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Editorial
This volume include five scientific papers and one book review.

The first contribution deals with multivariate multi-sample rank tests, the second con-
tribution with tests for ranking data. Both works do not only show new theory for the
proposed tests, but they also include interesting applications.

The last three contributions introduce a new distributions useful in particular areas such
as reliability, life-time analysis, finance and assurance.

Walter Krämer was recently awarded with the Bruckmann-Price of the Austrian Statis-
tical Society. His new book “Statistik für alle - Die 101 wichtigsten Begriffe anschaulich
erklärt” is reviewed by Andreas Quatember, who was itself awarded with the Bruckmann-
Price. Worth reading!

Matthias Templ
(Editor-in-Chief)

Zurich University of Applied Sciences
Rosenstrasse 3
CH–8400 Winterthur, Switzerland
E-mail: matthias.templ@gmail.com

Winterthur, 5. Januar 2017

mailto:matthias.templ@gmail.com
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The Multivariate Multisample Nonparametric Rank

Statistics for the Location Alternatives

Hidetoshi Murakami
Tokyo University of Science

Abstract

Multisample testing problems are among the most important topics in nonparametric
statistics. Various nonparametric tests have been proposed for multisample testing prob-
lems involving location parameters, and the analysis of multivariate data is important
in many scientific fields. One type of multivariate multisample testing problem based on
Jurečková-Kalina-type rank of distance is discussed in this paper. A multivariate Kruskal-
Wallis-type statistic is proposed for testing the location parameter with both equal and
unequal sample sizes. Simulations are used to compare the power of proposed nonpara-
metric statistics with the Wilks’ λ, the Pillai’s trace and the Lawley-Hotelling trace for
various population distributions.

Keywords: Jurečková-Kalina-type ranks of distances, multivariate multisample rank test,
power comparison.

1. Introduction

Testing hypotheses is one of the most important challenges in nonparametric statistics. Var-
ious nonparametric tests have been proposed for one-sample, two-sample and multisample
testing problems involving the location, scale, location-scale and other parameters. Recent
progress in computerized measurement technology has permitted the accumulation of multi-
variate data, increasing the importance of multivariate data in many scientific fields. When
we consider testing a multivariate multisample hypothesis, one of the most important statisti-
cal procedures, we naturally consider vector-valued observations. If only a marginal study of
each component of these vectors is carried out, then outliers, strongly influential points and
useful relationships among variables may not be detected. Thus, a multivariate examination
of the data is necessary. However, in many applications, the underlying distribution is not
adequately understood to assume normality or any other specific distribution, and the non-
parametric test statistic must be used. Because it is important to determine how to represent
ranks for multivariate data in nonparametric statistics, various researchers have proposed the
distances of observation for the rank tests. Jurečková and Kalina (2012) proposed a rank
test based on observation distances for two-sample problems with a discussion about the
unbiasedness of test statistics under the alternatives hypothesis.

Recently, Murakami (2015a) applied the Jurečková-Kalina rank of distance to the Ansari-
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Bradley, Lepage and Baumgartner statistics. In addition, Murakami (2015b) considered the
use of Jurečková-Kalina-type rank of distance with the Wilcoxon-type statistic. We extend
this concept of rank of distance to a multisample setting. In Section 2, we introduce multivari-
ate multisample nonparametric statistics based on Jurečková-Kalina-type rank of distance.
We consider the Kruskal-Wallis test (Gibbons and Chakraborti 2010), the multisample me-
dian test (Hájek et al. 1999), the multisample Lepage-type test (Rubĺık 2007), the Wilks’ λ
(Rencher 1998), the Pillai’s trace (Rencher 1998) and the Lawley-Hotelling trace (Rencher
1998) in this paper. In addition, we propose another type of multivariate Kruskal-Wallis test.
In Section 3, we compare the powers of the proposed test with the multivariate multisample
parametric and nonparametric tests for various distributions by using simulation studies. The
simulations include 100,000 Monte Carlo replications. Conclusions are stated in Section 4.

2. Multivariate multisample nonparametric statistics

In this section, we introduce the multivariate multisample nonparametric statistics for the
vector-valued observations. MANOVA is one of the most important types of statistical pro-
cedures in many scientific fields, especially in biometry. However, in many applications, the
underlying distribution is not adequately understood to assume normality or some other spe-
cific distribution. Additionally, if we carry out only a marginal component of the vector-valued
observation, we may not detect outliers, strongly influential points and useful relationships
among variables. Then, we require to determine how to represent ranks for the vector-valued
observation.

Let {xij ; i = 1, . . . , k, j = 1, . . . , ni} be k independent samples from p-variate populations

having continuous unknown distribution functions F
(p)
i . Under these circumstances, we are

interested in the following hypothesis:

H0 : F
(p)
1 = F

(p)
2 = · · · = F

(p)
i

H1 : not H0.

To test this hypothesis, we utilize the multivariate multisample nonparametric statistics. For
multivariate data in nonparametric statistics, it is important to determine how to represent
a rank of the vectored-value observation. Jurečková and Kalina (2012) proposed a distance
of observation for k = 2, and the proposed rank of distance was found to be invariant for a
shifted location parameter. To introduce their rank of distance, let

ζ = (ζ1, . . . , ζn1+n2
) = (x11, . . . ,x1n1 ,x21, . . . ,x2n2)

denote the pooled sample. For every fixed j and under fixed x1j , 1 ≤ j ≤ n1, they considered
the distances {`∗jt = L(x1j ,ζt); t = 1, . . . , n1 + n2, j 6= t}, where L(·, ·) denotes Euclidean
distance. Then, conditionally given x1j , the vector {`∗jt = L(x1j ,ζt); t = 1, . . . , n1, j 6= t} is a

random sample from a first population G
(p)
1 , while {`∗jt = L(x1j ,ζt); t = n1 + 1, . . . , n1 + n2}

is a random sample from a second population G
(p)
2 . Jurečková and Kalina (2012) decided to

work with the ranks of `∗jt, t = 1, . . . , n1 + n2, j 6= t.

Herein, we extend this concept of rank of distance to a multisample setting. Let

Z = (Z1, . . . ,ZN ) = (x11, . . . ,x1n1 ,x21, . . . ,x2n2 , . . . ,xk1, . . . ,xknk
)

denote the pooled sample with N = n1 + · · · + nk. We consider Jurečková-Kalina-type of
distances such that {`st = L(Zs,Zt); s, t = 1, . . . , N, s 6= t} for every fixed s. Conditionally
given as xij , the vector {`u(i,j)v(i); u(i, j) =

∑i−1
q=1 nq + j,v(i) =

∑i−1
q=1 nq + r, r = 1, . . . , ni,

r 6= j} is then a random sample based on the distribution function F
(p)
i (z|xij) = G

(p)
i , where

we define nq = 0 for i = 1. Assuming that the distribution functions G
(p)
i are continuous, the

rank of `st is denoted as

Rst = (Rs1, . . . , Rs,t−1, Rs,t+1, . . . , RsN ),



Austrian Journal of Statistics 5

where s, t = 1, . . . , N and t 6= s for fixed s. We then consider the following rank statistics:

• The Kruskal-Wallis statistic T1 (Gibbons and Chakraborti 2010):

T1 := T (p)
s =

12

N(N + 1)

k∑

i=1

ni

(
Wsi −

N + 1

2

)2

,

where

Wsi =
1

ni

ni∑

j=1

Rsu(i,j).

Exact probabilities for the Kruskal-Wallis statistic are listed in Gibbons and Chakraborti
(2010) for small sample sizes. The limiting distribution for the Kruskal-Wallis statistic
is the chi-square distribution with k − 1 degrees of freedom.

• The multisample median statistic T2 (Hájek et al. 1999):

T2 := T (p)
s = 4

k∑

i=1

1

ni

(
Asi −

ni
2

)2
,

where

Asi =

ni∑

j=1

1

2



sign




ni∑

j=1

Rsu(i,j) −
N + 1

2


+ 1



 .

Exact probabilities for the multisample median statistic are listed in Jorn and Klotz
(2002) for small sample sizes. The limiting distribution for the multisample median
statistic is the chi-square distribution with k − 1 degrees of freedom.

• The multisample Lepage-type statistic T3 (Rubĺık 2007):

T3 := T (p)
s = T1 + T4,

where

T4 := T (p)
s =

180

N(N + 1)(N2 − 4)

k∑

i=1

ni

(
Msi −

N2 − 1

12

)2

and

Msi =
1

ni

ni∑

j=1

(
Rsu(i,j) −

N + 1

2

)2

.

Exact probabilities for the multisample Lepage-type statistic are listed in Murakami
(2008) for small sample sizes. The limiting distribution for the multisample Lepage-
type statistic is the chi-square distribution with 2(k − 1) degrees of freedom.

Note that in a one-dimensional setting, the multisample median test uses less information than
the Kruskal-Wallis test does, and may therefore be less powerful. The asymptotic relative
efficiency of the multisample median test is 2/3 with respect to the Kruskal-Wallis test for
a normal distribution (e.g. Gibbons and Chakraborti 2010). The multisample version of
the Lepage statistic is preferable for location, scale and location-scale parameters. However,
Rubĺık (2007) showed that the multisample version of a combination of the Kruskal-Wallis
and multisample Mood statistics is more efficient than the multisample Lepage statistic for
shifted location, scale and location-scale parameters with various distributions.
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The statistic T
(p)
s is equally distributed for s = 1, . . . , N under the null hypothesis. Random-

ization of T
(p)
1 , . . . , T

(p)
N maintains the simple structure of the test. Thus, we obtain

Pr(T (p) = T (p)
s ) =

1

N
, s = 1, . . . , N, (1)

where the randomization in (1) is independent of the observations. For any C,

Pr(T (p) > C) =
1

N

N∑

s=1

Pr(T (p)
s > C),

and the statistic rejects H0 if T (p) > C.

Herein we suggest another multivariate Kruskal-Wallis-type test, namely V (p), as follows:

V (p) = max
1≤s≤N

T1.

3. Simulation study

We employed R software to investigate the behavior of the T1, T2 and T3 statistics in simulation
studies. Additionally, we used the Wilks’ λ, namely Wλ, the Pillai’s trace, specifically PT ,
and the Lawley-Hotelling trace, specifically LH, as a classical MANOVA test (Rencher 1998).
The simulations included 100,000 replications, and the significance level was 5%. To compare
the power of the classical MANOVA test and tests based on the multivariate nonparametric
statistics, we carried out a simulation study of different populations with various distributions.
In this paper, we have focused on the cases (n1, n2, n3) = (5, 5, 5), (15, 10, 5) and (20, 20, 20)
for p = 2 and 3 and the following distributions:

• N(µi,Σi): the multivariate normal distribution.

• t(µi,Σi, δi): the multivariate t distribution with δ degrees of freedom.

• LN(µi,Σi): the multivariate lognormal distribution.

To generate random numbers, we used the packages ”mvrnorm,” ”rmt,” and ”rlnorm.rplus” for
the multivariate normal, multivariate t and multivariate lognormal distributions, respectively.
We define a p-dimensional matrix as follows:

I(2) =

(
1 0
0 1

)
, ρ

(2)
2 =

(
1 0.2

0.2 1

)
, ρ

(2)
3 =

(
1 0.4

0.4 1

)
,

I(3) =




1 0 0
0 1 0
0 0 1


 , ρ

(3)
2 =




1 0.4 0.2
0.4 1 0.3
0.2 0.3 1


 , ρ

(3)
3 =




1 0.5 0.3
0.5 1 0.4
0.3 0.4 1


 .

In this paper, we assume µ1 = 0 and Σ1 = I(p), and we consider the following cases for the
multivariate normal, multivariate t and multivariate lognormal distributions.
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Case 1 Case 2
µ2 = 0 µ3 = 0 µ2 = 0 µ3 = 0

Σ2 = I(p) Σ3 = I(p) Σ2 = ρ
(p)
2 Σ3 = ρ

(p)
3

Case 3 Case 4
µ2 = 1.0 µ3 = 1.0 µ2 = 1.0 µ3 = 1.0

Σ2 = I(p) Σ3 = I(p) Σ2 = ρ
(p)
2 Σ3 = ρ

(p)
3

Case 5 Case 6
µ2 = 1.0 µ3 = 2.0 µ2 = 1.0 µ3 = 2.0

Σ2 = I(p) Σ3 = I(p) Σ2 = ρ
(p)
2 Σ3 = ρ

(p)
3

In the case of (n1, n2, n3) = (5, 5, 5), we used the exact critical value of the T1, T2 and T3
statistics by Gibbons and Chakraborti (2010), Jorn and Klotz (2002) and Murakami (2008),
respectively. Since it is difficult to evaluate the exact critical value of the statistic for the large
sample sizes, we estimated the critical value via a permutation approach for (n1, n2, n3) =
(15, 10, 5) and (20, 20, 20). Additionally, we apply the following method to the V (p) statistic.
Our method for estimating the critical value is as follows:

1. Construct a dataset Z by generating N integers from 1 to N (without ties) for each
dimension.

2. Calculate the statistics T1, T2, T3 and V (p).

3. Construct a permutation dataset Z∗.

4. Calculate the T1, T2, T3 and V (p) statistics from the dataset Z∗.

5. Independently repeat steps 3 and 4 B times.

6. Sort the statistics Tm(1), . . . , Tm(B) , m = 1, 2, 3 and V
(p)
(1) , . . . , V

(p)
(B).

Tm(CV ) and V
(p)
(CV ) are then the estimated critical value of the statistics, where CV = B×α%.

We simulated B = 100, 000 replications in this study.

Table 1 lists the simulation results for the multivariate normal distribution.

Table 1 shows that the classical MANOVA tests were more powerful than the multivariate
multisample nonparametric statistics. Compared with nonparametric statistics, the proposed
statistic was more efficient than the randomized nonparametric statistics were. Therefore,
the V (p) statistic was more effective than the other nonparametric statistics for parameters
associated with the multivariate normal distribution.

For a non-normal distribution, we used the multivariate t distribution with 2 degrees of
freedom, and the results are listed in Table 2.

Table 2 shows that the classical MANOVA tests did not maintain 5% significance levels
(not conservative) under the null hypothesis for unequal sample sizes. The non-conservative
test is meaningless for testing the hypothesis. Moreover, the suggested statistic was more
powerful than the parametric and nonparametric statistics. Therefore, the V (p) statistic was
more effective than the other statistics were for parameters associated with the multivariate
t distribution.

We used the multivariate lognormal distribution to simulate an asymmetrical distribution;
the results are listed in Table 3.

