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Abstract

The Gumbel model is a very popular statistical model due to its wide applicability for
instance in the course of certain survival, environmental, financial or reliability studies.
In this work, we have introduced a bimodal generalization of the Gumbel distribution
that can be an alternative to model bimodal data. We derive the analytical shapes of
the corresponding probability density function and the hazard rate function and provide
graphical illustrations. Furthermore, We have discussed the properties of this density
such as mode, bimodality, moment generating function and moments. Our results were
verified using the Markov chain Monte Carlo simulation method. The maximum likelihood
method is used for parameters estimation. Finally, we also carry out an application to
real data that demonstrates the usefulness of the proposed distribution.

Keywords: Gumbel distribution, BG, MCMC.

1. Introduction

Asymmetrical models for a real-valued random variable such as the Gumbel and generalized
extreme value distributions have been extensively utilized for modeling various random phe-
nomena encountered for instance in the course of certain environmental, financial or reliability
studies.

Let Y1, Y2, . . . , Yn be a series of independent random variables with common distribution
function F , and Mn = max{Y1, Y2, . . . , Yn}. The Gumbel distribution is one of the extreme
value distributions, characterized by Fisher and Tippett (1928) as the limit distribution for
maxima. That is, if exist the normalization sequences an and bn > 0 such that P[(Mn−an)/bn]
converges to a non-degenerate distribution G, then G is an extreme value distribution. The G
distribution must be one of three types: Fréchet, Gumbel or negative Weibull. Among these
three distributions the Gumbel distribution (Gumbel 1958) is the only one with a light tail.
For this reason it can be considered as a good alternative for modeling extreme data whose
tails are not heavy.
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A random variable Y have a Gumbel distribution with location parameter µ ∈ R and scale
paramer σ > 0, denoted by Y ∼ FG(·;µ, σ), if its probability density function (PDF) and
cumulated distribution function (CDF) are given, respectively, by

fG(y;µ, σ) =
1

σ
exp

{
−
(y − µ

σ

)
− exp

[
−
(y − µ

σ

)]}
(1.1)

and

FG(y;µ, σ) = exp

{
− exp

[
−
(y − µ

σ

)]}
, y ∈ R. (1.2)

Generalizations of the Gumbel distribution have been proposed by several authors. Pin-
heiro and Ferrari (2015) carried out a comprehensive review of the generalization of Gumbel
distribution and after comparing them they conclude that some distributions suffer from over-
parameterization. Another generalization of Gumbel is the Exponentiated Gumbel Type-2
by Okorie, Akpanta, and Ohakwe (2016) and the references in Okorie, Akpanta, Ohakwe,
Chikezie, and Obi (2017) and Pinheiro and Ferrari (2015).

Despite its broad applicability in many fields the Gumbel is not suitable to model bimodal
data. Furthermore, all the models cited above are not suitable for capturing this. In this con-
text, in this paper, we propose the bimodal Gumbel (BG) distribution as an alternative model
of extreme data with more than one mode. Our approach consists of introduce bimodality in
(1.1) as Elal-Olivero (2010). Results involving bimodality in other related probabilistic models
can be found, for example, in Martinez, Achcar, Jacome, and Santos (2013), Çankaya, Bulut,
Doğru, and Arslan (2015); and more recently, in Vila, Leao, Saulo, Shahzad, and Santos-Neto
(2020b); Vila, Ferreira, Saulo, Prataviera, and Ortega (2020a); Vila and Çankaya (2021);
Vila, Saulo, and Roldan (2021); and Gómez-Déniz, Sarabia, and Caldeŕın-Ojeda (2021). The
advantage of our model in comparison to other generalizations of the Gumbel distribution is
the number of parameters and the fact that it can be used to model extreme data with one
or two modes.

This paper is organized as follows. In Section 2, we define the BG distribution. In Section
3, we provide general properties of the BG distribution including the cumulative distribution
function, hazard rate function, mode, bimodality, moment generating function and moments,
and stochastic representation. In Section 4, we provide graphical illustrations. Estimation of
the parameters by maximum likelihood is investigated in Section 5. In Section 6, we discuss
an application to real data. Some conclusions are addressed in Section 7.

2. The bimodal Gumbel model

We said that a real-valued random variable X has a bimodal Gumbel (BG) distribution with
parameters µ ∈ R, σ > 0 and δ ∈ R, denoted by X ∼ FBG(·;µ, σ, δ), if its PDF is given by

fBG(x;µ, σ, δ) =

[
(1− δx)2 + 1

]
exp

{
−
(x− µ

σ

)
− exp

[
−
(x− µ

σ

)]}
σ
[
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
] , x ∈ R, (2.1)

where γ is the Euler’s constant.

Let

Zδ = 1 + δ2σ2π
2

6
+ (δµ+ δσγ − 1)2 (2.2)

be the normalization constant of the BG distribution (2.1). Using this notation, note that
fBG(x;µ, σ, δ) = [(1− δx)2 + 1] fG(x;µ, σ)/Zδ and that fBG(x;µ, σ, 0) = fG(x;µ, σ). In other
words, we introduce bimodality in the Gumbel distribution (1.1) through of a quadratic
transformation (1− δx)2 + 1.
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The BG distribution function (2.1) is well defined, because∫ ∞
−∞

fBG(x;µ, σ, δ) dx =
1

Zδ
[1 + E(1− δY )2], Y ∼ FG(·;µ, σ)

=
1

Zδ

{
1 + δ2Var(Y ) + [δ E(Y )− 1]2

}
= 1,

where E(Y ) = µ+ σγ and Var(Y ) = σ2π2/6.

