is the cost of testing a unit for unit time and Cf is the cost of a failed item.
The required optimization problem, which minimizes the ETC given by equation (37) at AQL
(i.e., ϑ = ϑA and φ = φA) subjected to conditions in equation (32) is formulated as:

Min
(t1,t2,η,µ,ri,si)

Ct
E
(
ψ̂
)

1 − pc
+ Cf

η + µ

1 − pc
at ϑ = ϑA, φ = φA

subject to
(

pr
1 − pc

| ϑ ≥ ϑA and φ ≥ φA

)
≤ α,(

pa
1 − pc

| ϑ ≤ ϑR and φ ≤ φR

)
≤ β, (38)

where t2 > t1 > 0, 0 < η ≤ n(1 − δ), 0 < µ ≤ nδ, 0 ≤ ri ≤ n(1 − δ) − η −
i−1∑
j=1

ri,

for i = 1, 2, · · · , η − 1, r0 = s0 = 0, 0 ≤ si ≤ nδ − µ −
i−1∑
j=1

si, for i = 1, 2, · · · , µ − 1,

rη = n(1 − δ) − η −
η−1∑
i=1

ri, and sµ = nδ − µ−
µ−1∑
i=1

si.

Substituting the expressions for probabilities from equations (34), (35), and (36) in equation
(38), we get

Min
(t1,t2,η,µ,ri,si)

Ct E
(
ψ̂
)

+ Cf (η + µ)

1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 at ϑ = ϑA, φ = φA

subject to


P

Z <
t1−E

(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)

∣∣∣∣∣ϑ ≥ ϑA and φ ≥ φA

 ≤ α, (39)
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
P

Z ≥ t2−E
(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)

∣∣∣∣∣ϑ ≤ ϑR and φ ≤ φR

 ≤ β.

Observing equations (30), (31), and (33), we get that the expressions for E
(
ψ̂
)

and V
(
ψ̂
)

has terms involving ϑ and φ. But they are unknown and hence, the optimization problem is
re-written as,

Min
(t1,t2,η,µ,ri,si)

Ct E
(
ψ̂
)

+ Cf (η + µ)

1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 at ϑ = ϑA, φ = φA

subject to max
ϑ≥ϑA and φ≥φA,


P

Z <
t1−E

(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)


 ≤ α, (40)

max
ϑ≤ϑR and φ≤φR,


P

Z ≥ t2−E
(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)


 ≤ β. (41)

From equations (30), (31), and (33), it is clear that, in equation (40), PR decreases with
respect to ϑ and φ and in equation (41), PA increases as both ϑ and φ increases. Hence,
maximum value of PR is obtained at ϑ = ϑA and φ = φA and maximum of PA is obtained at
ϑ = ϑR and φ = φR. Thus, the required nonlinear optimization problem, PI is derived as:

Min
(t1,t2,η,µ,ri,si)

Ct E
(
ψ̂
)

+ Cf (η + µ)

1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 at ϑ = ϑA, φ = φA

subject to

P

Z <
t1−E

(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 ≤ α, at ϑ = ϑA and φ = φA, (42)

P

Z ≥ t2−E
(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 ≤ β, at ϑ = ϑR and φ = φR, (43)

where t2 > t1 > 0, 0 < η ≤ n(1 − δ), 0 < µ ≤ nδ, 0 ≤ ri ≤ n(1 − δ) − η −
i−1∑
j=1

ri,

for i = 1, 2, · · · , η − 1, r0 = s0 = 0, 0 ≤ si ≤ nδ − µ −
i−1∑
j=1

si, for i = 1, 2, · · · , µ − 1,
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rη = n(1 − δ) − η −
η−1∑
i=1

ri, and sµ = nδ − µ−
µ−1∑
i=1

si.

The nonlinear optimization problem, PI is solved using the genetic algorithm (GA) solver in
MATLAB. The algorithm used in the GA solver for solving the optimization problem is pre-
sented in the Appendix. The optimum values of the plan parameters and their corresponding
ETC are illustrated in Table 1 in Section 5.

4. ASP under progressive Type-II censoring using PALT: Ar-
rhenius life-stress relation

Under PALT, again consider a random sample of size n, consisting of i.i.d. random units
following the MERD from the lot. The random sample is then allocated for testing under
accelerated and normal stress conditions in a ratio of δ : (1−δ). Specifically, nδ units from the
sample undergo testing under accelerated stress condition while n(1 − δ) units are subjected
to testing under normal stress condition. As explained in subsections 3.1 and 3.2, under each
stress condition units are tested using the PTIICS. In this section, the Arrhenius life-stress
relationship is applied in PALT and the relationship is given by,