The results presented in Table 3 reveal the following facts: The classical MANOVA tests did
not maintain 5% significance levels (not conservative) under the null hypothesis for unequal
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Table 1: Simulated power for the multivariate normal distributions
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 2
Wλ 0.050 0.052 0.363 0.306 0.845 0.767
PT 0.050 0.053 0.352 0.294 0.820 0.740
LH 0.050 0.052 0.366 0.311 0.853 0.778
T1 0.049 0.049 0.176 0.178 0.458 0.440
T2 0.039 0.039 0.120 0.128 0.325 0.310
T3 0.050 0.051 0.133 0.134 0.354 0.338

V (2) 0.048 0.049 0.217 0.215 0.640 0.582

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 2
Wλ 0.047 0.047 0.814 0.771 0.994 0.986
PT 0.047 0.048 0.815 0.772 0.994 0.986
LH 0.048 0.049 0.820 0.778 0.994 0.987
T1 0.050 0.051 0.390 0.387 0.668 0.649
T2 0.040 0.041 0.283 0.278 0.525 0.501
T3 0.050 0.052 0.307 0.307 0.604 0.591

V (2) 0.050 0.051 0.700 0.668 0.964 0.938

Case of n1 = n2 = n3 = 20 for p = 2
Wλ 0.049 0.050 0.988 0.973 1.000 1.000
PT 0.049 0.050 0.987 0.972 1.000 1.000
LH 0.049 0.050 0.988 0.973 1.000 1.000
T1 0.050 0.051 0.552 0.564 0.876 0.866
T2 0.049 0.051 0.460 0.472 0.808 0.794
T3 0.050 0.054 0.494 0.509 0.835 0.831

V (2) 0.051 0.051 0.955 0.940 1.000 1.000

sample sizes. The V (p) statistic was the most powerful statistic for the shifted location param-
eters when the sample sizes were equal and unequal. Therefore, the V (p) statistic was more
effective than the other parametric and nonparametric statistics for parameters associated
with the multivariate lognormal distribution.

4. Concluding remarks

In this paper, we considered multivariate multisample nonparametric statistics by applying
Jurečková-Kalina-type rank of distance. Simulation studies showed that the multivariate
Kruskal-Wallis-type statistic, named V (p), was more powerful than the Kruskal-Wallis, multi-
variate multisample median and Lepage-type statistics for shifted location parameters under
the multivariate normal, t and lognormal distributions. Additionally, the proposed statistic
was more efficient than the classical MANOVA test for equal and unequal sample sizes with
non-normal distributions. As ties occur frequently in practice, in future research we should in-
vestigate the powers of multivariate multisample nonparametric statistics under multivariate
discrete distributions.
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Table 1: Continued for the multivariate normal distributions

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 3
Wλ 0.049 0.053 0.347 0.228 0.849 0.671
PT 0.049 0.053 0.338 0.228 0.778 0.608
LH 0.049 0.053 0.416 0.287 0.906 0.755
T1 0.049 0.049 0.201 0.208 0.536 0.505
T2 0.039 0.039 0.136 0.156 0.399 0.375
T3 0.050 0.051 0.151 0.152 0.428 0.392

V (3) 0.050 0.050 0.282 0.276 0.803 0.700

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 3
Wλ 0.050 0.047 0.908 0.821 0.999 0.994
PT 0.050 0.047 0.907 0.821 0.999 0.993
LH 0.050 0.048 0.909 0.823 0.999 0.994
T1 0.050 0.052 0.434 0.428 0.732 0.705
T2 0.040 0.042 0.324 0.316 0.592 0.554
T3 0.050 0.057 0.350 0.353 0.673 0.660

V (3) 0.049 0.050 0.835 0.770 0.995 0.975

Case of n1 = n2 = n3 = 20 for p = 3
Wλ 0.050 0.052 0.999 0.985 1.000 1.000
PT 0.050 0.052 0.999 0.983 1.000 1.000
LH 0.050 0.052 0.999 0.986 1.000 1.000
T1 0.049 0.053 0.585 0.600 0.917 0.907
T2 0.049 0.053 0.498 0.519 0.857 0.844
T3 0.050 0.061 0.529 0.547 0.882 0.880

V (3) 0.050 0.051 0.992 0.981 1.000 1.000
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Table 2: Simulated power for the multivariate t distribution
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 2
Wλ 0.031 0.031 0.153 0.129 0.409 0.350
PT 0.032 0.033 0.153 0.128 0.400 0.341
LH 0.031 0.031 0.152 0.129 0.413 0.352
T1 0.048 0.049 0.110 0.113 0.239 0.236
T2 0.038 0.039 0.087 0.092 0.198 0.193
T3 0.050 0.051 0.097 0.097 0.204 0.199

V (2) 0.046 0.047 0.137 0.138 0.364 0.347

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 2
Wλ 0.076 0.074 0.344 0.314 0.594 0.556
PT 0.077 0.074 0.345 0.315 0.595 0.556
LH 0.079 0.077 0.351 0.321 0.600 0.562
T1 0.050 0.050 0.223 0.224 0.402 0.393
T2 0.040 0.040 0.181 0.180 0.349 0.335
T3 0.050 0.051 0.200 0.198 0.362 0.354

V (2) 0.047 0.048 0.429 0.417 0.727 0.698

Case of n1 = n2 = n3 = 20 for p = 2
Wλ 0.034 0.034 0.470 0.406 0.854 0.805
PT 0.034 0.035 0.469 0.405 0.853 0.804
LH 0.034 0.034 0.472 0.408 0.855 0.806
T1 0.049 0.050 0.360 0.376 0.695 0.695
T2 0.049 0.050 0.333 0.353 0.674 0.673
T3 0.049 0.053 0.340 0.348 0.676 0.669

V (2) 0.050 0.050 0.758 0.730 0.996 0.992
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Table 2: Continued the multivariate t distribution

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 3
Wλ 0.027 0.028 0.149 0.097 0.435 0.304
PT 0.031 0.032 0.160 0.107 0.417 0.301
LH 0.030 0.031 0.184 0.125 0.499 0.364
T1 0.048 0.049 0.114 0.121 0.257 0.258
T2 0.038 0.039 0.090 0.103 0.225 0.223
T3 0.050 0.051 0.103 0.103 0.226 0.218

V (3) 0.048 0.047 0.150 0.155 0.414 0.394

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 3
Wλ 0.082 0.078 0.446 0.370 0.728 0.638
PT 0.082 0.079 0.446 0.370 0.728 0.638
LH 0.083 0.079 0.448 0.372 0.729 0.640
T1 0.050 0.052 0.229 0.238 0.421 0.413
T2 0.041 0.041 0.179 0.187 0.373 0.353
T3 0.050 0.054 0.222 0.225 0.396 0.386

V (3) 0.041 0.044 0.480 0.459 0.786 0.741

Case of n1 = n2 = n3 = 20 for p = 3
Wλ 0.034 0.034 0.603 0.449 0.931 0.858
PT 0.035 0.035 0.599 0.444 0.930 0.855
LH 0.034 0.034 0.607 0.454 0.932 0.860
T1 0.049 0.051 0.364 0.400 0.715 0.723
T2 0.049 0.050 0.332 0.371 0.694 0.701
T3 0.050 0.056 0.370 0.390 0.716 0.713

V (3) 0.043 0.044 0.832 0.801 0.999 0.996
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Table 3: Simulated power for the multivariate lognormal distribution
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 2
Wλ 0.031 0.031 0.159 0.125 0.522 0.400
PT 0.034 0.033 0.169 0.134 0.491 0.378
LH 0.031 0.031 0.153 0.120 0.535 0.410
T1 0.048 0.049 0.160 0.146 0.443 0.399
T2 0.038 0.040 0.115 0.110 0.345 0.301
T3 0.050 0.051 0.143 0.128 0.445 0.390

V (2) 0.044 0.045 0.188 0.170 0.580 0.504

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 2
Wλ 0.080 0.075 0.773 0.727 0.989 0.979
PT 0.081 0.075 0.773 0.728 0.989 0.979
LH 0.083 0.077 0.778 0.733 0.989 0.980
T1 0.045 0.046 0.401 0.368 0.698 0.656
T2 0.040 0.042 0.323 0.284 0.573 0.523
T3 0.050 0.051 0.461 0.407 0.850 0.797

V (2) 0.045 0.047 0.624 0.553 0.937 0.886

Case of n1 = n2 = n3 = 20 for p = 2
Wλ 0.035 0.036 0.812 0.713 0.999 0.994
PT 0.035 0.037 0.811 0.711 0.999 0.993
LH 0.035 0.036 0.814 0.715 0.999 0.994
T1 0.048 0.051 0.509 0.502 0.820 0.809
T2 0.046 0.049 0.495 0.466 0.805 0.783
T3 0.045 0.050 0.631 0.578 0.987 0.976

V (2) 0.050 0.053 0.913 0.853 1.000 1.000
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Table 3: Continued for the multivariate lognormal distribution
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 3
Wλ 0.028 0.028 0.158 0.091 0.538 0.323
PT 0.031 0.031 0.194 0.115 0.469 0.288
LH 0.033 0.033 0.187 0.113 0.633 0.405
T1 0.049 0.050 0.182 0.152 0.509 0.436
T2 0.038 0.040 0.125 0.115 0.413 0.336
T3 0.050 0.053 0.167 0.133 0.528 0.430

V (2) 0.046 0.048 0.223 0.180 0.695 0.562

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 3
Wλ 0.088 0.080 0.879 0.772 0.999 0.990
PT 0.088 0.080 0.879 0.772 0.999 0.990
LH 0.088 0.080 0.880 0.773 0.999 0.990
T1 0.050 0.053 0.471 0.402 0.761 0.708
T2 0.040 0.044 0.382 0.299 0.642 0.563
T3 0.050 0.055 0.548 0.438 0.909 0.844

V (3) 0.041 0.047 0.721 0.570 0.977 0.910

Case of n1 = n2 = n3 = 20 for p = 3
Wλ 0.036 0.038 0.919 0.733 1.000 0.996
PT 0.036 0.038 0.916 0.727 1.000 0.996
LH 0.036 0.038 0.922 0.738 1.000 0.997
T1 0.048 0.057 0.530 0.521 0.846 0.833
T2 0.046 0.055 0.535 0.489 0.839 0.812
T3 0.045 0.057 0.718 0.618 0.995 0.988

V (3) 0.043 0.049 0.958 0.823 1.000 1.000
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Abstract

In this paper, we consider different score functions in order summarize certain charac-
teristics for one and two sample ranking data sets. Our approach is flexible and is based
on embedding the nonparametric problem in a parametric framework. We make use of
the von Mises-Fisher distribution to approximate the normalizing constant in our model.
In order to gain further insight in the data, we make use of penalized likelihood to narrow
down the number of items where the rankers differ. We applied our method on various
real life data sets and we conclude that our methodology is consistent with the data.

Keywords: rankings, score function, Rao score test, Spearman, Kendall, penalized likelihood,
von Mises distribution.

1. Introduction

Ranking data occur quite frequently in practice. There are examples in sport competitions
(Deng, Han, Li, and Liu 2014), in the selection of candidates in political elections (Croon
1989; Lee and Philip 2012), in the arrangement of web-pages when using search engines
(Aslam and Montague 2001) and in flagging disease related gene in bioinformatics (DeConde,
Hawley, Falcon, Clegg, Knudsen, and Etzioni 2006) just to name a few. In all cases it is of
interest to present summaries of the data. Some of the methods include the calculation of
the average ranks. Borda counts (Baba 1986) usually sum up the rank as each item’s score
and present transformations such as ordering or averaging. There are also more sophisticated
methods which involve building models to explain the ranking data. For example, Kemeny
rankings (Mallows 1957; Kemeny and Snell 1962) are based on fitting a distance-based model
with Kendall distance and using the modal rank as a summary analogous to the mean for
numerical data. Deng et al. (2014) suggested a Bayesian approach to aggregate the observed
rankings whereas Dwork, Kumar, Naor, and Sivakumar (2001) suggested a model using a
Markov chains approach to have a summary of the word association or the web-page for
example.

Here we first introduce a parametric model for the one sample case which incorporates an
arbitrary score function. Such score functions include both the Spearman and Kendal scores.
The former focuses attention on a single item at a time whereas the latter allows for com-
parisons between pairs of items. In the era of big data, the number of items being ranked
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is usually very large. For this reason, we may apply penalized likelihood methods to focus
on those items that are particularly preferred by the rankers. The parametric model can
be extended to the two sample case whereby we now compare groups of judges. Bootstrap
methods can be particularly useful for constructing a confidence interval for the parameters
in the models.

The article is organized as follows. In Section 2 we formally introduce the parametric model
and indicate how to calculate the maximum likelihood estimates (MLE). We also obtain the
estimates using penalized likelihood (PMLE) . In Section 3, we introduce the Spearman score
function, explain its significance and then apply it to three real data sets. In Section 4 we
consider the Kendall score function, explain its significance and use it on the same data sets.
In Section 5 we consider the two sample problem and illustrate our results on two real life
data sets. We briefly summarize our results in Section 6.