The CDF of a BG random variable X ∼ FBG(·;µ, σ, δ), defined for x ∈ R, is given by (see
Subsection 3.1 for more details)

FBG(x;µ, σ, δ) =

[
2− δµ(2− δµ)

]
exp

{
− exp

[
−
(x− µ

σ

)]}
+ δ2σ2I

(
2; exp

[
−
(x− µ

σ

)]
,+∞

)
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

+

2δ(1− δµ)

{
(x− µ) exp

{
− exp

[
−
(x− µ

σ

)]}
− σΓ

(
0, exp

[
−
(x− µ

σ

)])}
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
,

(2.3)

where Γ(a, b) is the upper incomplete gamma function and

I(k; a, b) = (−1)k
∫ b

a
lnk(v) exp(−v) dv, k ∈ N ∪ {0}, 0 6 a < b 6 +∞ (2.4)

is the incomplete moments of the random variable V ∼ FG(·; 0, 1). For k > 1, closed form
solutions for the definite integral I(k; a, b) are not available in terms of commonly used func-
tions.

From the formula in (2.3), when δ = 0, FBG(x;µ, σ, 0) = exp{− exp[−(x−µσ )]} = FG(x;µ, σ),
x ∈ R, what was known in (1.2).

Remark 1. Let X ∼ FBG(·;µ, σ, δ) and let g(·) be a real-valued Borel measurable function.
From definition of expectation and by using the PDF of the BG distribution (2.1), we have

E[g(X)] =
1

Zδ
E
[
g(Y )(1− δY )2 + g(Y )

]
=

1

Zδ

{
2E[g(Y )]− 2δE[Y g(Y )] + δ2E[Y 2g(Y )]

}
,

where Y ∼ FG(·;µ, σ) and Zδ is as in (2.2).

3. Some properties of the BG distribution

In this section, some mathematical properties as closed expression for the CDF, rate, modes,
bimodality, hazard function and moments of the BG distribution are discussed.

3.1. Cumulative distribution function

In this subsection, we derive in detail the closed expression in (2.3) for the CDF of a BG
random variable X ∼ FBG(·;µ, σ, δ).
Indeed, from Remark 1 with g(X) = 1{X6x}, we obtain

FBG(x;µ, σ, δ) =
1

Zδ

[
2FG(y;µ, σ)− 2δE

(
Y 1{Y≤x}

)
+ δ2E

(
Y 21{Y≤x}

) ]
, (3.1)
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where Y ∼ FG(·;µ, σ) and Zδ is as in 2.2.

Taking the following change of variables z = exp[−(y − µ)/σ], dz = −(z/σ)dy, y = µ −
σ ln(z), and using a binomial expansion we have

E
(
Y k1{Y≤x}

)
=

∫ +∞

exp[−(x−µ
σ

)]
[µ− σ ln(z)]k exp(−z) dz

=
k∑
i=0

(
k

i

)
(−1)iµk−iσi

∫ +∞

exp[−(x−µ
σ

)]
lni(z) exp(−z) dz

=
k∑
i=0

(
k

i

)
µk−iσi I

(
i; exp

[
−
(x− µ

σ

)]
,+∞

)
, (3.2)

where k ∈ N∪{0} and I(i; a, b) is as in (2.4). By combining (3.1) and (3.2), and by using the
relations

I(0; a,+∞) = exp(−a),

I(1; a,+∞) = − exp(−a) ln(a)− Γ(0, a),

we get formula (2.3).

3.2. Stochastic representation

Suppose Yk has a weighted Gumbel distribution with parameters µ ∈ R and σ > 0. That is,
if Y ∼ FG(·;µ, σ), by (3.2), Yk has CDF given by, for each x ∈ R and k = 0, 1, 2, . . .,

FYk(x) =
E
(
Y k1{Y≤x}

)
E(Y k)

=

k∑
i=0

(
k

i

)
µk−iσi I

(
i; exp

[
−
(x− µ

σ

)]
,+∞

)
k∑
i=0

(
k

i

)
µk−iσi I(i; 0,+∞)

, (3.3)

where I(k; a, b) is the incomplete moments defined in (2.4). Note that FY0(x) = FG(x;µ, σ).

Let W be a discrete random variable, so that W = 1 or W = 2 or W = 3, each with
probability

p1 =
2

Zδ
, p2 = −2(µ+ σγ)δ

Zδ
, p3 =

[σ2 π2

6 + (µ+ σγ)2]δ2

Zδ
,

respectively, where [δ > 0 andµ+ σγ < 0] or [δ < 0 andµ+ σγ > 0], and Zδ is as in (2.2). It
is straightforward see that p1 + p2 + p3 = 1.

Assume that

T =

3∑
k=1

1

k
Yk−1δW,kδW,l, l = 1, 2, 3,

and that W is independent of Yl, for each l = 1, 2, 3. Here δx,y is the Kronecker delta function,
i.e., this function is 1 if the variables are equal, and 0 otherwise.

Proposition 3.1. The following holds

X = WT if and only if X ∼ FBG(·;µ, σ, δ). (3.4)
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Proof. By Law of total probability and by independence, we get

P(X 6 x) = P(WT 6 x) =
3∑
l=1

P(WT 6 x|W = l)P(W = l)

=
3∑
l=1

P(Yl−1 6 x|W = l)P(W = l) =
3∑
l=1

FYl−1
(x) pl.