A(ω) = b0 exp

(
b1
ω

)
, (44)

where ω is the stress level, A is a quantifiable life measure, and b0, b1 > 0 are the parameters
in this model to be determined.
Based on the PTIICS, testing under accelerated stress condition, ceases upon observing the
µ failures, where 0 < µ ≤ nδ is prefixed. After each failure (i = 1, 2, · · · , µ), Si = si surviving
units are removed after each ith failure. Similarly, under normal stress condition, n(1 − δ)
items are tested until the occurrence of η failures, where 0 < η ≤ n(1 − δ). Post each failure
(i = 1, 2, · · · , η), Ri = ri surviving units are removed.
Let the random variable X denote the lifetime under normal life-stress condition following
the MERD with parameters ϑ1, and φ1 and the PDF is given by,

f3 (x | ϑ1, φ1) = ρ3 · g3 (x | ϑ1) + (1 − ρ3) · h3 (x | φ1) (45)

where ϑ1, φ1 > 0, x ≥ 0, 0 ≤ ρ3 ≤ 1,

g3(x | ϑ1) = 1
ϑ1
exp

(
− x

ϑ1

)
and h3(x | φ1) = 2x

φ1
exp

(
−x2

φ1

)
. (46)

and the CDF of X is of the form

F3(x | ϑ1, φ1) = ρ3 ·G3(x | ϑ1) + (1 − ρ3) ·H3(x | φ1), (47)

where G3(x | ϑ1) = 1 − exp

(
− x

ϑ1

)
and H3(x | φ1) = 1 − exp

(
−x2

φ1

)
. (48)

Let the random variable Y represent the lifetime of a unit under accelerated life-stress con-
dition following the MERD with parameters ϑ2 and φ2. The PDF of Y is given by,

f4 (y | ϑ2, φ2) = ρ4 · g4 (y | ϑ2) + (1 − ρ4) · h4 (y | φ2) (49)

where ϑ2, φ2 > 0, y ≥ 0, 0 ≤ ρ4 ≤ 1,

g4(y | ϑ2) = 1
ϑ2
exp

(
− y

ϑ2

)
and h4(y | φ2) = 2y

φ1
exp

(
− y2

φ2

)
. (50)
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and the CDF of Y is

F4(y | ϑ2, φ2) = ρ4 ·G4(y | ϑ2) + (1 − ρ4) ·H4(y | φ2), (51)

where G4(y | ϑ2) = 1 − exp

(
− y

ϑ2

)
and H4(y | φ2) = 1 − exp

(
− y2

φ2

)
. (52)

4.1. Maximum likelihood estimation of parameters

Let ω1 and ω2 represent the normal and accelerated stress levels, respectively. By considering
Arrhenius life-stress model, we assume that

ϑ1 + φ1 = b0exp

(
b1
ω1

)
, and ϑ2 + φ2 = b0exp

(
b1
ω2

)
. (53)

The MLE of the parameters ϑ1, ϑ2, φ1, and φ2 are to be determined as in Section 3. The
conditional likelihood function for observed data under normal stress level ω1, is derived as
in Subsection 3.1 and from equation (15), we get

LN (ϑ1, φ1;x) = a1

(
ρ3
ϑ1

)η0 (2(1 − ρ3)
φ1

)η−η0

exp

−
η0∑
i=1

xi + xiri
ϑ1

−
η∑

i=η0+1

x2
i + x2

i ri
φ1

 η∏
i=η0+1

xi, (54)

where η0 is the number of failed items following exponential (ϑ1), η−η0 items follow Rayleigh
(φ1), a1 =

η∏
i=1

η∑
j=i

(rj + 1), and n(1 − δ) = η +
η∑
i=1

ri.

Similarly, the conditional likelihood function for observed data obtained under accelerated
stress level ω2 is obtained as in Subsection 3.2 and from equation (22), we get

LA (ϑ2, φ2; y) = a2

(
ρ4
ϑ2

)µ0 (2(1 − ρ4)
φ2

)µ−µ0

exp

−
µ0∑
i=1

yi + yisi
ϑ2

−
µ∑

i=µ0+1

y2
i + y2

i si
φ2

 µ∏
i=µ0+1

yi, (55)

where µ0 denotes the number of failed items having exponential life with parameter ϑ2,
while µ− µ0 items follow Rayleigh distribution with parameter φ2, a2 =

µ∏
i=1

µ∑
j=i

(sj + 1), and

nδ = µ+
µ∑
i=1

si.

Under PALT, the joint likelihood function is derived using the normal and accelerated stress
conditions from equations (54) and (55), we get

L (ϑ1, ϑ2, φ1, φ2;x, y) = LN (ϑ1, φ1;x) · LA (ϑ2, φ2; y) ,

= a1a2

(
ρ3
ϑ1

)η0 (ρ4
ϑ2

)µ0 (2(1 − ρ3)
φ1

)η−η0 (2(1 − ρ4)
φ2

)µ−µ0

exp

−
η0∑
i=1

xi + xiri
ϑ1

−
η∑

i=η0+1

x2
i + x2

i ri
φ1

 η∏
i=η0+1

xi

exp

−
µ0∑
i=1

yi + yisi
ϑ2

−
µ∑

i=µ0+1

y2
i + y2

i si
φ2

 µ∏
i=µ0+1

yi.