2. The probability models

Neyman (1937) first proposed smooth tests for testing the null hypothesis that data come
from a uniform distribution on the interval (0, 1). The smooth alternative density proposed
by Neyman was given by

p(y, θ) = exp

{
k∑

i=1

θihi(y)−K(θ)

}

where θ
′

= (θ1, θ2, ..., θk) is a set of unknown parameters, K(θ) is the normalizing constant
and hi(y) are the Legendre orthonormal polynomials with respect to the uniform on (0, 1).
Motivated by this model, we can define a similar probability function for ranking data. Assume
there are n judges each of whom ranks t items. Let {ωj} be the set of t! possible rankings
and define the probability that X(ωj) = xj by

πj (θ) = exp
{
θ′xj −K (θ)

} 1

t!
, j = 1, ..., t!

where θ
′

= (θ1, ..., θk) is a k-dimensional vector of parameters, K (θ) is a normalizing constant.
X(ωj) is a k-dimensional vector transformed from the original ranking ωj . The transformation
rule X (ωj) = xj is defined by certain scoring function. The likelihood function is obtained
from the multinomial distribution and is proportional to

L (θ) ∼
∏

[πj (θ)]nj

where nj is the number of judges choosing ωj . Let the total sample size n =
∑t!

j=1 nj . The
log-likelihood function is then given by

l(θ) ∼
t!∑

j=1

nj
[
θ′xj −K(θ)

]

As mentioned in the introduction, when the number of items being ranked is large, the
dimension t! becomes very large. Penalized likelihood is a parametric method which helps to
narrow down the number of items to look at. The main idea is to add a penalty term in the
log likelihood function. In this paper, we consider l2 norm penalized terms and minimize this
function in order to obtain the Maximum Penalized likelihood (MPL) estimates of the vector
parameter θ:

Λ(θ, c) = −θ′



t!∑

j=1

njxj


+ nK(θ) + λ(

t∑

i=1

θ2i − c)
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for some prescribed values of the constant c. When t is large (say t ≥ 10), the exact compu-
tation of the normalizing constant K(θ) involves a summation of t! items. McCullagh (1993)
suggested using the normalizing constant from the von Mises-Fisher distribution. Following
on this suggestion, we approximate K(θ) with

K(θ) ≈ 1

t!
(2π)

t
2 I t

2
−1(‖θ‖) ‖θ‖−

t
2
+1

where ‖θ‖ is the norm of θ and Iυ(z) is the modified Bessel function of the first kind given by

Iυ(z) =
∞∑

k=0

1

Γ(k + 1)Γ(υ + k + 1)

(z
2

)2k+ν

We may now find approximately the Maximum Penalized likelihood estimation for θ after
ensuring that ‖x‖ = 1 in our model. There are several ways to minimize the target function
Λ(θ, c). In this paper, we used three methods: the BFGS Quasi-Newton method (Broyden
1970; Fletcher 1970; Goldfarb 1970; Shanno 1970),the Trust-Region-Reflective method (Cole-
man and Li 1994, 1996) and the Interior Point Algorithm (Byrd, Hribar, and Nocedal 1999;
Byrd, Gilbert, and Nocedal 2000; Waltz, Morales, Nocedal, and Orban 2006). As well, we
imposed the constraint: θ ≥ 0 on θ in order to compare the results when there is no constraint.
Differentiating with respect to θ we have

∂Λ(θ, c)

∂θ
= −

t!∑

j=1

njxj + 2λθ +
nθ

‖θ‖ ×
∂K(θ)

∂ ‖θ‖

where

∂K(θ)

∂ ‖θ‖ =
1

t!
(2π)

t
2

[
‖θ‖1− t2

(
I t

2
(‖θ‖)− 1− t

2

‖θ‖ I t2−1(‖θ‖)
)

+ (1− t

2
) ‖θ‖− t2 I t

2
−1(‖θ‖)

]

The critical points of the minimization occur at saddle points, rather than at local maxima
(or minima). For the Quasi-Newton method, the target function is the magnitude of the
gradient which is the square root of the sum of the squares of the partial derivatives instead
of the Λ(θ, c) to solve the problem. In the applications that follow, the results from the three
different methods yield the same solutions and the algorithms implemented in MATLAB
converge very fast.

Following the estimation of θ, we proceeded to apply the basic bootstrap method in order
to assess the distribution of θ. The basic idea of the bootstrap is to sample n rankings with
replacement from the data. Then we find the MLE of each bootstrap sample. Repeating this
procedure several times say 104, leads to a distribution of θ. We can draw useful inference
from the distribution θ and determine whether or not the θ′js are significantly different from
zero. Two sided confidence intervals can also be calculated. We illustrate this on real life
data.

3. Using the Spearman score function

3.1. The Spearman score function and its meaning

In this section we restrict our attention to the Spearman score function defined as:

X(ωj) =

(
ωj(1)− t+ 1

2
, ..., ωj(t)−

t+ 1

2

)
, j = 1, ..., t!

where ωj(i) is the rank given to Item i.
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Let TS be the t × t! matrix of possible values of X: TS = (X(ωj)). Taking t = 3 as an
example, let ωj be the possible rankings:

ω1 =




1
2
3


 , ω2 =




1
3
2


 , ω3 =




2
1
3


 , ω4 =




2
3
1


 , ω5 =




3
1
2


 , ω6 =




3
2
1




Then the matrix TS becomes:

TS =



−1 −1 0 0 1 1
0 1 −1 1 −1 0
1 0 1 −1 0 −1




Let πj = nj/n and let π be the column vector of πj . The first part of our likelihood function
Λ(θ, c) becomes:

−nθ′Tsπ = − n

‖x‖ ×
[
θ1 θ2 θ3

]


π5 + π6 − π1 − π2
π2 + π4 − π3 − π5
π1 + π3 − π4 − π6




We can notice that for θ1,

π5 + π6 = Pr(giving rank 3 to Item 1)

and
π1 + π2 = Pr(giving rank 1 to Item 1).

So here θ1 weights the difference in probability between giving the top rank and the lowest
rank to Item 1 (Pr(giving rank 3 to Item 1)−Pr(giving rank 1 to Item 1)). There is a similar
interpretation for θ2 and θ3. In general, the components of the matrix TS actually focus
on a special characteristic of the data, namely on the difference in weighted average of the
rankings to the t objects. The weights here are i − t+1

2 , i = 1, ..., t. The θi’s here represent
the coefficients attributed to each item.

Similarly, we can also compute the matrix of possible scores for t = 4. It can be seen that
the first row element for TSπ is −1.5 Pr(giving rank 1 to Item 1) − 0.5 Pr(giving rank 2) +
0.5 Pr(giving rank 3) + 1.5 Pr(giving rank 4). This is the weighted average of probability
giving the high rank compare with the low rank to Item 1. Notice that when t is odd, the
weight of the middle item is 0 which means that our comparison is symmetric and balanced.

3.2. Application to real data

Sutton data

For the first example, we consider the Sutton data (t = 3) analyzed by C. Sutton in her 1976
thesis on leisure preferences and attitudes on retirement of the elderly for 14 white and 13
black females in the age group 70- 79 years. Each individual was asked: with which sex do
you wish to spend your leisure? Each female was asked to rank the three responses: male(s),
female(s) or both, assigning rank 1 for the most desired and 3 for the least desired. The first
item in the ranking corresponds to “male”, the second to “female” and the third to “both”. To
illustrate the approach in the one sample case, we combined the data from the two groups as
in Table 1.

We applied our penalized likelihood in this situation and the results are shown in Table 2.

To better illustrate, we rearrange our result (unconstrained θ, c=1) and data in Table 3. It
can be seen that θ1 is the largest coefficient and Item 1 “male” shows the greatest difference
between the number of judges choosing rank 1 or rank 3 which means that the judges dislike
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Table 1: Sutton data on leisure preferences

Rankings (123) (132) (213) (231) (312) (321)

Frequencies 1 1 1 5 7 12

Table 2: Maximum penalized likelihood estimation for Sutton’s data

Choice of c θ ≥ 0 θ1 θ2 θ3 Λ(θ, c)

c=0.5
No 0.53 -0.06 -0.47 50.00

Yes 0.71 0.00 0.00 52.88

c=1
No 0.75 -0.09 -0.66 50.36

Yes 1.00 0.00 0.00 54.44

c=2
No 1.06 -0.12 -0.93 54.62

Yes 1.41 0.00 0.00 60.38

c=10
No 2.36 -0.28 -2.08 159.96

Yes 3.16 0.00 0.00 172.84

MLE
No 0.60 -0.07 -0.53 49.90

Yes 0.61 0.00 0.00 52.79

spending leisure with male the most. For Item 3“both”, the greater value of negative θ3 means
judges prefer to spend leisure with both sex the most. θ2 is close to zero and we deduce the
judges show no strong preference on Female. This is consistent with the hypothesis that
θ close to zero means randomness. To conclude, the results also show that θi weights the
difference in probability giving the top rank and the lower rank to Item i. Negative θi means
the judges prefer Item i more and positive θi means the judges are more likely to give a lower
rank to Item i.

Applying the bootstrap method on the Sutton data we plot the distribution of θ in Figure 1.
The bootstrap sample size is 104 in this case. For H0: θi = 0, we can see that θ1 and θ3 are
significantly different from 0 and θ2 is not significantly different from zero. We can also see
that the distribution of θ1 and θ2 is not completely bell shaped. This is mainly because the
sample size of the data is small. Using a traditional t-test method may be misleading in this
case.

Song data

Our second example is the Song data (t=5) from Critchlow, Fligner, and Verducci (1991).
Ninety-eight students were asked to rank 5 words, (1) score, (2) instrument, (3) solo, (4)
benediction and (5) suit, according to the association with the word “song”. Critchlow et al.
(1991) reported that the average ranks for words (1) to (5) are 2.72, 2.27, 1.60, 3.71 and 4.69
respectively. However, the available data given in Critchlow et al. (1991) is in grouped format
and the ranking of 15 students are unknown and hence discarded, resulting in 83 rankings, as
shown in Table 4.

Table 3: The Sutton data and the estimation of θ

Items Number of

judges

Action Difference θ value

Item 1 (Male):
2 choose to rank 1

-17 θ1 0.75
19 choose to rank 3

Item 2 (Female):
8 choose to rank 1

2 θ2 -0.09
6 choose to rank 3

Item 3 (Both):
17 choose to rank 1

15 θ3 -0.66
2 choose to rank 3
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Figure 1: The distribution of θ for Sutton data by bootstrap method

Table 4: Song data set

Rankings Observed frequency

(32145) 19

(23145) 10

(13245) 9

(42135) 8

(12345) 7

(31245) 6

(32154) 6

(52134) 5

(21345) 4

(24135) 3

(41235) 2

(43125) 2

(52143) 2

others 0
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Table 5: Maximum penalized likelihood estimation for Song’s data

Choice of c θ ≥ 0? θ1 θ2 θ3 θ4 θ5 Λ(θ, c)

c=0.5
No -0.07 -0.22 -0.41 0.21 0.48 -30.15

Yes 0.00 0.00 0.00 0.29 0.65 -17.81

c=1
No -0.10 -0.31 -0.58 0.30 0.69 -49.60

Yes 0.00 0.00 0.00 0.41 0.91 -32.15

c=2
No -0.15 -0.44 -0.81 0.43 0.97 -76.45

Yes 0.00 0.00 0.00 0.57 1.29 -51.76

c=10
No -0.33 -0.98 -1.82 0.96 2.17 -176.13

Yes 0.00 0.00 0.00 1.28 2.89 -120.94

MLE
No -0.49 -1.46 -2.73 1.44 3.25 -220.60

Yes 0.00 0.00 0.00 1.76 3.97 -141.12

Table 6: The Song data and the estimation of θ

Items number of judges Action Average ranks θ value

Item 1 (Score):
16 choose to rank 1

2.72 θ1 -0.10
7 choose to rank 5

Item 2 (instrument):
10 choose to rank 1

2.27 θ2 -0.31
0 choose to rank 5

Item 3 (solo):
55 choose to rank 1

1.60 θ3 -0.58
0 choose to rank 5

Item 4 (benediction):
0 choose to rank 1

3.71 θ4 0.30
6 choose to rank 5

Item 5 (suit):
0 choose to rank 1

4.69 θ5 0.69
70 choose to rank 5

We applied the penalized likelihood in this situation and the results are shown in Table 5.
We also rearranged the results (unconstrained θ, c=1) and data in Table 6. Note that for
convenience we only show the number of judges who rank the top and the lowest but ranking
2 or 4 also is involved in determining the value of θ. From the results, we can see the value
of θ successfully captures the properties of the data. θ5 is the largest positive value and most
of the judges think word “suit” is not related to the word “song”. θ3 is the largest negative
value and 55 of the 83 judges think that word “solo” is the closest to the word “song”. From
the results, we see that θi successfully weights the difference in probability giving the upper
rank and the lower rank to Item i.

We also applied our bootstrap method on the Song data and plotted the distribution of θ
in Figure 2. The bootstrap sample size is 104 in this case. For H0: θi = 0, we can see that
all the θ’s are significantly different from zero. As well, their distributions of θ are more bell
shaped in view of the larger sample size.
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Figure 2: The distribution of θ for Song data by bootstrap method

Goldberg data

Our final example is due to Goldberg (1976) data (t=10). In the data, 143 graduates were
asked to rank 10 occupations according to the degree of social prestige. These 10 occupations
are: (i) Faculty member in an academic institution (Fac), (ii) Mechanical engineer (ME), (iii)
Operation researcher (OR), (iv) Technician (Tech), (v) Section supervisor in a factory (Sup),
(vi) Owner of a company employing more than 100 workers (Own), (vii) Factory foreman
(For), (viii) Industrial engineer (IE), (ix) Manager of a production department employing
more than 100 workers (Mgr) and (x) Applied scientist (Sci). The data are given in Cohen
and Mallows (1980) and have been analyzed by many researchers.

Feigin and Cohen (1978) analyzed the Goldberg data and found three outliers due to the fact
that the corresponding graduates wrongly presented rankings in reverse order. After reversing
these 3 rankings, the average ranks received by the 10 occupations are 8.57, 4.90, 6.29, 1.90,
4.34, 8.13, 1.47, 6.27, 5.29, 7.85, with the convention that bigger rank means more prestige.
Then the preference of graduates is in the order: Fac � Own �Sci � OR � IE � Mgr � ME
� Sup � Tech � For.

We applied our penalized likelihood method and the results are shown in Table 7.

We also rearranged our results (unconstrained θ, c=1) and data in Table 8. For convenience
we only show the number of judges who rank the top and the lowest but giving other rankings
also involves in determining the value of θ. We can see that the results are consistent with
the average ranks and our preference result from θ is the also consistent with the results from
Feigin and Cohen (1978). For Item 7 “factory foreman”, 93 of 143 graduates give rank 1
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Table 7: Maximum penalized likelihood estimation for Goldberg’s data

Choice of c θ ≥ 0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 Λ(θ, c)

c=0.5
No 0.30 -0.06 0.08 -0.35 -0.11 0.25 -0.39 0.07 -0.02 0.23 -81.89

Yes 0.45 0.00 0.12 0.00 0.00 0.39 0.00 0.11 0.00 0.35 -53.50

c=1
No 0.42 -0.08 0.11 -0.49 -0.16 0.36 -0.55 0.11 -0.03 0.32 -115.80

Yes 0.64 0.00 0.16 0.00 0.00 0.55 0.00 0.16 0.00 0.49 -75.66

c=2
No 0.59 -0.11 0.15 -0.69 -0.22 0.51 -0.78 0.15 -0.04 0.45 -163.77

Yes 0.90 0.00 0.23 0.00 0.00 0.77 0.00 0.23 0.00 0.69 -107.01

c=10
No 1.32 -0.26 0.34 -1.55 -0.50 1.13 -1.73 0.33 -0.09 1.01 -366.21

Yes 2.02 0.00 0.52 0.00 0.00 1.73 0.00 0.51 0.00 1.54 -239.27

MLE
No 8.74 -1.70 2.24 -10.25 -3.31 7.48 -11.46 2.20 -0.61 6.67 -2277.02

Yes 13.03 0.00 3.34 0.00 0.00 11.17 0.00 3.28 0.00 9.95 -1447.59

which means most of them think factory foreman has the lowest social prestige and our θ7
is the lowest (that bigger rank means more prestige). For t=10, it is almost impossible to
calculate the exact value of K(θ). Our results show that the von Mises-Fisher distribution
approximation of K(θ) actually works well and can be easily used when t is large.