By using the CDF of the weighted Gumbel distribution, given in (3.3), and by definitions of
pl’s and Zδ, the above expression is

=
2

Zδ
FY0(x)− 2(µ+ σγ)δ

Zδ
FY1(x) +

[σ2 π2

6 + (µ+ σγ)2]δ2

Zδ
FY2(x)

=
2

Zδ
FG(x;µ, σ)− 2(µ+ σγ)δ

Zδ

1∑
i=0

(
1

i

)
µ1−iσi I

(
i; exp

[
−
(x− µ

σ

)]
,+∞

)
1∑
i=0

(
1

i

)
µ1−iσi I(i; 0,+∞)

+
[σ2 π2

6 + (µ+ σγ)2]δ2

Zδ

2∑
i=0

(
2

i

)
µ2−iσi I

(
i; exp

[
−
(x− µ

σ

)]
,+∞

)
2∑
i=0

(
2

i

)
µ2−iσi I(i; 0,+∞)

=

[
2− δµ(2− δµ)

]
exp

{
− exp

[
−
(x− µ

σ

)]}
+ δ2σ2I

(
2; exp

[
−
(x− µ

σ

)]
,+∞

)
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

+

2δ(1− δµ)

{
(x− µ) exp

{
− exp

[
−
(x− µ

σ

)]}
− σΓ

(
0, exp

[
−
(x− µ

σ

)])}
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

(2.3)
= FBG(x;µ, σ, δ),

where Γ(a, b) is the upper incomplete gamma function.

Then the statement in (3.4) follows.

3.3. Rate of a random variable with BG distribution

Following Klugman, Panjer, and Willmot (1998), for a continuous random variable X with
density function fX(x), the rate of a random variable is given by

τX = − lim
x→∞

d ln
[
fX(x)

]
dx

.

A simple computation shows that τBG(µ,σ,δ) = 1/σ.

In what follows we present some comparisons between the rates of random variables with
known distributions: Inverse-gamma, Log-normal, Generalized-Pareto, BWeibull (Vila and
Çankaya 2021), BGamma (Vila et al. 2020a), BG, exponential and Normal;

τInvGamma(α,σ) = τLogNorm(µ,κ2) = τGenPareto(α,σ,ζ) = τBWeibull(α<1,σ,δ) = 0

< τBG(µ,σ,δ) = τBWeibull(α=1,σ,δ) = τBGamma(α,1/σ,δ) = τexp(1/σ) = 1/σ

< τBWeibull(α>1,σ,δ) = τNormal(µ,κ2) = +∞.
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In other words, far enough out in the tail, every BG distribution looks like an exponential
distribution.

3.4. Bimodality

Proposition 3.2. A point x ∈ R is a mode of the BG density (2.1) if it is a root of the following
non-polynomial function:

g(x) =
1

σ

{
exp

[
−
(x− µ

σ

)]
− 1

}
− 2δ(1− δx)

(1− δx)2 + 1
. (3.5)

Proof. Taking the derivative of fBG(x;µ, σ) with respect to x, we have

f ′BG(x;µ, σ, δ) = fBG(x;µ, σ, δ)g(x). (3.6)

Hence, the proof follows.

Let C be the set formed for all (µ, σ, δ) ∈ R× (0,+∞)× R such that the following hold:

δ > max

{
1,

1

σ

[
exp

(µ
σ

)
− 1
]}
, (3.7)

2δ(1 + δ)

(1 + δ)2 + 1
<

1

σ

{
exp

(1 + µ

σ

)
− 1
}
, (3.8)

2δ(1− 2δ)

(1− 2δ)2 + 1
<

1

σ

{
exp

[
−
(2− µ

σ

)]
− 1

}
, (3.9)

2δ(1− 3δ)

(1− 3δ)2 + 1
>

1

σ

{
exp

[
−
(3− µ

σ

)]
− 1

}
. (3.10)

Remark 2. By considering µ = σ = 1 and δ > e− 1, we have that (µ, σ, δ) ∈ C. That is, the
set C is non-empty.

Lemma 3.3. If (µ, σ, δ) ∈ C then the function g(x) has at least three distinct real roots.

Proof. Since (µ, σ, δ) ∈ C, a simple observation in the definition (3.5) of g(x) shows that

• g(−1) =
1

σ

{
exp

(1 + µ

σ

)
− 1
}
− 2δ(1 + δ)

(1 + δ)2 + 1
> 0, because of condition (3.8);

• g(0) =
1

σ

{
exp

(µ
σ

)
− 1
}
− δ < 0, because of condition (3.7);

• g(2) =
1

σ

{
exp

[
−
(2− µ

σ

)]
− 1

}
− 2δ(1− 2δ)

(1− 2δ)2 + 1
> 0, because of condition (3.9);

• g(3) =
1

σ

{
exp

[
−
(3− µ

σ

)]
− 1

}
− 2δ(1− 3δ)

(1− 3δ)2 + 1
< 0, because of condition (3.10).

Since g(x) is a continuous real-valued function, by Intermediate Value Theorem, there are
some points r1, r2, r3, with −1 < r1 < 0, 0 < r2 < 2 and 2 < r3 < 3, so that g(ri) = 0,
i = 1, 2, 3.

Let D be the set formed for all x ∈ R such that

2δ2 (1− δx)2 − 1

(1− δx)2 + 1
< − 1

σ2
exp

[
−
(x− µ

σ

)]
where (µ, σ, δ) ∈ C.
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Remark 3. The set D is non-empty. To see this just take µ = σ = 1 and δ = 2 (> e− 1). By
Remark 2, (µ, σ, δ) ∈ C. In this case we have D = (0.132178, 0.937349).