(56)
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Next, by partially differentiating ln L with respect to ϑ1, ϑ2, φ1 and φ2 and equating them
to zero, we get the MLEs of the parameters ϑ1, ϑ2, φ1, and φ2, respectively as

ϑ̂1 = 1
η0

η0∑
i=1

Xi (1 + ri) , (57)

ϑ̂2 = 1
µ0

µ0∑
i=1

Yi (1 + si) , (58)

φ̂1 = 1
(η − η0)

η∑
i=η0+1

X2
i (1 + ri) , (59)

φ̂2 = 1
(µ− µ0)

µ∑
i=µ0+1

Y 2
i (1 + si) . (60)

To develop an ASP using the parameters, ϑ1, ϑ2, φ1, and φ2, the information about their
estimator’s distribution is needed. Here under normal stress condition, X(i,η,n(1−δ)), i =
1, 2, · · · , η0 follows an exponential distribution with mean, θ1 and variance, θ2

1 while for
i = η0 + 1, · · · , η, X(i,η,n(1−δ)) follows Rayleigh with mean,

√
φ1π
2 and variance, φ1

(4−π)
4 .

In accelerated stress condition, Y(i,µ,nδ), i = 1, 2, · · · , µ0 follows an exponential distribution
with mean, θ2 and variance, θ2

2 and for i = µ0 +1, · · · , µ, Y(i,µ,nδ) follows Rayleigh with mean,
√
φ2π
2 and variance, φ2

(4−π)
4 .

Hence, for i = 1, 2, · · · , η0, A (Xi) = Xi (1 + ri) follows exponential distribution with mean,
ϑ1 (1 + ri) and variance, ϑ2

1 (1 + ri)2. By invoking Lindeberg central limit theorem as in
Subsection 3.3, we get,

η0∑
i=1

A (Xi) follows normal distribution with mean, ϑ1
η0∑
i=1

(1 + ri) and

variance, ϑ2
1
η0∑
i=1

(1 + ri)2. Thus, from equation (57), we get

ϑ̂1 = 1
η0

η0∑
i=1

Xi (1 + ri) ∼ N

[
ϑ1
η0

η0∑
i=1

(1 + ri) ,
ϑ2

1
η2

0

η0∑
i=1

(1 + ri)2
]
. (61)

In a similar manner, applying the explanation provided in Subsection 3.3 and using Lindeberg
central limit theorem in equations (58), (59), and (60), we get

ϑ̂2 ∼ N

[
ϑ2
µ0

µ0∑
i=1

(1 + si) ,
ϑ2

2
µ2

0

µ0∑
i=1

(1 + si)2
]
, (62)

φ̂1 ∼ N

 φ1
(η − η0)

η∑
i=η0+1

(1 + ri) ,
φ2

1
(η − η0)2

η∑
i=η0+1

(1 + ri)2

 , (63)

φ̂2 ∼ N

 φ2
(µ− µ0)

µ∑
i=µ0+1

(1 + si) ,
φ2

2
(µ− µ0)2

µ∑
i=µ0+1

(1 + si)2

 . (64)

Applying the equations (57), (58), (59), and (60), in the Arrhenius life relation, given by
equation (53), we get

ϑ̂1 + φ̂1 = b̂0exp

(
b̂1
ω1

)
, and ϑ̂2 + φ̂2 = b̂0exp

(
b̂1
ω2

)
.

Taking logarithm on both sides gives

ln
(
ϑ̂1 + φ̂1

)
= ln b̂0 + b̂1

ω1
, (65)

ln
(
ϑ̂2 + φ̂2

)
= ln b̂0 + b̂1

ω2
. (66)
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Solving the simultaneous equations (65) and (66) for b̂0 and b̂1, we get estimators for b0 and
b1 respectively, as (see Kumar et al. 2020)

b̂0 =

(
ϑ̂1 + φ̂1

) ω1
ω1−ω2(

ϑ̂2 + φ̂2
) ω2

ω1−ω2

, (67)

b̂1 = ω1ω2
ω2 − ω1

ln
(
ϑ̂1 + φ̂1

ϑ̂2 + φ̂2

)
. (68)

4.2. ASP under Arrhenius life-stress relation

In this section, an ASP is designed based on the Arrhenius life-stress relation under PTIICS.
The plan is derived using the MLE of the parameters ϑ1, ϑ2, φ1, and φ2. As in Subsection 3.4,
assume that the lifetime of the unit follows the MERD given by equation (1). Based on PALT,
suppose ϑ1A, ϑ2A, φ1A, and φ2A denotes the AQL and ϑ1R, ϑ2R, φ1R, and φ2R denote the
RQL of an item in the lot. The acceptance or rejection of the lot is contingent upon meeting
the following probability conditions:

P (Reject the lot | ϑ1 ≥ ϑ1A, ϑ2 ≥ ϑ2A, φ1 ≥ φ1A, and φ2 ≥ φ2A) ≤ α,

P (Accept the lot | ϑ1 ≤ ϑ1R, ϑ2 ≤ ϑ2R, φ1 ≤ φ1R, and φ2 ≤ φ2R) ≤ β,
(69)

where α is the producer’s risk and β is the consumer’s risk.
The ASP comprises the following steps:

1. Take a random sample of n units from the lot. Using the PALT method, nδ units are
tested under accelerated stress condition and n (1 − δ) under normal stress condition.

2. Applying PTIICS in both the stress conditions, (subsections 3.1 and 3.2) the testing
concludes upon reaching predetermined failure thresholds, denoted as µ and η, out of
nδ and n (1 − δ) units, respectively.

3. Using the observed data, calculate the MLEs ϑ̂1, ϑ̂2, φ̂1 and φ̂2 of the parameters ϑ1,
ϑ2, φ1 and φ2, respectively.

4. Define, ψ̂ = ϑ̂1 + ϑ̂2 + φ̂1 + φ̂2. Accept the lot, if ψ̂ ≥ t2. Reject the lot, if ψ̂ < t1.
5. If t1 ≤ ψ̂ < t2, continue the process by repeating Steps 1 to 3.

Let pa, pr, and pc denote the probability of acceptance, rejection of the lot, and continuation
of the process, respectively. From equations (61), (62), (63), and (64), we get

ψ̂ ∼ N
[
E
(
ϑ̂1
)

+ E
(
ϑ̂2
)

+ E (φ̂1) + E (φ̂2) , V
(
ϑ̂1
)

+ V
(
ϑ̂2
)

+ V (φ̂1) + V (φ̂2)
]
. (70)

Thus, from equation (70), we get the required probabilities are obtained as,

pa = P
(
ψ̂ ≥ t2

)
= P

Z ≥
t2 − E

(
ψ̂
)

√
V
(
ψ̂
)
 , (71)

pr = P
(
ψ̂ < t1

)
= P

Z <
t1 − E

(
ψ̂
)

√
V
(
ψ̂
)
 , (72)

pc = P
(
t1 ≤ ψ̂ < t2

)
= P

 t1 − E
(
ψ̂
)

√
V
(
ψ̂
) ≤ Z <

t2 − E
(
ψ̂
)

√
V
(
ψ̂
)
 , (73)
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As in Subsection 3.4, the main objective of this section is to obtain the optimal values of t1,
t2, η, µ, ri, i = 1, 2, · · · , η and si, i = 1, 2, · · · , µ by minimizing the ETC subject to probability
constraints given by equation (69). Here, the total cost is a sum of the cost of testing and
the cost of failure items. The cost of testing is obtained as a product of the cost of testing
a sample in unit time and the total testing time. But, the total testing time is a random

variable with expectation, E
(
ψ̂
)

1−pc
. This is because, the time to make a decision while testing

a sample, ψ̂, and the total number of samples are both random variables with expectation,
E
(
ψ̂
)

and 1
1−pc

, respectively. Hence, the total number of failed items is again a random
variable with expectation η+µ

1−pc
. Now, since the total cost is random, we consider the ETC.

Thus, from equation (37), we get,

ETC = Ct
E
(
ψ̂
)

1 − pc
+ Cf

η + µ

1 − pc
, (74)

where Ct is the cost of testing a unit for unit time and Cf is the cost of a failed item.
The required optimization problem thus minimizes the ETC given by equation (74) at AQL
subjected to the probability conditions in equation (69) and is formulated as

Min
(t1,t2,η,µ,ri,si)

Ct
E
(
ψ̂
)

1 − pc
+ Cf

η + µ

1 − pc
at AQL

such that
(

pr
1 − pc

∣∣∣∣∣ ϑ1 ≥ ϑ1A, ϑ2 ≥ ϑ2A
φ1 ≥ φ1A, φ2 ≥ φ2A

)
≤ α,

(
pa

1 − pc

∣∣∣∣∣ ϑ1 ≤ ϑ1R, ϑ2 ≤ ϑ2R
φ1 ≤ φ1R, φ2 ≤ φ2R

)
≤ β, (75)

where t2 > t1 > 0, 0 < η ≤ n(1 − δ), 0 < µ ≤ nδ, 0 ≤ ri ≤ n(1 − δ) − η −
i−1∑
j=1

ri,

for i = 1, 2, · · · , η − 1, r0 = s0 = 0, 0 ≤ si ≤ nδ − µ −
i−1∑
j=1

si, for i = 1, 2, · · · , µ − 1,

rη = n(1 − δ) − η −
η−1∑
i=1

ri, and sµ = nδ − µ−
µ−1∑
i=1

si.