Table 8: The Goldberg data and the estimation of θ

Items number of judges Action Average ranks θ value

Item 1 (Fac)
0 choose to rank 1

8.57 0.42
49 choose to rank 10

Item 2 (ME)
0 choose to rank 1

4.90 -0.08
0 choose to rank 10

Item 3 (OR)
3 choose to rank 1

6.29 0.11
1 choose to rank 10

Item 4 (Tech)
45 choose to rank 1

1.90 -0.49
0 choose to rank 10

Item 5 (Sup)
0 choose to rank 1

4.34 -0.16
0 choose to rank 10

Item 6 (Own)
0 choose to rank 1

8.13 0.36
54 choose to rank 10

Item 7 (For)
93 choose to rank 1

1.47 -0.55
0 choose to rank 10

Item 8 (IE)
0 choose to rank 1

6.27 0.11
1 choose to rank 10

Item 9 (Mgr)
1 choose to rank 1

5.29 -0.03
3 choose to rank 10

Item 10 (Sci)
1 choose to rank 1

7.85 0.32
35 choose to rank 10

The bootstrap distribution of θ is exhibited in Figure 3. The bootstrap sample size is 104 in
this case. For H0: θi = 0, we see that all the θi except θ9 are significantly different from zero.
We can also see that the distribution of the θ’s are all bell shaped because the sample size is
large.
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Figure 3: The distribution of θ for Goldberg data by bootstrap method

4. Pair comparison using the Kendall score function

4.1. Kendall score function and its meaning

In this section, we re-consider the previous data sets through the lens of the Kendall score
statistic. Specifically, for the Kendall score function, theX(ωj) vector takes values(tK (ωj))qwhere

the qth element is the pair comparison between jth rank given to item m and n denoted by

(tK (ωj))q = sgn [ωj (m)− ωj (n)]

for q = (n− 1)
(
t− n

2

)
+ (m− n) , 1 ≤ n < m ≤ t . The matrix of possible values of X

becomes

TK = (tK(ω1), ..., tK(ωt!))
′

which is of dimension

(
t
2

)
× t!. And θq from 1 to

(
t
2

)
weights the pair m and n. In the case

of the Kendall score function, the θ′s focus on the comparison between pairs of items ranked
by the judges. As an example, consider once again the case t = 3. Then,

X(ω) =



sgn(ω(2)− ω(1))
sgn(ω(3)− ω(1))
sgn(ω(3)− ω(2))




where θ1 weights the comparison between Items 1 and 2, θ2 weights Items 1, 3 and θ3 Items



Austrian Journal of Statistics 25

2, 3. As well,

TK =




1 1 −1 1 −1 −1
1 1 1 −1 −1 −1
1 −1 1 −1 1 −1




When θq < 0 (for say Item i and Item j), it means that the judges prefer Item j over Item i
(µ(i) > µ(j)). When θq is close to zero, the judges have no special preference between this
pair. In the next section we apply the Kendall score function to the previous data sets.

4.2. Application to real data

Sutton data

For the first example, we consider the Sutton data (t = 3). We applied our penalized likelihood
with Kendall score function in this situation and the results are shown in Table 9.

Table 9: MPLE using Kendall score function for Sutton data

Pair Compare choice of c

Item i Item j θ c=0.5 c=1 c=2 c=10 MLE

1 2 θ1 -0.35 -0.49 -0.70 -1.56 -0.60

1 3 θ2 -0.56 -0.80 -1.13 -2.53 -0.97

2 3 θ3 -0.24 -0.34 -0.48 -1.08 -0.41

Λ(θ, c) 42.79 40.17 40.20 127.76 39.59

Table 10: Pair comparison from the Sutton data and the estimation of θ

Item i Item j number of judges Pair comparison θ

1 2
7 more prefer 1

-0.49
20 more prefer 2

1 3
3 more prefer 1

-0.80
24 more prefer 3

2 3
9 more prefer 2

-0.34
18 more prefer 3

We rearrange the Sutton data focusing on pair comparison and our results (c=1) in Table
10. First, from our estimated θ, we can find that all θ′is are negative. This is consistent
with our interpretation of θ. The judges strongly prefer Males to Both and Males to Females.
They least prefer Females to Both. We can conclude that our θ′s well represent the paired
comparisons among the judges.

Song data

As to the Song data (t=5) the results are shown in Table 11.

Since the Song data is about how much 5 words are close to the word “song”. We can
summarize the results in Table 12. We note that θ7, θ8 and θ9 all have the same value 0.29.
For these, all of the judges think Item i is closer to Item j. Once again, we conclude that θ
well represents the paired preferences among judges.

Goldberg data

For the Goldberg (1976) data (t=10) we note that a large rank means more prestige, so our
interpretation is reversed. We applied penalized likelihood with the Kendall score function in
this situation and part of the results are shown in Table 13.
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Table 11: MPLE using Kendall score function for Song data

Pair Compare choice of c

Item i Item j θ c=0.5 c=1 c=2 c=10 MLE

1 2 θ1 -0.09 -0.12 -0.17 -0.39 -0.76

1 3 θ2 -0.15 -0.21 -0.30 -0.67 -1.30

1 4 θ3 0.16 0.22 0.31 0.70 1.36

1 5 θ4 0.24 0.34 0.48 1.07 2.09

2 3 θ5 -0.16 -0.22 -0.31 -0.70 -1.36

2 4 θ6 0.25 0.36 0.51 1.13 2.21

2 5 θ7 0.29 0.41 0.57 1.28 2.51

3 4 θ8 0.29 0.41 0.57 1.28 2.51

3 5 θ9 0.29 0.41 0.57 1.28 2.51

4 5 θ10 0.23 0.33 0.46 1.04 2.03

Λ(θ, c) -125.39 -184.29 -266.92 -602.04 -973.61

Table 12: Interpretation of θ in song data. A�B means A is preferred to B, that is A is closer
to the word “Song”.

Behavior of θ Interpretation of θ

θ1, θ2 < 0 score≺instrument, solo

θ3 > 0 score�benediction, suit

θ5 < 0 instrument≺solo

θ6, θ7 > 0 instrument�benediction, suit

θ8, θ9 > 0 solo�benediction, suit

θ10 > 0 benediction�suit

Table 13: MPLE using Kendall score function for Goldberg data

Pair Compare choice of c

Item i Item j θ c=0.5 c=1 c=2 c=10 MLE

1 2 θ1 -0.13 -0.18 -0.25 -0.56 -4.09

1 3 θ2 -0.09 -0.13 -0.18 -0.40 -2.89

1 4 θ3 -0.15 -0.21 -0.29 -0.65 -4.76

1 5 θ4 -0.12 -0.17 -0.25 -0.55 -4.02

1 6 θ5 -0.02 -0.02 -0.03 -0.07 -0.50

1 7 θ6 -0.15 -0.21 -0.29 -0.65 -4.76

1 8 θ7 -0.11 -0.15 -0.21 -0.48 -3.49

1 9 θ8 -0.12 -0.17 -0.24 -0.53 -3.89

1 10 θ9 -0.03 -0.04 -0.05 -0.11 -0.83

2 3 θ10 0.06 0.09 0.12 0.28 2.03

2 4 θ11 -0.14 -0.20 -0.28 -0.63 -4.62

... ... ... ... ... ... ... ...

9 10 θ45 0.09 0.13 0.19 0.42 3.09

Λ(θ, c) -490.79 -694.06 -981.55 -2194.80 -15177.07
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Table 14: Interpretation of θ in Goldberg data. A�B means A has more prestige than B.
Underlined θi in left column means that its absolute value is bigger than 0.1. The underlined
occupation in right column means that the preference is very strong for this comparison.

Behavior of θ Interpretation of θ

θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9 < 0 Fac�ME, OR, Tech, Sup, Own, For, IE, Mgr, Sci

θ11, θ12, θ14 < 0 ME�Tech, Sup, For

θ10, θ13, θ15, θ16, θ17 > 0 ME≺OR, Own, IE, Mgr, Sci

θ18, θ19, θ21, θ22, θ23 < 0 OR�Tech, Sup, For, IE, Mgr

θ20, θ24 > 0 OR≺Own, Sci

θ27 < 0 Tech�For

θ25, θ26, θ28, θ29, θ30 > 0 Tech�Sup, Own, IE, Mgr, Sci

θ32 < 0 Sup�For

θ31, θ33, θ34, θ35 > 0 Sup≺Own, IE, Mgr, Sci

θ36, θ37, θ38, θ39 < 0 Own�For, IE, Mgr, Sci

θ40, θ41, θ42 > 0 For≺IE, Mgr, Sci

θ43 < 0 IE �Mgr

θ42 > 0 IE≺Sci

θ45 > 0 Mgr≺Sci

The Goldberg data compares occupations with more social prestige. We can also interpret the
estimated θ to get the pair comparison results. We arrange the behavior and interpretation
of θ in Table 14. In the table, the underlined θi in the left column means that its absolute
value is larger than 0.1. The underlined occupation in the column on the right means that
the preference is very strong. From the interpretation of θ, we find that the pair comparisons
make sense. To conclude, the Kendall score function provides a nice way to look at the data
by pair preference.

5. Extension to the two-sample ranking problem

5.1. Extension to two-sample ranking problems and its meaning

We may extend the approach to the two sample case. Let X1, .X2 be two independent random
variables under our model whose distributions are given respectively by:

πj (θl) = exp
{
θ′lxj −K (θl)

}
plj , j = 1, ..., t!, l = 1, 2

where θl = (θl1, ..., θlt)
′ represents the vector of parameters for population l and xj is as in

the one-sample case, a t-dimensional vector of scores. We shall use the Spearman scores here
throughout the two-sample case. Set γ = θ1 − θ2 and write

θl = µ+ blγ

for l = 1, 2 where

µ =
n1θ1 + n2θ2
n1 + n2

, b1 =
n2,

n1 + n2
, b2 = − n1

n1 + n2
.

Suppose that the observed vector of frequencies for the lth population is

nl = (nl1, ..., nlt!)
′

The logarithm of the likelihood L as a function of (µ, γ) is proportional to

log L (µ, γ) ∼
2∑

l=1

t!∑

j=1

nlj
{

(µ+ blγ)′ xj −K (θl)
}
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We may now consider penalized likelihood to determine significant components of γ which
most separate the populations. Hence, we consider minimizing with respect to the parameters
µ and γ the function:

Λ(µ, γ) = −
2∑

l=1

(µ+ blγ)
t!∑

j=1

nljxlj +
2∑

l=1

nlK(µ+ blγ) + λ(
t∑

i=1

γ2i − c)

for some prescribed values of the constant c and λ. We may continue to use the normalizing
constant from the von Mises-Fisher distribution to approximate K(θ). Differentiating we get

∂Λ(µ, γ)

∂γ
= −

2∑

l=1

bl

t!∑

j=1

nljxlj + 2λγ +

2∑

l=1

nlbl ×
∂K(θl)

∂θl

∂Λ(µ, γ)

∂µ
= −

2∑

l=1

t!∑

j=1

nljxlj +
2∑

l=1

nl ×
∂K(θl)

∂θl

where

∂K(θ)

∂θ
=

1

t!

θ

‖θ‖(2π)
t
2

[
‖θ‖1− t2

(
I t

2
(‖θ‖)− 1− t

2

‖θ‖ I t2−1(‖θ‖)
)

+ (1− t

2
) ‖θ‖− t2 I t

2
−1(‖θ‖)

]

Here γi shows the difference between the two groups with respect to their preference on Item
i. A negative value of γi means that group 1 shows more preference for Item i compared to
population 2. A positive value of γi means that group 2 shows more preference on Item i
compared to population 1. For γi close to zero, there is no difference between the two groups
on that item. As we shall see, this interpretation is consistent with the results in the real data
applications. From the definition, we know that µ is the common part of θ1 and θ2. More
specifically, µ is the weight average of θ1 and θ2 taking into account the sample sizes of the
populations.

5.2. Application to real data

Two-sample Sutton data

For the first example, we consider the Sutton data (t = 3) found in Table 15.

Table 15: Sutton data on leisure preferences (two-sample problem)

rankings (123) (132) (213) (231) (312) (321)

Frequencies for white females 0 0 1 0 7 6

Frequencies for black females 1 1 0 5 0 6

We applied penalized likelihood and the results are shown in Table 16.

Table 16: Maximum penalized likelihood estimation for the two-sample Sutton data

Choice of c γ1 γ2 γ3 µ1 µ2 µ3 Λ(µ, γ)

c=0.5 0.34 -0.57 0.24 0.59 -0.07 -0.52 46.88

c=1 0.48 -0.81 0.34 0.58 -0.06 -0.52 46.38

c=2 0.67 -1.15 0.48 0.57 -0.06 -0.51 46.46

c=10 1.50 -2.57 1.07 0.47 -0.04 -0.43 58.73

MLE 0.56 -0.95 0.40 0.58 -0.06 -0.52 46.30
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Table 17: Two-Sample Sutton data and the estimation of µ, γ

Item: No.

white

female

Diff..

for

white

No.

black

female

Diff.

for

black

Sum Action γ µ

Male
0

-13
2

-4
2 give rank 1

0.48 0.58
13 6 19 give rank 3

Female
8

8
0

-6
8 give rank 1

-0.81 -0.06
0 6 6 give rank 3

Both
6

5
11

10
17 give rank 1

0.34 -0.52
1 1 2 give rank 3

Table 18: Average rank for the game data

Average Rank Xbox PlayStation PSPortable GameCube GameBoy PC

Frequent player 2.59 2.59 3.94 4.69 5.04 2.14

Seldom player 2.86 3.17 3.64 3.88 4.24 3.21

We rearranged one of our estimation results (c=1) and the original data in Table 17. First,
it is easy to see that µ is just like the θ’s in the one-sample problem. For example, µ3 is
the smallest value and the whole population prefers Item “both” best. µ3 is largest and the
whole population mostly dislikes Item “male”. This is not surprising since we know that µ
is the common part of θ1 and θ2. For the parameter γ, we first consider Item “female”. We
see that white females prefer to spend leisure time with females (8 assign rank 1) whereas
black females do not (6 give rank 3). We find that γ2 is negative and is largest in absolute
value. There is a significant difference between the opinions with respect to Item 2 “female”.
For Item “male” and “both”, we find black females prefer them more than white females. To
conclude, the results are consistent with the interpretation of µ and γ.