Lemma 3.4. If (µ, σ, δ) ∈ C then the function g(x) has no root outside the interval (−1, 3).

Futhermore, if −1 < r1 < 0, 0 < r2 < 2 and 2 < r3 < 3 are the roots of g(x) found in Lemma
3.3, so that r2 ∈ D ⊂ (0, 2), then these roots are unique.

Proof. Taking the derivative of g(x) with respect to x, we have

g′(x) = − 1

σ2
exp

[
−
(x− µ

σ

)]
− 2δ2 (1− δx)2 − 1

(1− δx)2 + 1
.

Since, for x 6 0 or x > 2/δ, 2δ2 [(1− δx)2 − 1]/[(1− δx)2 + 1] > 0, we obtain

g′(x) 6 − 1

σ2
exp

[
−
(x− µ

σ

)]
< 0 for x 6 0 ou x > 2/δ.

In other words, outside of the interval (−1, 3) the function g(x) has no zeros because this one
is decreasing on (−∞, 0]∪ [2/δ,+∞) with 2/δ < 2 (by condition (3.7)). This implies that the
roots −1 < r1 < 0 and 2 < r3 < 3, of g(x), are unique in at their respective intervals. Finally,
since r2 ∈ D we have that the function g(x) crosses the abscissa axis at the only point r2.
Therefore, we conclude that the root r2 is also unique in D ⊂ (0, 2).

Remark 4. Let µ = σ = 1 and δ = 2 (> e − 1). By Remark 3, D = (0.132178, 0.937349).
Computationally it can be verified that −1 < r1 = −0.0896138 < 0, 0 < r2 = 0.389792 < 2
and 2 < r3 = 2.79117 < 3 are the only roots of g(x), with r2 ∈ D.

Theorem 1 (Bimodality). If r2 ∈ D then the BG distribution (2.1) is bimodal.

Proof. By Lemma 3.4 the function g(x) in (3.5) has exactly three roots r1, r2, r3 so that
r1 < r2 < r3. Since fBG(x;µ, σ) → 0 as x → ±∞, it follows that the BG distribution (2.1)
increases on the intervals (−∞, r1) and (r2, r3), and decreases on (r1, r2) and (r3,+∞). That
is, r1 and r3 are two maximum points and r2 is the unique minimum point. Therefore, the
bimodality of fBG(x;µ, σ) is guaranteed.

3.5. The hazard function

The survival and hazard functions, denoted by SF and HR of the BG is given by SBG(x;µ, σ, δ) =
1− FBG(x;µ, σ, δ) and HBG(x;µ, σ, δ) = fBG(x;µ, σ, δ)/[1− FBG(x;µ, σ, δ)].

Considering r1, r2, r3 the three distinct real roots, of function g(x), found in Lemma 3.3, we
state the following result.

Proposition 3.5. If r2 ∈ D then the HR HBG(x;µ, σ, δ) of the BG distribution (2.1) has the
following monotonicity properties:

1) It is increasing for each x < r1 or r2 < x < r3,

2) It is decreasing for each x ∈ D.

Proof. As a sub-product of the proof of Theorem 1, note that the density fBG(x;µ, σ, δ) is
increasing on the intervals x < r1 or r2 < x < r3. Since 1 − FBG(x;µ, σ, δ) is a decreasing
function, we have that the hazard function on x < r1 or r2 < x < r3 is the product of two
increasing and nonnegative functions, then the proof of first item follows.

By Glaser (1980), for to prove the second item, it is enough to prove that the function GX(x),
defined as

GX(x) = −
f ′BG(x;µ, σ, δ)

fBG(x;µ, σ, δ)

(3.6)
= −g(x),

is decreasing for each x ∈ D. But this is immediate since g(x) is increasing on this interval.
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3.6. Moment-generating function

Theorem 2. If X ∼ FBG(·;µ, σ, δ), t < min{0,−m/σ} and m ∈ N ∪ {0}, we have

E
[
Xm exp(tX)

]
= (−1)m+2 exp(tµ)

δ2σm+2 Γ(m+2)(1− σt) + δσm+1
[
2− δµ(m+ 2)

]
Γ(m+1)(1− σt)

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

+
exp(tµ)

∑m
i=0(−1)iσiµm−i

[
2
(
m
i

)
− 2δµ

(
m+1
i

)
+ δ2µ2

(
m+2
i

)]
Γ(i)(1− σt)

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
,

where Γ(i)(x) = diΓ(x)/dxi.

Proof. Taking g(X) = Xm exp(tX) in Remark 1,

E
[
Xm exp(tX)

]
=

1

Zδ

{
2E
[
Y m exp(t Y )

]
− 2δ E

[
Y m+1 exp(t Y )

]
+ δ2 E

[
Y m+2 exp(t Y )

]}
,

(3.11)

where Y ∼ FG(·; 0, µ, σ) and Zδ are as in (1.2) and (2.2), respectively.

Taking the change of variables z = exp[−(y − µ)/σ], dz = −(z/σ)dy, y = µ − σ ln(z), and
using a binomial expansion we get, for k = m,m+ 1,m+ 2,

E
[
Y k exp(tY )

]
=

∫ +∞

0
[µ− σ ln(z)]kz(1−σt)−1 exp(−z) dz, k ∈ N ∪ {0}

= exp(µt)
k∑
i=0

(
k

i

)
(−1)iµk−iσi

∫ +∞

0
lni(z) z(1−σt)−1 exp(−z) dz. (3.12)

We claim that∫ +∞

0
lni(z) z(1−σt)−1 exp(−z) dz = Γ(i)(1− σt), i = 0, 1, . . . , k; k = m,m+ 1,m+ 2. (3.13)

Note that, by combining (3.13), (3.12) and (3.11), the proof of theorem follows.