Substituting the probabilities given in equations (71), (72), and (73) in equation (75) and
from equations (61), (62), (63), (64) and (70), one can observe that E

(
ψ̂
)

and V
(
ψ̂
)

have
terms involving ϑ1, ϑ2, φ1 and φ2. Given that they are unknown, the optimization problem
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is re-formulated as,

Min
(t1,t2,η,µ,ri,si)

Ct E
(
ψ̂
)

+ Cf (η + µ)

1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 at AQL

such that max{
ϑ1 ≥ ϑ1A, ϑ2 ≥ ϑ2A
φ1 ≥ φ1A, φ2 ≥ φ2A

}


P

Z <
t1−E

(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)


 ≤ α, (76)

max{
ϑ1 ≤ ϑ1R, ϑ2 ≤ ϑ2R
φ1 ≤ φ1R, φ2 ≤ φ2R

}


P

Z ≥ t2−E
(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)


 ≤ β. (77)

From equations (57), (58), (59), (60), and (70), one can clearly say that, PR in equation (76)
decreases with respect to ϑi and φi, i = 1, 2 and, in equation (77), PA increases with respect
to ϑi and φi, i = 1, 2. Therefore, PR attains its maximum at ϑi = ϑiA, and φi = φiA, i = 1, 2.
Similarly, maximum of equation (77) is obtained at ϑi = ϑiR and φ = φiR, i = 1, 2. Thus, we
get the required nonlinear optimization problem, PII as:

Min
(t1,t2,η,µ,ri,si)

Ct E
(
ψ̂
)

+ Cf (η + µ)

1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 at AQL

subject to

P

Z <
t1−E

(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 ≤ α, at AQL, (78)

P

Z ≥ t2−E
(
ψ̂
)√

V
(
ψ̂
)


1 − P

 t1−E
(
ψ̂
)√

V
(
ψ̂
) ≤ Z <

t2−E
(
ψ̂
)√

V
(
ψ̂
)
 ≤ β, at RQL, (79)

where t2 > t1 > 0, 0 < η ≤ n(1 − δ), 0 < µ ≤ nδ, 0 ≤ ri ≤ n(1 − δ) − η −
i−1∑
j=1

ri,

for i = 1, 2, · · · , η − 1, r0 = s0 = 0, 0 ≤ si ≤ nδ − µ−
i−1∑
j=1

si, for i = 1, 2, · · · , µ− 1,

rη = n(1 − δ) − η −
η−1∑
i=1

ri, and sµ = nδ − µ−
µ−1∑
i=1

si.

The GA solver in MATLAB is employed to solve the nonlinear optimization problem, PII .
Details of the algorithm used in the GA solver are provided in the Appendix. The obtained
optimal values for the plan parameters and their associated ETC are depicted in Table 2 in
Section 5.
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5. Numerical results and real data application: Comparisons
and sensitivity analysis

In this section, some numerical results of the proposed optimal acceptance sampling plans in
Sections 3 and 4 are presented in Tables 1 and 2. Specifically, Section 3 focuses on ASP for
the MERD under PTIICS-BR utilizing a linear life-stress relation, with the corresponding
numerical results for some examples provided in Table 1. For example, from Table 1, consider
the following set of parameter values: Ct = Cf = 1, n = 50, ϑA = 300, φA = 200, ϑR = 60,
φR = 60, α = β = 0.01, we get the optimum values of parameters as η = 10, µ = 10, {ri :
i = 1, 2, · · · , η} = {1, 1, 1, 1, 1, 4, 1, 1, 1, 3}, {si : i = 1, 2, · · · , µ} = {1, 1, 1, 1, 1, 1, 1, 1, 1, 6},
t1 = 421.4393 and t2 = 443.7485 with ETC = 1155.9383 units. Thus, according to the plan,
we accept the lot if ψ̂ exceeds 443.7485, and reject the lot if ψ̂ < 421.4393.
Table 2 illustrates the ASP explained in Section 4, using Arrhenius life-stress relation for
the MERD under PTIICS-BR. ETC is obtained for different values of plan parameters. For
a set of values: Ct = Cf = 1, n = 40, ϑ1A = 600,ϑ2A = 600, φ1A = 500,φ2A = 800,
ϑ1R = 150,ϑ2R = 150, φ1R = 100,φ2R = 200,α = β = 0.01, we get the optimum values
of parameters as η = 9, µ = 7, {ri : i = 1, 2, · · · , η} = {1, 1, 1, 1, 1, 1, 1, 1, 3}, {si : i =
1, 2, · · · , µ} = {1, 1, 3, 1, 1, 3, 3}, t1 = 2040.2095 and t2 = 2609.1731 with ETC = 6437.0946
units. Hence, if ψ̂ ≥ 2609.1731, we accept the lot and reject the lot, if ψ̂ < 2040.2095.