Game data

For the second example, we consider the Game data (t = 6) (Fok, Paap, and Van Dijk
2012). In this data, 91 Dutch students were asked to consider buying a new platform to play
computer games. They had to rank 6 different platforms suitable to play computer games.
The 6 platforms are the X-box (360), the PlayStation (2 or 3), the Gamecube (or Wii), the
PlayStation Portable, the Gameboy or regular PC. In addition, we know the average number
of hours that each student spends on gaming each week. We separate the students into two
groups: frequent player (49 students) and seldom player (42 students). We classify a student
as a frequent player if the average number of hours that he spends on gaming each week is
larger than two. Otherwise he is classified as a seldom player

The game data is too large to exhibit here. Instead. we present the average ranks for the two
groups in Table 18.

We applied penalized likelihood in this situation and the results are shown in Table 19.

To better illustrate the estimation results and the data, we calculate the weighted average
of the observed probability of giving the high rank compared with the low rank for each
item. The weight for each rank is i − t+1

2 , i = 1, ..., t (-2.5,-1.5,-0.5,0.5,1.5,2.5) here. The
observations giving ranks close to the top and the bottom will get higher weight. A negative
weighted average means preference in this case. We summary the results in table 20. First,
for the parameter µ, there is a strong relationship with the weighted average of the total
population. For the total population, GameBoy receives the most low ranks and µ5 is the
largest, which is consistent with our interpretation of µ. Then, it can be found that the
results for γ are consistent with the trend of the difference of weighted average between two
samples. For example, for the Item “PC”, frequent players exhibits the largest difference of
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Table 19: Maximum penalized likelihood estimation for the game data

Choice of c Xbox PlayStation PSPortable GameCube GameBoy PC Λ(µ, γ)

c=0.5 γ 0.00 -0.23 0.12 0.34 0.26 -0.50 -228.28

µ -2.66 -2.16 1.01 2.74 3.94 -2.88

c=1 γ 0.09 -0.31 0.17 0.48 0.31 -0.74 -229.52

µ -2.67 -2.15 1.01 2.72 3.94 -2.84

c=2 γ 0.27 -0.41 0.24 0.66 0.32 -1.08 -230.74

µ -2.70 -2.13 0.99 2.69 3.93 -2.78

c=10 γ 1.24 -0.73 0.47 1.32 0.14 -2.44 -231.87

µ -2.84 -2.04 0.94 2.53 3.91 -2.50

MLE γ 0.96 -0.64 0.40 1.14 0.20 -2.06 -232.06

µ -2.81 -2.07 0.96 2.58 3.92 -2.58

Table 20: Weighted average of observed probability and the estimation for the game data

Weighted average of observed probability
giving the high rank compare to the low

rank

parameter

Item: Frequent
players

Seldom
players

Difference Total pop-
ulations

γ µ

Xbox -0.91 -0.64 -0.27 -0.79 0.09 -2.67

PlayStation -0.91 -0.33 -0.57 -0.64 -0.31 -2.15

PSPortable 0.44 0.14 0.30 0.30 0.17 1.01

GameCube 1.19 0.38 0.81 0.82 0.48 2.72

GameBoy 1.54 0.74 0.80 1.17 0.31 3.94

PC -1.36 -0.29 -1.07 -0.86 -0.74 -2.84

opinion with seldom players and the γ5 has the largest absolute value among γ. To conclude,
our application on Game data also shows that our methodology is consistent with the data.

6. Conclusion

In this paper, we considered both the Spearman and Kendall score functions in the one or
two sample problems as a way to summarize ranking data. A parametric model was formu-
lated and then we applied penalized likelihood on the original parametric model to narrow
down the items being ranked. We used the von Mises-Fisher distribution to approximate
the normalizing constant and then determined the MLE estimates in several examples. This
estimation procedure is fast and simple. In all cases, the estimation is shown to be consistent
with the data. Our methodology was applied on various popular ranking data sets.

Acknowledgments

This research was supported by a discovery grant from the Natural Sciences and Engineering
Research Council of Canada OGP0009068. As well, the research of Hang Xu and Mayer Alvo
was also supported by a grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No.17303515).

References

Aslam Ja, Montague M (2001). “Models for Metasearch.” in Proceedings of the 24th Annual



Austrian Journal of Statistics 31

International Acm Sigir Conference on Research and Development in Information Retrieval,
Pp. 276–284. Acm.

Baba Y (1986). “Graphical Analysis of Rank Data.” Behaviormetrika, 19, 1–15.

Broyden CG (1970). “The Convergence of a Class of Double-rank Minimization Algorithms
1. General Considerations.” IMA Journal of Applied Mathematics, 6(1), 76–90.

Byrd RH, Gilbert JC, Nocedal J (2000). “A Trust Region Method Based on Interior Point
Techniques For Nonlinear Programming.” Mathematical Programming, 89(1), 149–185.

Byrd RH, Hribar ME, Nocedal J (1999). “An Interior Point Algorithm for Large-scale Non-
linear Programming.” SIAM Journal on Optimization, 9(4), 877–900.

Cohen A, Mallows C (1980). “Analysis of Ranking Data.” Technical memorandum, AT&T
Bell Laboratories, Murray Hill, N.J.

Coleman T, Li Y (1994). “On the Convergence of Reflective Newton Methods for Large-scale
Nonlinear Minimization Subject to Bounds vol. 67.” Ithaca, NY, USA: Cornell University.

Coleman TF, Li Y (1996). “An Interior Trust Region Approach for Nonlinear Minimization
Subject to Bounds.” SIAM Journal on Optimization, 6(2), 418–445.

Critchlow DE, Fligner MA, Verducci JS (1991). “Probability Models on Rankings.” Journal
of Mathematical Psychology, 35(3), 294–318.

Croon MA (1989). “Latent Class Models for the Analysis of Rankings.” Advances in Psychol-
ogy, 60, 99–121.

DeConde RP, Hawley S, Falcon S, Clegg N, Knudsen B, Etzioni R (2006). “Combining Results
of Microarray Experiments: a Rank Aggregation Approach.” Statistical Applications in
Genetics and Molecular Biology, 5(1).

Deng K, Han S, Li KJ, Liu JS (2014). “Bayesian Aggregation of Order-based Rank Data.”
Journal of the American Statistical Association, 109(507), 1023–1039.

Dwork C, Kumar R, Naor M, Sivakumar D (2001). “Rank Aggregation Methods for the
Web.” In Proceedings of the 10th International Conference on World Wide Web, pp. 613–
622. ACM.

Feigin PD, Cohen A (1978). “On a Model for Concordance Between Judges.” Journal of the
Royal Statistical Society Series B, 40, 203–213.

Fletcher R (1970). “A New Approach to Variable Metric Algorithms.” The Computer Journal,
13(3), 317–322.

Fok D, Paap R, Van Dijk B (2012). “A Rank-Ordered Logit Model With Unobserved Hetero-
geneity In Ranking Capabilities.” Journal of Applied Econometrics, 27(5), 831–846.

Goldfarb D (1970). “A Family of Variable-metric Methods Derived by Variational Means.”
Mathematics of Computation, 24(109), 23–26.

Kemeny JG, Snell JL (1962). Mathematical Models in the Social Sciences, volume 9. Ginn
New York.

Lee PH, Philip L (2012). “Mixtures of Weighted Distance-based Models for Ranking Data
With Applications in Political Studies.” Computational Statistics & Data Analysis, 56(8),
2486–2500.

Mallows CL (1957). “Non-null Ranking Models. I.” Biometrika, 44, 114–130.



32 Score Functions and Penalized Likelihood for Ranking Data

McCullagh P (1993). “Models on Spheres and Models for Permutations.” In MA Fligner,
JS Verducci (eds.), Probability Models and Statistical Analyses for Ranking Data, pp. 278–
283. Springer-Verlag.

Neyman J (1937). “Smooth Test for Goodness of Fit.” Skandinavisk Aktuarietidskrift, 20,
149–199.

Shanno DF (1970). “Conditioning of Quasi-newton Methods for Function Minimization.”
Mathematics of Computation, 24(111), 647–656.

Waltz RA, Morales JL, Nocedal J, Orban D (2006). “An Interior Algorithm for Nonlinear
Optimization That Combines Line Search and Trust Region Steps.” Mathematical Pro-
gramming, 107(3), 391–408.

Affiliation:

Mayer Alvo
Department of Mathematics and Statistics
University of Ottawa
585 King Edward Ave, Ottawa, ON K1N 6N5, Canada
E-mail: malvo@uOttawa.ca
URL: http://science.uottawa.ca/mathstat/en/people/alvo-mayer

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 46 Submitted: 2015-10-08
February 2017 Accepted: 2016-01-19



AJS

Austrian Journal of Statistics
February 2017, Volume 46, 33–39.

http://www.ajs.or.at/

doi:10.17713/ajs.v46i1.139

A New Extended Burr XII Distribution

Indranil Ghosh∗

University of North Carolina Wilmington
Marcelo Bourguignon

Universidade do Rio Grande do Norte

Abstract

In this paper, we propose a new lifetime distribution, namely the extended Burr XII
distribution (using the technique as mentioned in Cordeiro et al. (2015)). We derive some
basic properties of the new distribution and provide a Monte Carlo simulation study to
evaluate the maximum likelihood estimates of model parameters. For illustrative purposes,
two real life data sets have been considered as an application of the proposed model.

Keywords: Burr XII distribution, estimation, half logistic family of distributions.

1. Introduction

The armory of statistical distributions is truly illimitable. New distributions are being un-
earthed literally on a weekly basis elicited by either theoretical considerations or by pressing
practical applications or both. However, in various spheres of applied areas, for example, sur-
vival data analysis, finance and risk modeling, insurance, modeling rare events and biology, it
has become imperative to develop an extended class of classical distributions to enhance its
flexibility in modeling real life data that appears to have high degree of skewness and kurto-
sis. In the last few years, new classes of distributions were defined by extending the Weibull
distribution to cope with bathtub shaped failure rates. Mudholkar and Srivastava (1993)
and Mudholkar et al. (1996) pioneered and studied the exponentiated Weibull distribution to
analyze bathtub failure data. A good review of some of these extended models is presented
in Pham and Lai (2007).

In this paper, we consider the technique of mixing two absolutely continuous distributions.
We consider here the particular case of the general Type I half logistic family of distribu-
tions, studied by Cordeiro et al. (2015). The cumulative distribution function (cdf) and the
probability density function (pdf) is given by

F (x;λ, ξ) =

∫ − log[1−G(x;ξ)]

0

2λ e−λt

(1 + e−λt)2
dt =

1− [1−G(x; ξ)]λ

1 + [1−G(x; ξ)]λ
,

where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and λ > 0 is an additional
shape parameter. Also, the corresponding pdf will be

f(x;λ, ξ) =
2λ g(x; ξ) [1−G(x; ξ)]λ−1
{

1 + [1−G(x; ξ)]λ
}2 .
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Next, if we consider the baseline distribution as G(x) = 1−(1+xc)−1 (Burr XII distribution),
then, the pdf and the cdf for a extended Burr XII distribution with parameters c and λ are
respectively,

f(x;λ, c) =
2 c λ xc−1(1 + xc)λ−1

[1 + (1 + xc)λ]
2 , x > 0, c > 0, (1)

and

F (x;λ, c) = 1− 2

1 + (1 + xc)λ
. (2)

If a random variable X has the density as in (1), then we say that X follows Extended
Burr XII (henceforth EBXII in short) distribution with parameters c and λ. One significant
usefulness of Equation (1) is its ability to analyze skewed data that can not be properly fitted
by its parent distributions. Furthermore, it permits greater flexibility in its tails and can
be widely applied in many areas of reliability and biology. The proposed distribution has
only two parameters and the density and the cumulative distribution functions of the new
distribution are simple, i.e., the EBXII distribution is in fact very tractable. We mention here
an important fact that our derived model, although bears the same name as in Shao et al.
(2004) and Mudholkar et al. (1996), who alternatively called this distribution as generalized
Weibull, is completely different from all of them in terms of the genesis of the model and
subsequently its stochastic properties.

The rest of the paper is organized as follows. In Section 2, we discuss briefly some properties of
the extended Burr XII (henceforth EBXII) distribution. These include reliability parameter
and order statistics. In Section 3, we discuss the likelihood inference for the EBXII and
conduct a simulation study for specific choices of the model parameters. In Section 4, we
illustrate the applicability of the EBXII with two data sets and compared with the rival Burr
XII distribution. Finally, in Section 5, we provide some concluding remarks.

2. Properties of the extended Burr XII distribution

In this section, we consider some properties of the EBXII distribution, such as the reliability
parameter and order statistics. Hereafter, the random variable X following Equation (2) with
parameters c and λ is denoted by X ∼ EBXII(c, λ).

The reliability parameter R is defined as R = P (X > Y ), where X and Y are independent
random variables. If X and Y are two continuous and independent random variables with
the cdfs F1(x) and F2(y) and their pdfs f1(x) and f2(y) respectively. Then the reliability
parameter R can be written as

R = P (X > Y ) =

∫ ∞

−∞
F2(t)f1(t)dt.

Theorem 1. Suppose that X ∼ EBXII(c, λ1) and Y ∼ EBXII(c, λ2), and they are
independent. Then

P (X > Y ) = 1− 4B

(
λ2
λ1

+ 1, 1− λ2
λ1

)
.

Proof: From (1) and (2), we have

P (X > Y ) =

∫ ∞

0

[
1− 2

1 + (1 + tc)λ2

]{
2 c λ tc−1(1 + tc)λ1−1

[1 + (1 + tc)λ1 ]
2

}
dt

= 1− 4

∫ ∞

1
u−2(u− 1)

λ2
λ1 du, on substitution u = 1 + (1 + tc)λ1

= 1− 4B

(
1 +

λ2
λ1
, 1− λ2

λ1

)
.
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Now, we will consider the expression for the general r-th order statistic and the large sample
distribution of the sample minimum and the sample maximum when a random sample of size
n are drawn from the EBXII distribution. The density function of the r-th order statistic,
Xr:n, for a random sample of size n drawn from (1) is given by

fXr:n(x) =
f(x)

B(r, n− r + 1)

r−1∑

j=0

(−1)j
(
r − 1

j

)
[1− F (x)]n−r+j I(0 < x <∞).