Indeed, since ∂jzα−1/∂αj = lnj(z) zα−1, j = 1, 2, . . . i,∫ +∞

0
lni(z) z(1−σt)−1 exp(−z) dz =

∫ +∞

0

∂j

∂(1− σt)j
[

lni−j(z) z(1−σt)−1 exp(−z)
]

dz.

By Leibniz integral rule we can interchange the derivative with the integral in the above
identity. Hence, for j = 1, 2, . . . i,∫ +∞

0
lni(z) z(1−σt)−1 exp(−z) dz =

dj

d(1− σt)j

∫ +∞

0
lni−j(z) z(1−σt)−1 exp(−z) dz.

Letting j = i, we obtain∫ +∞

0
lni(z) z(1−σt)−1 exp(−z) dz =

di

d(1− σt)i

∫ +∞

0
z(1−σt)−1 exp(−z) dz

= Γ(i)(1− σt), i = 0, 1, . . . ,

where in the last line we used the definition of gamma function, Γ(α) =
∫ +∞

0 zα−1 exp(−z) dz.
Then the claimed (3.13) follows.

Thus, this complete the proof of theorem.

By taking m = 0 in Theorem 2 we obtain a clossed expression for the moment-generating
function of BGumbel distribution.
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Corollary 3.6. If X ∼ FBG(·;µ, σ, δ) then, the moment-generating function MX(t) = E[exp(tX)]
with t < 0, is given by

MX(t) =
exp(µt)Γ(1− σt)

[
2− 2µδ + µ2δ2 + 2σδ(1− µδ)ψ(1− σt) + σ2δ2

Γ(1−σt) Γ(2)(1− σt)
]

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
,

where ψ(x) = Γ′(x)/Γ(x) is the digamma function and Γ(2)(1− σt) = d2Γ(x)/dx2.

Remark 5. Letting δ = 0 in Corollary 3.6 we obtain the known formula MY (t) = exp(µt)Γ(1−
σt), where Y

d
= X ∼ FG(·; 0, µ, σ). Note that, by a by-product of proof of Theorem 2, in this

case it is sufficient take t < 1/σ instead t < 0.

Remark 6. The characteristic function of X ∼ FBG(·;µ, σ, δ), denoted by φX(t), can be
obtained from the moment-generating function by the relation MX(t) = φX(−it).

3.7. Moments

Theorem 3. If X ∼ FBG(·;µ, σ, δ) then

E(Xk) =
δ2σk+2I(k + 2; 0,+∞)− δσk+1

[
2− δµ(k + 2)

]
I(k + 1; 0,+∞)

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

+

∑k
i=0 σ

iµk−i
[
2
(
k
i

)
− 2δµ

(
k+1
i

)
+ δ2µ2

(
k+2
i

)]
I(i; 0,+∞)

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
,

where I(i; a, b) is defined in (2.4).

Proof. From Remark 1 with g(X) = Xk, we obtain

E(Xk) =
1

Zδ

[
2E(Y k)− 2δ E(Y k+1) + δ2 E(Y k+2)

]
, (3.14)

where Y ∼ FG(·; 0, µ, σ) is as in (1.2).

By taking x −→ +∞ in (3.2), Lebesgue dominated convergence theorem gives

E(Y k) = lim
x→+∞

E
(
Y k1{Y≤x}

)
=

k∑
i=0

(
k

i

)
µk−iσi I(i; 0,+∞). (3.15)

By combining (3.14) and (3.15), the proof follows.

Corollary 3.7. If X ∼ FBG(·;µ, σ, δ) then

E(X) =
δ2σ3

[
2ζ(3) + γ3 + γπ2

2

]
− δσ2(2− 3δµ)

(
γ2 + π2

6

)
+ µ

[
2− δµ(2− δµ)

]
+ σ

[
2− δµ(4− 3δµ)

]
γ

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
,

(3.16)

E(X2) =
δ2σ4

[
8γζ(3) + γ4 + γ2π2 + 3π4

20

]
− 2δσ3(1− 2δµ)

[
2ζ(3) + γ3 + γπ2

2

]
+ µ2

[
2− δµ(2− δµ)]

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

+
2σµ

[
2− δµ(3− 2δµ)

]
γ + 2σ2

[
1− 3δµ(1− δµ)

](
γ2 + π2

6

)
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
, (3.17)

E(X3) =
δ2σ5

[
20γ2ζ(3) + 10π2ζ(3)

3 + 24ζ(5) + γ5 + 5γ3π2

3 + 3γπ4

4

]
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

+
µ3
[
2− δµ(2− δµ)

]
+ σµ2

[
6− δµ(8− 5δµ)

]
γ + 2σ2µ

[
3− δµ(6− 5δµ)

]
(γ2 + π2

6 )

1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2

+
2σ3
[
1− δµ(4− 5δµ)

][
2ζ(3) + γ3 + γπ2

2

]
− δσ4(2− 5δµ)

[
8γζ(3) + γ4 + γ2π2 + 3π4

20

]
1 + δ2σ2 π2

6 + (δµ+ δσγ − 1)2
,
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where γ is the Euler-Mascheroni constant and ζ(s) is the Riemann zeta function.