5.1. Comparitative study and sensitivity analysis for linear and Arrhenius
life-stress relationship models

A comparative study is done to analyze the ASPs under linear and Arrhenius life-stress models
based on the ETC obtained. Some numerical examples are presented in Table 3 by varying α
and β and for a fixed set of plan parameters: Ct = Cf = 1, n = 50, ϑA = ϑ1A = ϑ2A = 1500,
φA = φ1A = φ2A = 1200, ϑR = ϑ1R = ϑ2R = 300, φR = φ1R = φ2R = 200. According to the
findings in Table 3, the ETC obtained from the linear life-stress model is lower than that of
the Arrhenius model. The term Red% represents the percentage of cost reduction achieved
in the linear model compared to the Arrhenius life-stress model.

Table 3: Comparison of expected total costs obtained in the ASPs based on Arrhenius (Col-
umn A) and linear (Column B) life-stress models by varying the values of α and β

α β A B Red%

0.01 0.01 15727.2376 7463.6589 52.56
0.01 0.05 13475.1429 6328.1726 52.99
0.01 0.1 12020.9999 6125.8824 49.08
0.05 0.05 11671.9999 5926.2632 49.17
0.05 0.1 11356.3333 5651.5714 50.25
0.1 0.1 11077.3333 5533.0909 50.09

Next, we conduct a sensitivity analysis to demonstrate the significance of decision-making.
The choice of sample size, denoted as n, holds particular importance when conducting the
ASPs using linear and Arrhenius life-stress models. The influence of n on the resulting ETC
from both models is depicted in Fig. 2, revealing a consistent increase in ETC as n increases.
Fig. 3 illustrates the effect of the producer’s risk, α, on ETC by fixing the consumer’s risk, β,
and varying the values of α. From the graph, we can see that the ETC increases as the value
of α decreases. Similarly, Fig. 4 shows the same impact of the consumer’s risk, β, on ETC
while keeping α constant and varying the values of β. Furthermore, Fig. 5 and Table 3 depicts
the combined effect of simultaneously changing α and β on the ETC. Notably, a consistent
trend emerges where the ETC rises as both α and β decrease.
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Figure 2: Changes in ETC obtained for linear and Arrhenius model for varying sample size
with Ct = Cf = 1,ϑA = ϑ1A = ϑ2A = 1500, φA = φ1A = φ2A = 1200, ϑR = ϑ1R = ϑ2R = 300,
φR = φ1R = φ2R = 200, α = 0.05, and β = 0.05
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Figure 3: Changes in ETC obtained for linear and Arrhenius model for different values of
α with Ct = Cf = 1, n = 50, ϑA = ϑ1A = ϑ2A = 1500, φA = φ1A = φ2A = 1200,
ϑR = ϑ1R = ϑ2R = 300, φR = φ1R = φ2R = 200, and β = 0.1



Austrian Journal of Statistics 21

0.01 0.05 0.1 0.15
5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

E
T

C

Linear
Arrhenius

Figure 4: Changes in ETC obtained for linear and Arrhenius model for different values of
β with Ct = Cf = 1, n = 50, ϑA = ϑ1A = ϑ2A = 1500, φA = φ1A = φ2A = 1200,
ϑR = ϑ1R = ϑ2R = 300, φR = φ1R = φ2R = 200, and α = 0.01

Figure 5: Changes in ETC obtained for linear and Arrhenius model by varying the values of
α and β with Ct = Cf = 1, n = 50, ϑA = ϑ1A = ϑ2A = 1500, φA = φ1A = φ2A = 1200,
ϑR = ϑ1R = ϑ2R = 300, and φR = φ1R = φ2R = 200
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5.2. Comparative analysis using real-life data

The proposed MERD can be effectively applied in the testing of electronic components, such
as capacitors, where ensuring reliability is crucial for device performance. Capacitors typically
fail due to multiple types of mechanisms. For example, two types of failure mechanisms for
capacitors may be, electrical overload (modeled by an exponential distribution) and physical
degradation caused by long-term wear (modeled by a Rayleigh distribution). To expedite
the testing process, an ASP based on PTIICS under PALT can be used, allowing the test
to end early if a predetermined number of failures are detected, reducing time and cost. By
combining these models, the ASP can determine whether a batch of capacitors meets quality
standards based on observed failure data, ensuring high-quality electronic components.