Thus the pdf of Xr:n can be alternatively written as

fr:n(x) =
1

B(r, n− r + 1)

r−1∑

j=0

(−1)j
(
r − 1

j

)
2n−r+j+1cλxc−1(1 + xc)λ−1

[1 + (1 + xc)λ]
2+n−r+j I(0 < x <∞).

In order to derive the asymptotic distribution of the sample minimaX1:n, we consider Theorem
8.3.6 of Arnold et al. (2008). Observe that, since F−1(0) = 0, it follows from the theorem that
the asymptotic distribution of the sample minima X1:n is not of Fréchet type. The asymptotic
distribution of X1:n will be of Weibull type with parameter δ > 0 if

lim
ε→0+

F (εx)

F (ε)
= xδ, for all x > 0.

By using L’Hôpital’s rule, it follows that

lim
ε→0+

F (εx)

F (ε)
= x lim

ε→0+

f(εx)

f(ε)
= x lim

ε→0+

2cλ(εx)c−1(1+(εx)c)λ−1

(1+(1+(εx)c)λ)
2

2cλεc−1(1+xc)λ−1

(1+(1+εc)λ)
2

= xc lim
ε→0+

(1+(εx)c)λ−1

(1+(1+(εx)c)λ)
2

(1+εc)λ−1

(1+(1+εc)λ)
2

.

Hence,

lim
ε→0+

F (εx)

F (ε)
= xc.

Hence we obtain that the asymptotic distribution of the sample minima X1:n is of the Weibull
type with shape parameter c. The asymptotic distribution of the sample maxima Xn:n, can
be viewed as Fn(x), where Fn(x) = 1− F1(−x), where F1(.) is the cdf of X1:n.

3. Maximum likelihood estimation

In this section, we address the parameter estimation of the EBXII(c, λ) under the classical
set up. Let x1, x2, · · · , xn be a random sample of size n drawn from the density in (1). The
log-likelihood function is given by

` = n log(2 c λ) + (c− 1)

n∑

i=1

log(xi) + (λ− 1)

n∑

i=1

log (1 + xci )− 2

n∑

i=1

log
[
1 + (1 + xci )

λ
]
.

(3)

The derivatives of (3) with respect to c and λ are given by

∂

∂c
` =

n

c
+

n∑

i=1

log(xi) +
n∑

i=1

xci (1 + xci )
−1 log(xi)

{
(λ− 1)− 2λ (1 + xci )

λ [1 + (1 + xci )
λ]−1

}
.

(4)

∂

∂λ
` =

n

λ
+

n∑

i=1

log(1 + xci )− 2
n∑

i=1

[1 + (1 + xci )
λ]−1 (1 + xci )

λ log(1 + xci ). (5)
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The MLE ĉ and λ̂ are obtained by setting (4) and (5) to zero and solving them simultaneously.

Next, a small Monte Carlo simulation experiment is conducted to evaluate the maximum
likelihood estimation of the EBXII distribution parameters. We set the sample size at n =
50, 100, 200, 400 and 800. The Monte Carlo simulation experiments are performed using the R
programming language; see http://www.r-project.org. All results were obtained from 10,000
Monte Carlo replications and the simulations were carried out using the R programming
language; see http://www.r-project.org.

Table 1 reports the empirical mean and the mean squared error (in parentheses) of the cor-
responding estimator. From this table, note that, as the sample size increases, the empirical
bias and mean squared error decrease in all the cases analyzed, as expected.

Table 1: Empirical means and mean squared errors (in parentheses).

c λ ĉ λ̂

n = 50

0.5 0.5 0.5495 (0.0465) 0.4911 (0.0204)
1.5 0.5 1.6357 (0.2732) 0.4839 (0.0448)
0.5 1.5 0.5179 (0.0058) 1.5051 (0.0469)
1.5 1.5 1.5442 (0.0583) 1.5067 (0.0557)

n = 100

0.5 0.5 0.5188 (0.0082) 0.4968 (0.0096)
1.5 0.5 1.5609 (0.0824) 0.4937 (0.0181)
0.5 1.5 0.5075 (0.0026) 1.5021 (0.0234)
1.5 1.5 1.5210 (0.0264) 1.5017 (0.0269)

n = 200

0.5 0.5 0.5096 (0.0035) 0.4985 (0.0036)
1.5 0.5 1.5308 (0.0359) 0.4931 (0.0173)
0.5 1.5 0.5041 (0.0013) 1.4999 (0.0117)
1.5 1.5 1.5101 (0.0107) 1.5030 (0.0110)

n = 400

0.5 0.5 0.5049 (0.0016) 0.4989 (0.0018)
1.5 0.5 1.5145 (0.0162) 0.4976 (0.0058)
0.5 1.5 0.5020 (0.0006) 1.5007 (0.0054)
1.5 1.5 1.5066 (0.0054) 1.5001 (0.0054)

n = 800

0.5 0.5 0.5023 (0.0008) 0.4995 (0.0009)
1.5 0.5 1.5066 (0.0076) 0.4993 (0.0023)
0.5 1.5 0.5010 (0.0003) 1.5003 (0.0027)
1.5 1.5 1.5037 (0.0027) 1.4996 (0.0027)

4. Applications

For illustrative purposes, we consider two data sets and compare with the Burr XII (BXII)
distribution. For each data set, we estimate the unknown parameters of each distribution
by the maximum-likelihood method (as discussed in Section 3) and all the computations
were done using the subroutine NLMixed of the SAS software. We obtain the values of
the Akaike information criterion (AIC), Bayesian information criterion (BIC) and consistent
Akaike information criterion (CAIC). First, we describe the three data sets:

• Data set I: The first example consist of thirty successive values of March precipitation (in
inches) in Minneapolis/St Paul (Hinkley 1977). The data are: 0.77, 1.74, 0.81, 1.2, 1.95, 1.2,
0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
4.75, 2.48, 0.96, 1.89, 0.9, 2.05.
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• Data set II: In the second data set, we consider vinyl chloride data obtained from clean
upgradient monitoring wells in mg/L; this data set was used for Bhaumik et al. (2009). The
data are: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7,
2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2.

Tables 2 and 3 provides some descriptive statistics and the MLEs (with corresponding stan-
dard errors in parentheses) of these two data sets. Since the values of the AIC, BIC and
CAIC are smaller for the EBXII distribution compared with those values of the BXII model,
this new distribution seems to be a very competitive model for these data.

Table 2: Descriptive statistics for the two data sets.

n Min. Q1 Q2 Mean Q3 Max. Var.

Set I 30 0.320 0.915 1.470 1.675 2.088 4.750 1.0012
Set II 34 0.100 0.500 1.150 1.879 2.475 8.0 3.8126

Table 3: MLEs of the model parameters with corresponding SE’s (given in parentheses) for
the two data sets and the corresponding AIC, CAIC and BIC statistics.

Set I ĉ λ̂ k̂ AIC BIC CAIC

EBXII 2.8689 0.8811 − 82.4 85.2 82.8
(0.5977) (0.1979) (−)

BXII 3.2555 − 0.5770 84.5 87.3 85.0
(0.6455) (−) (0.1371)

Set II ĉ λ̂ k̂ AIC BIC CAIC

EBXII 1.3457 1.3837 − 115.4 118.5 115.8
(0.2405) (0.2405) (−)

BXII 1.5621 − 0.9305 116.2 119.2 116.5
(0.2479) (−) (0.1791)

Plots of the pdf of the EBXII and BXII fitted models to these data are displayed in Figure
1. They indicate that the EBXII distribution is superior to the BXII distribution in terms
of model fitting. Based on these plots, we conclude that the EBXII distribution provides a
better fit to these data than the BXII model.

5. Concluding remarks

There has been a growing interest among statisticians and applied researchers in developing
flexible lifetime models for the betterment of modeling survival data. In this paper, we
introduce a two parameter extended Burr XII distribution which is obtained by considering
a Burr XII distribution as the baseline cdf in the Cordeiro et al. (2015) model. We study
some of its statistical and mathematical properties. Parameter estimation is approached by
maximum likelihood. The usefulness of the new distribution is illustrated in an analysis of
two real data sets. We hope that the proposed extended model will invite wider applications
in survival analysis.
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Abstract

We define and study a new generalization of the Fréchet distribution called the beta
exponential Fréchet distribution. The new model includes thirty two special models.
Some of its mathematical properties, including explicit expressions for the ordinary and
incomplete moments, quantile and generating functions, mean residual life, mean inactiv-
ity time, order statistics and entropies are derived. The method of maximum likelihood
is proposed to estimate the model parameters. A small simulation study is also reported.
Two real data sets are applied to illustrate the flexibility of the proposed model compared
with some nested and non-nested models.

Keywords: generating function, maximum likelihood, entropy, Fréchet distribution, beta ex-
ponential–G family.

1. Introduction

In the past few decades, many generators have been proposed by extending some useful sta-
tistical distributions. Such generated families of distributions have been extensively used for
modeling and analyzing lifetime data in many applied sciences such as reliability, engineering,
actuarial sciences, demography, economics, hydrology, biological studies, insurance, medicine
and finance, among others. However, there still remain many real world phenomena involving
data, which do not follow any of the classical statistical distributions.

The Fréchet distribution was proposed to model extreme events such as annually maximum
one-day rainfalls and river discharges by Fréchet (1924). This distribution has found wide
application in extreme value theory. Further details about the Fréchet distribution can be
found in Kotz and Nadarajah (2000).

Some extensions of the Fréchet distribution are available in the literature, such as the ex-
ponentiated Fréchet (EFr) (Nadarajah and Kotz, 2003), beta Fréchet (BFr) (Nadarajah and
Gupta, 2004 and Barreto-Souza et al., 2011), transmuted Fréchet (TFr) (Mahmoud and Man-
douh, 2013), gamma extended Fréchet (GEFr) (Silva et al., 2013), Marshall-Olkin Fréchet
(Krishna et al., 2013), transmuted exponentiated Fréchet (TEFr) (Elbatal et al., 2014), Ku-
maraswamy Fréchet (Kw-Fr) (Mead and Abd-Eltawab, 2014), transmuted Marshall-Olkin
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Fréchet (TMOFr) (Afify et al., 2015a) and Weibull Fréchet (WFr) (Afify et al., 2016).

The cumulative distribution function (cdf) and probability density function (pdf) of the
Fréchet (Fr) distribution are, respectively, given by (for x > 0)

GFr(x; θ, β) = e−( θx)
β

and gFr(x; θ, β) = βθβx−β−1e−( θx)
β

, (1)

where θ > 0 is a scale parameter and β > 0 is a shape parameter, respectively.

The aim of this paper is to provide another extension of the Fréchet model using the Beta
exponential-G (BEx-G) family of distributions proposed by Alzaatreh et al. (2013). So, we
propose the new beta exponential Fréchet (BExFr for short) distribution by adding three extra
shape parameters to the Fréchet distribution. The objective of this work is to study some
mathematical properties of the five-parameter BExFr model with the hope that it will attract
wider applications in reliability, engineering and other areas of research.

For an arbitrary baseline cdf G(x), Alzaatreh et al. (2013) defined the BEx-G family of
distributions by the cdf and pdf

F (x; a, b, λ) =
1

B (a, b)
B
(

1− (1−G(x))λ ; a, b
)

(2)

and

f(x; a, b, λ) =
λg (x)

B(a, b)
[1−G (x)]λb−1

{
1− [1−G (x)]λ

}a−1
, (3)

respectively, where g(x) = dG(x)/dx and a, b and λ are three extra positive shape parameters,
B (z; a, b) =

∫ z
0 t

a−1 (1− t)b−1 dt is the incomplete beta function, B (a, b) = Γ (a) Γ (b) /Γ (a+ b)
and Γ (.) is the gamma function. Clearly, when a = b = λ = 1, we obtain the baseline distri-
bution. If X is a random variable with pdf (3), we write X ∼ BEx-G(a, b, λ). An attractive
feature of this model is that these parameters can afford greater control over the weights in
both tails and in its center.

Next, we consider the Fr model in order to define the new distribution by taking G(x) in (2)
to be the cdf in (1) of the Fr distribution. Then, the cdf, say F (x) = F (x; a, b, λ, β, θ), of the
BExFr distribution (for x > 0) reduces to

F (x) =
1

B (a, b)
B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)
. (4)

The corresponding pdf follows by inserting (1) in equation (3)

f (x) =
λβθβ

B(a, b)
x−β−1 e−( θx)

β
[
1− e−( θx)

β
]λb−1

{
1−

[
1− e−( θx)

β
]λ}a−1

. (5)

Henceforth, X ∼BExFr(a, b, λ, β, θ) denotes a random variable having density function (5).

The survival function (sf) and hrf of X are, respectively, given by

S(x) = 1− 1

B(a, b)
B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)

and

h(x) =

λβθβx−β−1 e−( θx)
β
[
1− e−( θx)

β
]λb−1

{
1−

[
1− e−( θx)

β
]λ}a−1

{
B(a, b)−B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)} .

The BExFr distribution appears to have the ability to model failure rate models which are
quite common in reliability and biological studies. Furthermore, a possible application of the
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BExFr distribution could be in modeling ordinal data as a latent response models. Ordinal
data are commonly used in many areas of application, some examples being the quality of an
item or service or performance (poor, fair, good, very good or excellent), seriousness of a defect
(minor, major, critical), taste of food (too mild, just right, too spicy) and extent of agreement
(strongly disagree, disagree, neutral, agree, strongly agree). Many techniques are available for
analyzing stochastic shifts in ordinal data; for a review see Agresti (1984). However, serious
difficulties arise when inferences are desired on both location and dispersion effects; see Nair
(1986) and Hamada and Wu (1990) and the accompanying discussions. The main cause of
difficulty in separating the location effects from dispersion effects when the data are ordinal
is that the number of categories is usually small (between 3 and 10). Therefore, when the
location parameter is pushed to the limit (either too high or too low), most of the data fall in
the extreme category giving a false impression of reduced variance. A common approach to the
analysis of ordinal data is to assume a continuous latent response distribution that is observed
through windows of ordered intervals with fixed, but unknown cutpoints. This approach is
implicit in the proportional odds model (McCullagh, 1980), which can be derived from an
underlying logistic response distribution and in other generalized linear models (McCullagh
and Nelder, 1989). These models are typically based on the assumption of a symmetric
continuous latent response having an infinite domain.

To resolve these difficulties, we propose the BExFr distribution as a model for the latent
variable. The following two properties of the beta distribution make it especially suitable for
modeling ordinal data:

• The BExFr distribution has an infinite domain.

• The BExFr distribution can flexibly model a wide variety of shapes including a bell-
shape (symmetric or skewed), U-shape and J-shape.