Proof. By combining Theorem 3 with the following values for the improper integral I(k; 0,+∞)
in (2.4), with k = 0, 1, 2, 3, 4 and 5,

I(0; 0,+∞) = 1,

I(1; 0,+∞) = γ,

I(2; 0,+∞) = γ2 + π2

6 ,

I(3; 0,+∞) = 2ζ(3) + γ3 + γπ2

2 ,

I(4; 0,+∞) = 8γζ(3) + γ4 + γ2π2 + 3π4

20 ,

I(5; 0,+∞) = 20γ2ζ(3) + 10π2ζ(3)
3 + 24ζ(5) + γ5 + 5γ3π2

3 + 3γπ4

4 ,

(3.18)

the proof follows.

For the variance of the BGumbel distribution

Var(X) = E(X2)−
[
E(X)

]2
, (3.19)

just replace (3.16) and (3.17) in (3.19).

Remark 7 (Standardized moments). Let X ∼ FBG(·;µ, σ, δ) with E(X) and
√

Var(X) > 0,
both finite. Newton’s binomial expansion gives

E
[
X − E(X)√

Var(X)

]n
=

(−1)n
[
E(X)

]n[
Var(X)

]n/2 n∑
k=0

(
n

k

)
(−1)−k

[
E(X)

]−k E(Xk). (3.20)

By combining (3.20), Theorem 3, identities in (3.18) and the following relation

I(6; 0,+∞) = 20γ(2γ2 + π2)ζ(3) + 40[ζ(3)]2 + 144γζ(5) + γ6 + 5γ4π2

2 + 9γ2π4

4 + 61π6

168 ,

closed formulas for skewness and kurtosis of the random variable X ∼ FBG(·;µ, σ, δ) it is
possible to obtain.

4. Graphical illustrations and simulation results

4.1. Graphical illustration

Here, the flexibility of the BG model is shown. Note that the BG model can be unimodal
or bimodal. Figures 1a and 1b show how the BG density function is influenced by the shape
parameters δ and µ, since σ is a scale parameter. Figure 1a shows that the bimodality of the
BG model is more evident the greater the absolute value of δ. The density tends to become
unimodal when the values of δ and µ are far apart. In the bimodal case, the left mode is
smaller and the opposite for the right mode as µ increases, see Figure 1b. All graphics were
generated with our bgumbel package, Brom, Otiniano, Vila, and Pereira (2021).
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(b) BG density graphs for δ = 1, σ = 2 and µ
varying as shown in the caption

Figure 1: Some examples of BG densities

4.2. Simulation results

In this section, we compare the sample mean and variance with the population mean and vari-
ance (3.16) and (3.19). In addition, we compared the cumulative distribution function given
in (2.3) with the empirical distribution. For that, we present a Markov chain Monte Carlo
(MCMC) simulation study with various sample sizes. In the MCMC simulation method
we considered the Metropolis-Hastings method as pseudo-random numbers (PRN) genera-
tor Metropolis, Rosenbluth, Rosenbluth, and Teller (1953); Hastings (1970). We chose this
method instead of the inverse transform method, because the BG cumulative distribution
(3.1) does not admit analytical inversion. To generate PRN was used the MCMCpack pack-
age (Martin, Quinn, and Park 2011) available in the R program R-Team (2020). The mean,
variance and the corresponding bias of the sample estimates were computed over 105 iterations
of MCMC. These results are shown in Tables 1. The performance of the MCMC algorithm
was tested by varying the number of iterations, n. Graphically, the convergence of the Markov
Chain is shown in Figure 2, for the first set of parameters in Table 1. For the other parameters
sets , in the Table 1, the performance of the algorithm is illustrated in Appendix A, Figures
5 - 13. The value of n varies from 1000 to 100000 for each parameters set. In all these figures
the transition probability density function (TPDF) ,defined by the MCMCpack package, is
in blue and the estacionary density in red. We can conclude that the algorithm, Brom et al.
(2021), is efficient for n greater than 100000.

Table 1: Comparison between the sample moments and population moments (n = 105)

µ σ δ sample mean E(X) Bias(mean) variance sample V ar(X) Bias (variance)

−2 1 −1 −1.0931 −1.0640 −0.0291 4.9268 5.0126 −0.0858
−1 2 −1 3.9504 4.0170 −0.0666 17.126 18.016 −0.8902
−1 2 −2 3.9901 3.9909 −0.0008 21.032 21.575 −0.5435
−2 2 −1 2.0065 1.9512 0.0553 24.104 24.592 −0.4883
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Figure 2: Transition probability density function (TPDF)(left) and transition cumulative
distribution function (TCDF)(right), varying n from 103 to 105

5. Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of
the BG distribution. LetX ∼ FBG(·;µ, σ, δ) be a random variable with PDF fBG(x; Θ) defined
in (2.1), where Θ = (µ, σ, δ). Let X1, . . . , Xn be a random sample of X and x = (x1, . . . , xn)
the corresponding observed values of the random sample X1, . . . , Xn. The log-likelihood
function for Θ = (µ, σ, δ) is given by

`(Θ;x) = −n ln(σZδ) +
n∑
i=1

{
ln
[
(1− δxi)2 + 1

]
−
(xi − µ

σ

)
− exp

[
−
(xi − µ

σ

)]}
. (5.1)

The first-order partial derivatives of Zδ are given by

∂Zδ
∂µ = 2δ

[
δ(µ+ σγ)− 1

]
;

∂Zδ
∂σ = σδπ2

3 + 2δγ
[
δ(µ+ σγ)− 1

]
;

∂Zδ
∂δ = σδπ2

3 + 2
[
δ(µ+ σγ)− 1

]
(µ+ σγ).