In this section, the proposed ASPs are demonstrated using a real-life case, and a comparative
study is done with an existing model in the literature. For that, we consider a dataset used in
Ramyamol and Kumar (2019). Their study revolves around the duration until the failure of
ARC-1 VHF communication transmitter-receivers in a particular commercial airline. Failed
units underwent removal for maintenance, yet in some instances, initially deemed failures
functioned adequately upon reaching the maintenance center, their failure status was unveri-
fied. To practically address this, it’s essential to integrate the information from unconfirmed
failures within the overall failure dataset when formulating ASPs for variables. Consequently,
it’s justifiable to categorize the sample of failures into confirmed and unconfirmed subsets.
They considered the two subpopulations to follow exponential distributions. Here we consider
the subpopulation of confirmed failures as exponential and unconfirmed failures as Rayleigh
data (ẙ) derived from the transformation ẙ =

√
2x̊ of the exponential data (̊x), as explained

in Tahir, Aslam, Hussain, and Abbas (2017). This approach is justified since both are life-
time distributions. Furthermore, the Kolmogorov-Smirnov (KS) test is used to confirm the
MERD’s fit to the considered dataset. For the exponential subpopulation data, the test
statistic is 0.1232, which is less than the critical value, KS(33,0.05) = 0.23 from the KS table.
Similarly, for the Rayleigh data, the test statistic is 0.2 < 0.338 (KS(15,0.05) table value).
Thus, the MERD provides a good fit for the data, with a proportion coefficient of ρ = 0.3098.
Based on the dataset of size n = 48, the maximum likelihood estimates for ϑ and φ are
found to be 232.42 and 407.20, respectively. In Table 4, the lifetime of unconfirmed failures
is marked with the "∗" symbol.

Table 4: Time to failure dataset of ARC-1 VHF communication transmitter-receivers of a
commercial airline

16 392 368∗ 408 304 208 344∗ 256 560∗ 488 60 32∗ 360
72 168 200∗ 144∗ 96 120 328 80 64∗ 112∗ 104∗ 120∗ 552
272 304∗ 152∗ 112 184 136∗ 152 224 576 384 16 246∗ 168
194 216 168∗ 616 80 208 232 72 56

A sample of size n = 48 with ρ = 0.3098 is taken as in Ramyamol and Kumar (2019). ASP
under PTIICS using the linear life-stress model is applied to this exponential-Rayleigh data,
as its ETC is lower than the Arrhenius model (from Table 3). For the demonstration of the
ASP, choose Ct = Cf = 1, ϑA = 336, φA = 234, ϑR = φR = 100, ζ = 2, δ = 0.5, α = 0.05, and
β = 0.1. By solving the nonlinear optimization problem PI , we get η = 11, µ = 11, {ri : i =
1, 2, · · · , η} = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3}, {si : i = 1, 2, · · · , µ} = {1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2},
t1 = 578.4570 and t2 = 578.8613.
Thus, among 48 samples in Table 4, the first 24 samples are distributed to accelerated testing,
and the other 24 samples are tested in normal conditions. Next, in each condition, testing
terminates after observing 11 failures. Next, according to PTIICS-BR surviving items are
removed after each failure. Then from the observed data, we get η0 = µ0 = 7, ϑ̂ = 500, and
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φ̂ = 715.9963. Hence, we accept the lot with ETC = 1214 units since ϑ̂+φ̂ > t2. Meanwhile, in
Ramyamol and Kumar (2019), they accept the lot with a lower ETC for exponential mixture
under Type-I censoring, even though testing is stopped at time, T = 2000 units. Their ETC
hinges primarily on the cost of failed items alone. Consequently, our approach appears more
realistic and practically applicable when considering mixture distributions than the existing
plans.

5.3. Application to breast cancer data

In this subsection, we demonstrate the practical application of our proposed model through
the analysis of survival times (in months) among 45 breast cancer patients who underwent
simple or radical mastectomy for breast cancer tumor treatment. The dataset is sourced from
Collett (2023) and comprises survival times of women who died because of cancer and due
to diseases other than breast cancer. Thus, it is a mixture data and we consider the lifetime
subpopulation of women who died from cancer as exponentially distributed and died from
other diseases as Rayleigh distributed. Moreover, after the surgery, a section of the tumor
is treated with a marker called Helix pomatia agglutinin (HPA), and each tumor undergoes
subsequent classification based on staining, where a positive stain indicates the presence of
potential metastasis within the tumor. For our model application, we consider the patients
with positively stained tumors as samples in accelerated condition. Table 5 presents the
dataset of women who underwent surgical treatment with categorization based on staining
and uses "*" to represent the survival time of patients who died due to diseases other than
breast cancer.