The BExFr distribution is a very flexible model having several special cases. It contains 32
sub-models listed in Table 1. The BExFr includes some important sub-models, namely: the
beta exponential inverse Rayleigh (BExIR), beta exponential inverse exponential (BExIEx),
beta Fréchet (BFr), beta inverse Rayleigh (BIR), beta inverse exponential (BIEx), exponenti-
ated exponential Fréchet (EExFr), exponentiated exponential inverse Rayleigh (EExIR), ex-
ponentiated exponential inverse exponential (EExIEx), beta exponential generalized inverse
Weibull (BExGIW) and beta exponential generalized inverse Rayleigh (BExGIR) distribu-
tions. Figure 1 displays some plots of the BExFr density for some values of the parameters
a, b, λ, β and θ. Further, plots of the hrf of the new distribution are shown in Figure 2.

We provide a comprehensive description of some mathematical properties of the BExFr dis-
tribution. The paper is outlined as follows. In Section 2, we derive useful representations for
the pdf and cdf of the BExFr. Some mathematical properties including the quantile function
(qf), ordinary and incomplete moments, moment generating function (mgf), Rényi, Shannon
and q-entropies, mean residual life (MRL) and mean inactivity time (MIT) are discussed in
Section 3. In section 4, we consider order statistics for a random sample of size n drawn from
the BExFr distribution. Certain characterizations are presented in Section 5. In Section 6, we
obtain the maximum likelihood estimates (MLEs) of the model parameters. Section 7 deals
with a small simulation study. In Section 8, the potentiality of the new model is illustrated
by means of two applications to two real data sets. Finally, in Section 9, we provide some
concluding remarks.

2. Mixture representation

In this section, we derive mixture representations for the pdf and cdf of X. In order to obtain
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Figure 1: The plots of BExFr density function.

a simple form for the BExFr pdf, we expand (5) using the power series

(1− z)b−1 =

∞∑

j=0

(−1)j Γ (b)

j! Γ (b− j)z
j , |z| < 1, b > 0. (6)

Using expansion (6) in equation (5) and after some algebra, the pdf of X can be written as

f (x) =
λβθβ

B(a, b)
x−β−1 e−( θx)

β
∞∑

j=0

(−1)j Γ (a)

j! Γ (a− j)

[
1− e−( θx)

β
]λ(b+j)−1

︸ ︷︷ ︸
A

.

By applying (6) in the quantity A, the last equation becomes

f (x) =

∞∑

k=0

υkβ (k + 1) θβx−β−1e−(k+1)( θx)
β

, (7)

υk =
∞∑

j=0

(−1)j+k λΓ (a) Γ (λ (b+ j))

j! (k + 1)B(a, b)Γ (a− j) Γ (λ (b+ j)− k)
.

Equation (7) can be rewritten as

f (x) =
∞∑

k=0

υk hk+1 (x) , (8)

where hk+1 (x) is the Fréchet pdf with shape parameter β and scale parameter θ (k + 1)1/β.
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Reduced Parameters
Model θ β a b λ Author
BExIR − 2 − − − New
BExIEx − 1 − − − New

BFr − − − − 1 Nadarajah and Gupta (2004)
BIR − 2 − − 1 –
BIEx − 1 − − 1 –

EExFr − − 1 − − New
EExIR − 2 1 − − New
EExIEx − 1 1 − − New

EFr − − 1 − 1 Nadarajah and Kotz (2003)
EIR − 2 1 − 1 –
EIEx − 1 1 − 1 –
ExFr − − 1 1 − New
ExIR − 2 1 1 − New
ExIEx − 1 1 1 − New

Fr − − 1 1 1 Fréchet (1924)
IR − 2 1 1 1 Trayer (1964)
IEx − 1 1 1 1 Keller and Kamath (1982)

BExGIW qc1/β − − − − New

BExGIR qc1/2 2 − − − New
BExGIEx qc 1 − − − New

BGIW qc1/β − − − 1 Baharith et al. (2014)

BGIR qc1/2 2 − − 1 –
BGIEx qc 1 − − 1 –

EExGIW qc1/β − 1 − − New

EExGIR qc1/2 2 1 − − New
EExGIEx qc 1 1 − − New

EGIW qc1/β − 1 − 1 –

EGIR qc1/2 2 1 − 1 –
EGIEx qc 1 1 − 1 –

GIW qc1/β − 1 1 1 de Gusmao et al. (2011)

GIR qc1/2 2 1 1 1 –
GIEx qc 1 1 1 1 –

Table 1: Sub-models of the BExFr distribution.

Equation (8) reveals that the BExFr density function can be expressed as a mixture of Fréchet
densities. So, several of its structural properties can be derived from those of the Fréchet
distribution.

By integrating (8), we obtain

F (x) =

∞∑

k=0

υkHk+1 (x) ,

where Hk+1 (x) is the cdf of the Fréchet model with shape parameter β and scale parameter

θ (k + 1)1/β.

3. Mathematical properties

Established algebraic expansions to determine some structural quantities of the BExFr dis-
tribution can be more efficient than computing those directly by numerical integration of its
density function.

Let X and Y be two random variables. X is said to be stochastically greater than or equal
to Y, denoted by X >

st
Y if P (X > x) ≥ P (Y > x) for all x in the support set of X.
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Figure 2: The hrf plots for the BExFr model.

Theorem 1. Suppose X ∼ BExFr(a, b, λ1, β1, θ1) and Y ∼ BExFr(a, b, λ2, β2, θ2). If β1 < β2,
θ1 > θ2 and λ1 < λ2 Then X >

st
Y , for integer values of β1 and β2.

Proof. At first, we consider the following:

Ix(a, b) =

∫ x
0 u

a−1(1− u)b−1du

B(a, b)
.

Next, note that the incomplete beta function Betax(a, b) is an increasing function of x for
fixed a and b. For any real number x ∈ (0,∞), β1 < β2, θ1 > θ2 and λ1 < λ2, we have

[
1− e−

(
θ1
x

)β1]λ1
>

[
1− e−

(
θ2
x

)β2]λ2

This implies that I
1−e

−
(
θ1
x

)β1


λ1 (a, b) ≤ I

1−e
−
(
θ2
x

)β2


λ2 (a, b). Equivalently, it implies that

P (X > x) ≥ P (Y > x) and this completes the proof. �

Note: For fractional choices of λ1, λ2, β1, β2, the reverse of the theorem will be observed.

Corollary 1. From Theorem 1, we conjecture the following:

• For increasing θ, and β and λ decreasing, the hrf will exhibit DFR.
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• For decreasing θ, and β and λ increasing, the hrf will exhibit IFR.

3.1. Quantile function

Let Qa,b (u) be the beta qf with parameters a and b. The qf of the BExFr distribution, say
x = Q(u), is given by

Q(u) = θ
{
− ln

[
1− [1−Qa,b (u)]1/λ

]}−1/β
, 0 < u < 1.

This scheme is useful to generate BFr random variates because of the existence of fast genera-
tors for beta random variables in most statistical packages, i.e. if V is a beta random variable
with parameters a and b, then

X = θ
{
− ln

[
1− (1− V )1/λ

]}−1/β

follows the BExFr distribution.

3.2. Moments

Henceforth, let Z be a random variable having the Fréchet distribution (1) with parameters
θ and β. For r < β, the rth ordinary and incomplete moments of Z are, respectively, given
by

µ′r = θr Γ(1− r/β) and ϕr(t) = θrγ(1− r/β, (θ/t)β) ,

where γ (s, t) =
∫ t

0 x
s−1 e−xdx is the lower incomplete gamma function.

Then, the rth moment of X, say µ′r, can be expressed as

µ′r = θr
∞∑

k=0

υk (k + 1)r/β Γ(1− r/β). (9)

Setting r = 1 in (9), we have the mean of X.

Using the relation between the central and non-central moments, we obtain the nth central
moment of X, say µn, as follows

µn = θr
n∑

r=0

∞∑

k=0

(
n

r

)
υk
(
−µ′1

)n−r
(k + 1)r/β Γ(1− r/β).

The skewness and kurtosis measures can be determined from the central moments using well-
known relationships.

3.3. Moment generating function

First, we provide the generating function of the Fréchet model as discussed by Afify et al.
(2016). Setting y = x−1, we can write the mgf of Z as

M(t; θ, β) = βθβ
∫ ∞

0
e
t
y yβ−1 e−(θy)βdy.

After expanding e
t
y , we can write

M(t; θ, β) = βθβ
∫ ∞

0

∞∑

m=0

tm

m!
yβ−m−1 e−(θy)βdy

=
∞∑

m=0

θm tm

m!
Γ

(
β −m
β

)
,
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where the gamma function is well-defined for any non-integer β.

Consider the Wright generalized hypergeometric function defined by

pΨq

[ (
γ1, A1

)
, . . . ,

(
γp, Ap

)
(
β1, B1

)
, . . . ,

(
βq, Bq

) ; x

]
=

∞∑

n=0

p∏

j=1

Γ (γj +Aj n)

q∏

j=1

Γ (βj +Bj n)

xn

n!
.

Then, we can write M(t; θ, β) as

M(t; θ, β) = 1Ψ0

[ (
1,−β−1

)

− ; θ t

]
.

Combining expressions (8) and the last equation, we obtain the mgf of X, say M(t), as

M(t) =
∞∑

k=0

υk 1Ψ0

[ (
1,−β−1

)

− ; θ(k + 1)1/β t

]
.

3.4. Incomplete moments

The nth incomplete moment, say ϑn(t) of the BExFr model is given by ϑn(t) =
∫ t

0 x
n f(x)dx.

From equation (8), we can write

ϑn(t) =
∞∑

k=0

υk

∫ t

0
xn hk+1(x).

Using the lower incomplete gamma function, we obtain (for n < β)

ϑn(t) =
∞∑

k=0

υk θ
n (k + 1)n/βγ

(
1− n

β
, (k + 1)

(
θ

t

)β)
. (10)

The important application of the first incomplete moment is related to the Bonferroni and
Lorenz curves. These curves are very useful in economics, reliability, demography, insurance
and medicine.

Further, the amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. The mean deviations about the mean and
about the median of X can be expressed as δµ (X) =

∫∞
0 |X − µ′1| f(x)dx = 2µ′1F (µ′1) −

2ϑ1(µ′1) and δM (X) =
∫∞

0 |X −M | f(x)dx = µ′1 − 2ϑ1(M), respectively, where µ′1 = E(X)
comes from (11), F (µ′1) is simply calculated from (5), ϑ1(µ′1) is the first incomplete moment
and M is the median of X.

3.5. Mean residual life and mean inactivity time

The MRL has many applications in biomedical sciences, life insurance, maintenance and
product quality control, economics and social studies, demography and product technology
(see Lai and Xie, 2006). Guess and Proschan (1988) gave an extensive coverage of possible
applications of the mean residual life. The MRL (or the life expectancy at age t) represents
the expected additional life length for a unit, which is alive at age t.

The MRL is given by
mX (t) = E (X − t | X > t) , t > 0.

Then, the MRL of X can be obtained as

mX (t) = [1− ϑ1 (t)] /R(t)− t, (11)
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where ϑ1 (t) is the first incomplete moment of X and by setting n = 1 in equation (10), we
obtain

ϑ1(t) =
∞∑

k=0

υk θ (k + 1)1/βγ

(
1− 1

β
, (k + 1)

(
θ

t

)β)
. (12)

By substituting (12) in equation (11), we obtain

mX (t) =
θ

R(t)

∞∑

k=0

υk (k + 1)1/βγ

(
1− 1

β
, (k + 1)

(
θ

t

)β)
− t.

The MIT represents the waiting time elapsed since the failure of an item on condition that
this failure had occurred in (0, t). The MIT of X is defined (for t > 0) by MX (t) =
E (t−X | X ≤ t).
The MIT of X is given by

MX (t) = t− [ϕ1 (t) /F (t)] . (13)

By inserting (12) in equation (13), we obtain the MIT of X as

MX (t) = t− θ

F (t)

∞∑

k=0

υk (k + 1)1/βγ

(
1− 1

β
, (k + 1)

(
θ

t

)β)
.

3.6. Entropies

The Rényi entropy of a random variableX represents a measure of variation of the uncertainty.
The Rényi entropy is defined by

Iq (x) =
1

1− q log

∫ ∞

−∞
f q (x) dx, q > 0 and q 6= 1.

From equation (5), we can write

f q (x) =

(
λβθβ

B(a, b)

)q
x−q(β+1)e−q(

θ
x)
β
[
1− e−( θx)

β
]q(λb−1)

×
{

1−
[
1− e−( θx)

β
]λ}q(a−1)

.

Applying the power series (6) to the last equation and after some simplifications, we can write

f q (x) = βqθqβ
∞∑

k=0

ωk x
−q(β+1)e−(k+q)( θx)

β

,

where

ωk =
∞∑

j=0

(−1)j+k λqΓ (q (λb− 1) + 1) Γ (λ (bq + j)− q + 1)

j! k! [B(a, b)]q Γ (q (λb− 1)− j + 1) Γ (λ (bq + j)− q − k + 1)
.

Then, the Rényi entropy of X is given by

Iq (x) =
1

1− q log


β

qθqβ
∞∑

k=0

ωk

∫ ∞

0
x−q(β+1)e−(k+q)( θx)

β

dx

︸ ︷︷ ︸
I


 .

Then,

I =
θ1−q(β+1)

β
(k + q)−s/β Γ

(
s

β

)
,
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where s = q (β + 1)− 1.

Now, we can write the Rényi entropy of X as

Iq (x) =
1

1− q log

{ ∞∑

k=0

ωk

(
β

θ

)q−1

(k + q)−s/β Γ

(
s

β

)}
. (14)

The q-entropy, say Hq(x), is defined by

Hq(x) =
1

q − 1
log [1− Iq (x)] ,

where

Iq (x) =

∫

<
f q (x) dx, q > 0 and q 6= 1.

From equation (14), we obtain

Hq(f) =
1

q − 1
log

{
1−

∞∑

k=0

ωk

(
β

θ

)q−1

(k + q)−s/β Γ

(
s

β

)}
.

The Shannon entropy, say Esh, of a random variable X is defined by

Esh = E {− [log f (x)]} .

It is a special case of the Rényi entropy when q ↑ 1. So, based on equation (8), we can write

Esh = −
{

log

[ ∞∑

k=0

υk E (Yk+1)

]}
,

where Yk+1 ∼Fr(θ(k + 1)1/β, β). But E (Yk+1) = θ (k + 1)1/β Γ(1− 1/β), so the Esh of X is
given by

Esh = −
{

log

[ ∞∑

k=0

υk θ (k + 1)1/β Γ(1− 1

β
)

]}
.