Then, the mle of µ, σ, δ are the solutions of the following system of equations

∂`(Θ;x)

∂µ
= − n

Zδ

∂Zδ
∂µ

+
n

σ
− 1

σ

n∑
i=1

exp
[
−
(xi − µ

σ

)]
= 0;

∂`(Θ;x)

∂σ
= − n

Zδ

∂Zδ
∂σ
− n

σ
− 1

σ2

n∑
i=1

(xi − µ)

{
1− exp

[
−
(xi − µ

σ

)]}
= 0;

∂`(Θ;x)

∂δ
= − n

Zδ

∂Zδ
∂δ
− 2

n∑
i=1

xi(1− δxi)
(1− δxi)2 + 1

= 0.

The MLEs µ̂, σ̂ and δ̂ of µ, σ and δ are defined as the values of µ̂, σ̂ and δ̂ that maximize the
log-likelihood function in (5.1). There will be, in general, no closed form for the MLE and
their obtention will need, in practice, numerical methods.

Since the second order partial derivatives of Zδ are

∂2Zδ
∂µ2

= 2δ2; ∂2Zδ
∂σ2 = δπ2

3 + 2δ2γ2;

∂2Zδ
∂δ2

= σπ2

3 + 2(µ+ σγ)2; ∂2Zδ
∂µ∂σ = ∂2Zδ

∂σ∂µ = 2δ2γ;

∂2Zδ
∂µ∂δ = ∂2Zδ

∂δ∂µ = 4δ(µ+ σγ); ∂2Zδ
∂σ∂δ = ∂2Zδ

∂δ∂σ = σπ2

3 + 4δγ(µ+ σγ);
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the second-order partial derivatives of the log-likelihood function `(Θ;x) are given by

∂2`(Θ;x)

∂µ2
= −Dµ,µ(Θ;n)− 1

σ2

n∑
i=1

exp
[
−
(xi − µ

σ

)]
;

∂2`(Θ;x)

∂σ2
= −Dσ,σ(Θ;n) +

n

σ2
+

1

σ3

n∑
i=1

(xi − µ)

{
2−

[
2−

(xi − µ
σ

)]
exp

[
−
(xi − µ

σ

)]}
;

∂2`(Θ;x)

∂δ2
= −Dδ,δ(Θ;n)− 2

n∑
i=1

x2
i

[
(1− δxi)2 − 1

][
(1− δxi)2 + 1

]2 .
Already, the second-order mixed derivatives of `(Θ;x) can be written as

∂2`(Θ;x)

∂µ∂σ
=
∂2`(Θ;x)

∂σ∂µ
= −Dµ,σ(Θ;n)− n

σ2
+

1

σ2

n∑
i=1

[
1−

(xi − µ
σ

)]
exp

[
−
(xi − µ

σ

)]
;

∂2`(Θ;x)

∂µ∂δ
=
∂2`(Θ;x)

∂δ∂µ
= −Dµ,δ(Θ;n);

∂2`(Θ;x)

∂σ∂δ
=
∂2`(Θ;x)

∂δ∂σ
= −Dσ,δ(Θ;n),

where

Du,v(Θ;n) = ∂
∂u

(
n
Zδ

∂Zδ
∂v

)
= n

Zδ

(
∂2Zδ
∂u∂v −

1
Zδ

∂Zδ
∂u

∂Zδ
∂v

)
, u, v ∈ {µ, σ, δ}. (5.2)

Thus, the elements of the Fisher information matrix IX(Θ) are defined by

[IX(Θ)]jk = E
[
∂ ln fBG(X; Θ)

∂θj

∂ ln fBG(X; Θ)

∂θk

]
,

for θj , θk ∈ {µ, σ, δ} and j, k = 1, 2, 3. Under known regularity conditions, the elements

[IX(Θ)]jk are written as E
[
− ∂2 ln fBG(X;Θ)

∂θj∂θk

]
. Hence, by considering the following notations:

F1(X) = exp
[
−
(X−µ

σ

)]
,

F2(X) =
[
1−

(X−µ
σ

)]
exp

[
−
(X−µ

σ

)]
,

F3(X) = (X − µ)
{

2−
[
2−

(X−µ
σ

)]
exp

[
−
(X−µ

σ

)]}
,

F4(X) = X2
[
(1− δX)2 − 1

]
/
[
(1− δX)2 + 1

]2
,

we get

IX(Θ) =


Dµ,µ(Θ; 1) + 1

σ2E[F1(X)] Dµ,σ(Θ; 1) + 1
σ2 − 1

σ2E[F2(X)] Dµ,δ(Θ; 1)

Dµ,σ(Θ; 1) + 1
σ2 − 1

σ2E[F2(X)] Dσ,σ(Θ; 1)− 1
σ2 − 1

σ3E[F3(X)] Dσ,δ(Θ; 1)

Dµ,δ(Θ; 1) Dσ,δ(Θ; 1) Dδ,δ(Θ; 1) + 2E[F4(X)]

,
where Du,v(Θ;n) is as in(5.2). We emphasize that, by using Theorem 2 and Corollary 3.6,
closed expressions for the expectations E[F1(X)], E[F2(X)] and E[F3(X)] can be found. Fur-
thermore, by using Theorem 3, a simple argument shows that F4(X) is an integrable random
variable.