Table 5: Survival lifetime of breast cancer patients

Positive staining
(Accelerated condition)

5 8 10 13 18 24 26 26 31
35 40 41 48 50 59 61 68 71
76∗ 105∗ 107∗ 109∗ 113 116∗ 118 143 154∗

162∗ 188∗ 212∗ 217∗ 225∗

Negative staining
(Normal condition)

23 47 69 70∗ 71∗ 100∗ 101∗ 148 181
198∗ 208∗ 212∗ 224∗

Figure 6: CDF plots for the breast cancer data

The fitting of the MERD to the given data set is verified using the KS test and the CDF
plot given in Fig. 6. In the case of exponential subpopulation data, the value of test statistics
is 0.1408 < 0.27 (KS(26,0.05) table value), while for Rayleigh data, the test statistics value
is computed as 0.1617 < 0.301 (KS(19,0.05) table value). Therefore, the MERD offers a
satisfactory fit for the considered data, with a proportion coefficient of ρ = 0.5778. From the
dataset of size n = 45, the maximum likelihood estimates of ϑ and φ are obtained as 56.7692
and 25519.95, respectively.
ASP under PTIICS using linear life-stress relation with ζ = 2, and δ = 0.711 is considered
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here as it offers a lower ETC than the Arrhenius model. To illustrate the proposed model,
choose Ct = Cf = 1, ϑA = 57, φA = 25520, ϑR = 30, φR = 5000, α = β = 0.05. Note
that these values are user-defined and their choice plays a vital role in ASP. By solving the
nonlinear optimization problem PI , we get the optimal values as η = 6, µ = 7, {ri : i =
1, 2, · · · , η} = {2, 1, 1, 1, 1, 1}, {si : i = 1, 2, · · · , µ} = {1, 1, 1, 1, 1, 1, 19}, t1 = 8470.7544,
and t2 = 10653.7755. Based on the ASP, 32 out of 45 samples are tested under accelerated
conditions. In normal testing conditions, the test was concluded after the occurrence of the
6th failure. While under accelerated conditions, testing ceased after observing 7 failures.
Following the PTIICS methodology, surviving items were removed after each failure, and
from the observed data, we get η0 = 2, µ0 = 7, ϑ̂ = 176.1111, and φ̂ = 49524.Therefore, the
decision is to accept the lot with an ETC of 68696.3462 units. This choice is made based on
the ASP condition ϑ̂+φ̂ > t2. Thus, we can conclude that surgical treatment can be accepted
for breast cancer patients.

6. Conclusion
While mixture distributions have wide application in everyday life, the literature lacks exten-
sive application regarding acceptance sampling plans associated with these distributions. In
this work, ASPs for the MERD under PTIICS-BR are designed under PALT. Two different
life-stress models, namely, linear and Arrhenius, are considered. For each life-stress model,
the MLE of the unknown parameters of the mixture distribution is obtained and is used for
deriving the ASPs. In both cases, optimal values of the plan parameters are obtained by
solving a nonlinear optimization problem of minimizing the ETC at given producer’s and
consumer’s risks. Here we have considered ETC since the total testing cost is random. Also,
note that the actual cost may be less than the ETC obtained here. Tables 1 and 2 present
the optimal ASP using these models for various examples. A comparative analysis of these
models is done based on the ETC and is illustrated in Table 3. The ETC derived from the
linear life-stress model proves to be lower than that of the Arrhenius model. This observation
emphasizes the cost-effectiveness of the linear model in comparison to the Arrhenius model.
The sensitivity analysis conducted on both models demonstrates that as the sample size in-
creases, the ETC also increases. Additionally, it is observed that decreasing values of both
producer’s and consumer’s risk result in an increased ETC. In addition, to demonstrate the
practical application, the ASP under the linear life-stress relation is applied to two different
real-life data sets. The first set includes cancer patients’ lifetime data, while the second set
contains failure data from communication transmitter-receivers of a single commercial air-
line. To further improve the efficiency of reliability testing, future research could extend the
proposed ASP by considering step-stress accelerated life testing to obtain data. Secondly,
an adaptive progressive Type-II censoring scheme may be considered as a future scope for
research in modeling clinical research data.

Appendix
The following steps present the algorithm used in the GA solver available in a widely used
public domain software, MATLAB.

Step 1. Initialization:

-Randomly generate an initial population of candidate solutions.
- Evaluate the fitness of each individual based on the objective function.

Step 2. Selection:

-Select individuals from the population based on their fitness (e.g., tournament selec-
tion, roulette wheel).
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-Favor individuals with better fitness for reproduction.

Step 3. Crossover (Recombination):

-Create new offspring by combining pairs of selected individuals (parents).
-Apply crossover with a certain probability to exchange information between parents.

Step 4. Mutation:

-Introduce random mutations in the offspring with a certain probability.
-This ensures diversity and prevents premature convergence to local optima.

Step 5. Fitness Evaluation:

-Evaluate the fitness of the new offspring.
-Replace the least fit individuals in the population with the new offspring.

Step 6. Termination:

- Repeat the process (selection, crossover, mutation) for a fixed number of generations
or until convergence criteria (e.g., no significant change in fitness) are met.

Solution Existence:
The GA solver provides a solution when the population converges, and the best individual
satisfies the problem’s constraints.

This algorithm summarizes how GA works in MATLAB, addressing the existence of a solu-
tion through convergence and fitness evaluation. The GA solver used to solve the nonlinear
optimization problems in this paper provides the best solution satisfying all the constraints
mentioned in the problems.
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