6. Real-world data analysis

In this section, we used the BG model to fit one data set coming from daily pressure ob-
servations of the state of Mato Grosso do Sul-Brazil, during the period of the year 2015
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to 2020. The data series employed were taken from Corumbá automatic station of INMET
(Instituto Nacional de Meteorologia) at https://portal.inmet.gov.br/dadoshistoricos.
The required numerical evaluations are implemented using the R software R-Team (2020);
Hastings (1970); Martin et al. (2011). The maximum likelihood estimates of the parameters
were obtained as in Section 5, using the BGumbel package Brom et al. (2021).

For a random sample of the pressure {Xi}Tt=1, T = 1774, we fit their maximum values
by Gumbel and BG models. For this, we used the maximum block technique. That is,
we provide τ = 29 non-overlapping subsamples of length N = 60; {mi}τi=1, where mi =
max{x(i−1)N+1 . . . xiN+1}, ∀i = 1, . . . , τ = [T/N ] ([.] denotes the integer part ). We applied
Ljung – Box’s test (Trapletti 2016) for verifying the null hypothesis of serial independence
of the new sample of maxima. The test statistics did not reject the null hypothesis at the
significance level of 1, 7% for the 28 blocks of size N = 60 and the last of size 34.

The descriptive statistics of sample {mi}τi=1 and the sample centered by the mean are shown
in Table 2.

Table 2: Descriptive statistics

Distribution Mean Median Maximum Minimum Std Dev

Extreme values 1009.2 1010.0 1017.9 1001.1 4.9301
Centralized extreme values 0.0000 0.7893 8.7393 −8.0607 4.9301

For these data, we fit the BG and Gumbel models, and compare it with the bimodal normal
model defined in Gómez-Déniz et al. (2021). The parameter estimates and their corresponding
standard error estimates (SE) from the BG and Gumbel models are shown in Table 3. The
results of goodness-of-fit tests based on the Kolmogorov–Smirnov (KS) test, Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC) indicate that the BG model is
a better fit, judging on the basis of p-values and the lowest value of the AIC and BIC, see
Table 3. The Figures 3 and 4 also indicates that the adjustment of the data by the BG model
is better than the classic Gumbel model and bimodal normal.

Table 3: Parameters estimates of Gumbel, bimodal normal and BG models

Model Parameters Estimate SE ks p-value AIC BIC

µ −3.6972 0.4613
BG σ 2.4661 0.2222 0.8239 169.8228 173.8194

δ −0.4128 0.1220

Gumbel µ −2.4080 0.8667 0.6576 173.2287 175.8932
β 4.3326 0.6405

Bimodal Normal θ 4.2988 0.1890 0.2265 232.8265 235.4909
λ −0.0165 0.0441

https://portal.inmet.gov.br/dadoshistoricos
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Figure 3: On the left: centralized extreme values histogram versus fitted Gumbel, bimodal
normal and BG models. On the right: empirical cdf versus theorical cdf of Gumbel, bimodal
normal and BG models.
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7. Conclusions

In this paper, we proposed an extension to the Gumbel distribution by using a quadratic trans-
formation technique used to generate bimodal functions produced due to using the quadratic
expression, with an additional bimodality parameter which modifies the mode of the distri-
bution, composing as an alternative models for single maxima events. In this generalization,
the Gumbel distribution appears as a particular case. The advantage of proposed model is
the fact that it can be used to model extreme data with one or two modes. We provide a
mathematical treatment of the new model including the mode, bimodality, moment generat-
ing function and moments. We performed the modelling under a frequentist approach and
the estimation of the parameters was proposed using the maximum likelihood estimation.
Finally, we have performed a statistical modeling with real data by using the new proposed
model in the article. The application demonstrated the practical relevance of the new model,
which also showed the advantage of Gumbel and bimodal normal models. We hope this new
model attracts wider applications for bimodal extreme analysis. As part of future research,
we plan to explore other estimation methods for the model, such as the Bayesian approach.
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Çankaya MN, Bulut YM, Doğru FZ, Arslan O (2015). “A Bimodal Extension of the Gen-
eralized Gamma Distribution.” Revista Colombiana de Estad́ıstica, 38(2), 371–384. URL
https://doi.org/10.15446/rce.v38n2.51666.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/box.test.html.
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/box.test.html.
https://doi.org/10.1080/02331888.2020.1764560
https://doi.org/10.1080/02331888.2020.1764560
https://doi.org/10.1214/19-BJPS448
http://soche.cl/chjs/issues.html#vol12-number2-2021
http://soche.cl/chjs/issues.html#vol12-number2-2021
https://doi.org/10.1080/02664763.2021.1931822
https://doi.org/10.15446/rce.v38n2.51666


62 Bimodal Gumbel Model

Appendix

BG( μ = -1 σ = 2 δ = -1 )
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Figure 5: TPDF (left) and TCDF (right), n = 1000
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Figure 6: TPDF (left) and TCDF (right), n = 10000
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Figure 7: TPDF (left) and TCDF (right), n = 100000
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BG( μ = -1 σ = 2 δ = -2 )
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Figure 8: TPDF (left) and TCDF (right), n = 1000
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Figure 9: TPDF (left) and TCDF (right), n = 10000
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Figure 10: TPDF (left) and TCDF (right), n = 100000
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BG( μ = -2 σ = 2 δ = -1 )
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Figure 11: TPDF (left) and TCDF (right), n = 1000
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Figure 12: TPDF (left) and TCDF (right), n = 10000
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Figure 13: TPDF (left) and TCDF (right), n = 100000
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