4. Order statistics

In this section we consider the expression for the general r-th order statistic and the large
sample distribution of the sample minimum and the sample maximum when a random sample
of size n are drawn from the BExFr(a, b, λ, β, θ) distribution. The density function of the rth
order statistic, Xr:n, for a random sample of size n drawn from (5), is given by

fXr:n(x) =
1

B(r, n− r + 1)
(F (x))r−1(1− F (x))n−rf(x).

Then the rth order statistic of X is given by

fXr:n(x) =
1

B(r, n− r + 1)
f(x)

n−r∑

j=0

(−1)j
(
n− r
j

)
I(0 < x < 1)

×




B

(
1−

(
1− e−( θx)

β
)λ

; a, b

)

B (a, b)




r−1+j

.

Using the series expression for the incomplete beta function:
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Ix (a, b, ) =
B (x, a, b)

B(a, b)
=

a+b−1∑

k=a

xk(1− x)a+b−1−k,

the pdf of Xr:n can be written as

fr:n(x) =
f(x)

B(r, n− r + 1)

n−r∑

j=0

a+b−1∑

k=a

(−1)j
(
n− r
j

)

×




a+b−1∑

k=a

[
1−

(
1− e−( θx)

β
)λ]k (

1− e−( θx)
β
)λ(a+b−1−k)





r−1+j

=
f(x)

B(r, n− r + 1)

n−r∑

j=0

a+b−1∑

k1=a

· · ·
a+b−1∑

kr−1+j=a

(−1)j+sk
(
n− r
j

)

× Beta(sk + a, (r − 1 + j)(a+ 2b− 1)− sk)
Beta(a, b)

pk

× f (x|sk + a, (r − 1 + j)(a+ 2b− 1)− sk), λ, β, θ) , (15)

where sk =

r−1+j∑

i=1

ki and pk =

r−1+j∏

i=1

(
a+ b− 1

ki

)
.

Also, f (x|sk + a, (r − 1 + j)(a+ 2b− 1)− sk), λ, β, θ) is the density of a BExFr distribution
with parameters sk + a, (r − 1 + j)(a+ 2b− 1)− sk), λ, β, θ respectively.

From (15), it is interesting to note that the pdf of the rth order statistic Xr:n can be expressed
as an finite sums of the BExFr pdf ’s. However, if a and b are not integers, then the sums
will terminate at ∞. Note that, using moments expression, one can easily get an expression
for the general mth order moment for the order statistics.

5. Characterizations

This section deals with various characterizations of BExFr distribution. These characteriza-
tions are based on: (i) a simple relationship between two truncated moments; (ii) the hazard
function. It should be mentioned that for characterization (i) the cdf need no have a closed
form. We believe, due to the nature of the cdf of BExFr, there may not be other possible
characterizations than the ones presented in this section.

5.1. Characterizations based on two truncated moments

In this subsection we present characterizations of BExFr distribution in terms of a simple
relationship between two truncated moments. Our first characterization employs a theorem
due to Glänzel (1987), see Theorem 1 below. Note that the result holds also when the interval
H is not closed. It should also be mentioned that this characterization is stable in the sense
of weak convergence.

Theorem 2. Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for
some d < e (d = −∞, e =∞ might as well be allowed). Let X : Ω→ H be a continuous
random variable with the distribution function F and let g and h be two real functions defined
on H such that

E [g (X) | X ≥ x] = E [h (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that g, h ∈ C1 (H), η ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that
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the equation hη = g has no real solution in the interior of H. Then F is uniquely determined
by the functions g, h and η, particularly

F (x) =

∫ x

a
C

∣∣∣∣
η′ (u)

η (u)h (u)− g (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ h
η h − g and C is the

normalization constant, such that
∫
H dF = 1.

Proposition 1. Let X : Ω→ (0,∞) be a continuous random variable and let

h (x) =

[
1−

(
1− e−( θx)

β
)λ]1−a

and g (x) = h (x)

(
1− e−( θx)

β
)
forx > 0.

The random variable X belongs to BExFr family (5) if and only if the function η defined in
Theorem 2 has the form

η (x) =
λb

λb+ 1

(
1− e−( θx)

β
)
, x > 0.

Proof. Let X be a random variable with density (5), then

(1− F (x))E [h (x) | X ≥ x] =
1

bB (a, b)

(
1− e−( θx)

β
)λb

, x > 0

and

(1− F (x))E [g (x) | X ≥ x] =
λ

(λb+ 1)B (a, b)

(
1− e−( θx)

β
)λb+1

, x > 0,

and finally

η (x)h (x)− g (x) = h (x)
1

bB (a, b)

(
1− e−( θx)

β
){
− 1

λb+ 1

}
< 0 for x > 0.

Conversely, if η is given as above, then

s′ (x) =
η′ (x)h (x)

η (x)h (x)− g (x)
=
λbβx−(β+1)e−( θx)

β

1− e−( θx)
β , x > 0,

and hence

s (x) = − ln

{(
1− e−( θx)

β
)λb}

, x > 0.

Now, in view of Theorem 2, X has density (5).

Corollary 2. Let X : Ω → (0,∞) be a continuous random variable and let h (x) be as
in Proposition 1. The pdf of X is (5) if and only if there exist functions g and η defined in
Theorem 2 satisfying the differential equation

η′ (x)h (x)

η (x)h (x)− g (x)
=
λbβx−(β+1)e−( θx)

β

1− e−( θx)
β , x > 0. (16)

The general solution of the differential equation in Corollary 2 is
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η (x) =

[
1− e−( θx)

β
]−λb


−

∫ λbβe−( θx)
β
[
1− e−( θx)

β
]λb−1

h (x)xβ+1
g (x) dx+D


 ,

where D is a constant. Note that a set of functions satisfying the differential equation (16)
is given in Proposition 1 with D = 0. Clearly, there are other triplets (h, g, η) satisfying the
conditions of Theorem 2.

5.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F ,
satisfies the first order differential equation

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x). (17)

For many univariate continuous distributions, this is the only characterization available in
terms of the hazard function. The following characterization establish a non-trivial charac-
terization for BExFr distribution in terms of the hazard function when a = 1, which is not of
the trivial form given in (17).

Proposition 2. Let X : Ω→ (0,∞) be a continuous random variable. Then for a = 1, the
pdf of X is (5) if and only if its hazard function hF (x) satisfies the differential equation

h′F (x) + (β + 1)x−1hF (x) = λbβ2θ2βx−2(β+1)e−( θx)
β
(

1− e−( θx)
β
)−2

= λbβθβx−(β+1) d

dx

{(
1− e−( θx)

β
)−1

}
. (2)

Proof. If X has pdf (5), then clearly (18) holds. Now, if (18) holds, then

d

dx

{
xβ+1hF (x)

}
= λbβθβ

d

dx

{(
1− e−( θx)

β
)−1

}
,

or, equivalently,

hF (x) =
λbβθβx−(β+1)e−( θx)

β

1− e−( θx)
β .

Integrating the above equation from 0 to x, we obtain

1− F (x) =

(
1− e−( θx)

β
)λb

, x ≥ 0.

6. Maximum likelihood estimation

In this section, we consider the estimation of the parameters of the BExFr model by the
maximum likelihood. Consider the random sample X1, . . . , Xn of size n from this distribution.
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The log-likelihood function for the parameter vector ϕ = (a, b, λ, β, θ)ᵀ, say `(ϕ), is given by

`(ϕ) = n [log λ+ log β + β log θ − logB(a, b)]− (β + 1)
n∑

i=1

log (xi)

−
n∑

i=1

(
θ

xi

)β
+ (λb− 1)

n∑

i=1

log (si) + (a− 1)
n∑

i=1

log
(

1− sλi
)
,

where si = 1− e−
(
θ
xi

)β
.

This equation can be maximized either directly by using the R (optim function), MATH-CAD
program, SAS (PROC NLMIXED) or by solving the nonlinear equations obtained by differentiat-

ing the log-likelihood. Therefore, the score vector is U (ϕ) = ∂`
∂ϕ =

(
∂`
∂a ,

∂`
∂b ,

∂`
∂λ ,

∂`
∂β ,

∂`
∂θ

)ᵀ
.

∂`

∂a
= n [ψ (a+ b)− ψ (a)] +

n∑

i=1

log
(

1− sλi
)
,

∂`

∂b
= n [ψ (a+ b)− ψ (b)] + λ

n∑

i=1

log (si) ,

∂`

∂λ
=
n

λ
+ b

n∑

i=1

log (si)− (a− 1)

n∑

i=1

sλi log (si)

1− sλi

∂`

∂β
=

n

β
+ n log θ −

n∑

i=1

log (xi)−
n∑

i=1

(
θ

xi

)β
log

(
θ

xi

)

+ (λb− 1)
n∑

i=1

zi
si
− λ (a− 1)

n∑

i=1

zis
λ−1
i

1− sλi

and

∂`

∂θ
=

nβ

θ
− β

θ

n∑

i=1

(
θ

xi

)β
− βλ (a− 1)

θ

n∑

i=1

(
θ
xi

)β
sλ−1
i

1− sλi

+
β (λb− 1)

θ

n∑

i=1

1

si

(
θ

xi

)β
e
−
(
θ
xi

)β
,

where zi =
(
θ
xi

)β
e
−
(
θ
xi

)β
log
(
θ
xi

)
and ψ (.) is the digamma function which is the derivative

of log Γ (.), where Γ (.) is the gamma function.

We can obtain the estimates of the unknown parameters by setting the score vector to zero,
U(ϕ̂) = 0. Solving these equations simultaneously yields the MLEs ϕ̂ = ( â, b̂, λ̂, β̂, θ̂)ᵀ of
ϕ = (a, b, λ, β, θ)ᵀ. These equations cannot be solved analytically and statistical software
can be used to solve them numerically by means of iterative techniques such as the Newton-
Raphson algorithm. For the new distribution all the second-order derivatives exist.

For interval estimation of the model parameters, we require the 5 × 5 observed information
matrix J (ϕ) = {Jrs} (for r, s = a, b, λ, β, θ) . Under standard regularity conditions, the mul-
tivariate normal N5(0, J(ϕ̂)−1) distribution can be used to construct approximate confidence
intervals for the model parameters. Here, J(ϕ̂) is the total observed information matrix eval-
uated at ϕ̂. Based on this multivariate normal approximation, the approximate 100(1− φ)%
confidence intervals for a, b, λ, β and θ can be determined by the usual way.
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7. Simulation

In this section, we consider the maximum likelihood estimation of parameters for the two
models derived in the preceding sections. The maximum likelihood estimators can be obtained
by direct maximization of the likelihood functions given earlier. Here, we maximized the log-
likelihood function using SAS PROC NLMIXED. For each maximization, the SAS PROC NLMIXED

function was executed for a wide range of initial values, and the maximum likelihood estimates
were determined as the ones that corresponds to the largest of the maxima.

To illustrate the feasibility of the suggested estimation strategy, a small simulation study was
undertaken. The simulation study was carried out for one representative set of parameters
(λ, β, θ, a, b) =(1.6, 2.3, 1.2, 1.8, 0.9) and the process was repeated 30000 times. Three different
sample sizes n = 50, 100 and 200 were considered. The bias (actual-estimate) and the standard
deviation of the parameter estimates for the maximum likelihood estimates were determined
from this simulation study and are presented in Table 2.

Table 2. Bias and standard deviation of the parameter estimates.

Parameter Sample size (n=50) Sample size (n=100) Sample size (n=200)

λ 0.1108(0.5382) 0.0614(0.2345) 0.0437(0.1139)

β 0.1678(0.4628) -0.1321(0.1894) 0.0672(0.0933)

θ 0.0268(0.4321) 0.1483(0.2467) 0.0946(0.1264)

a 0.0825(0.0667) 0.0779(0.0627) 0.0621(0.0358)

b 0.127(0.2368) 0.0651(0.0789) 0.0317(0.0223)

The figures in Table 2 indicate that the estimates are quite stable and, more important, are
close to the true values for the these sample sizes. Furthermore, as the sample size increases,
the SEs decreases as expected.

8. Applications

In this section, we provide two applications to two real data sets to prove the importance and
flexibility of the BExFr distribution. The first real data set represents the survival times, in
weeks, of 33 patients suffering from acute Myelogeneous Leukaemia. These data have been
analyzed by Feigl and Zelen (1965). The data are: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143,
56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. The second data set,
strength data, which were originally reported by Badar and Priest (1982) and it represents the
strength measured in GPA for single carbon fibers and impregnated 1000-carbon fiber tows.
Single fibers were tested under tension at gauge lengths of 10 mm with sample size ( n = 63).
This data set consists of observations: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396,
2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,
2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145,
3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501,
3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. These
data have been used by Afify et al. (2015b) and Afify et al. (2015c) to fit the exponentiated
transmuted generalized Rayleigh and transmuted Weibull Lomax distributions, respectively.

We shall compare the fit of the proposed BExFr distribution (and its sub-models namely:
BFr, EFr and Fr distributions) with several other competitive models namely: the generalized
inverse gamma (Mead, 2015), McDonald Lomax (McL) (Lemonte and Cordeiro, 2013), gamma
Lomax (GL) ( Cordeiro et al., 2015) and Zografos-Balakrishnan log-logistic (ZBLL) (Zografos
and Balakrishnan, 2009 ) models with corresponding densities (for x > 0):

GIG: f(x; θ, β, a, b, λ) = bθab

Γλ(a,β)x
−(ab+1)

[(
θ
x

)b
+ β

]−λ
exp

[
−
(
θ
x

)b]
;

McL: f(x; θ, β, a, b, λ) = θλ
βB( aλ ,b)

(
1 + x

β

)−(θ+1)
[
1−

(
1 + x

β

)−θ]a−1
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×
{

1−
[
1−

(
1 + x

β

)−θ]λ
}b−1

;

GL: f(x; θ, β, a) = θβθ

Γ(a)Γ(β+x)θ+1

[
−θ ln

[(
β

β+x

)]]a−1
;

ZBLL: f(x; θ, β, a) = βθ−β
Γ(a) x

β−1
[
1 +

(
x
θ

)β]−2 {
ln
[
1 +

(
x
θ

)β]}a−1
;

where the parameters of the above densities are all positive real numbers, Γ (a) is the gamma
function and Γλ (a, β) is the generalized gamma function (Kobayashi, 1991) defined by

Γλ (a, β) =

∫ ∞

0
ya−1 (β + y)−λ exp (−y) dy.

In order to compare the models, we consider some goodness-of-fit measures including −2̂̀,
where ̂̀ is the maximized loglikelihood, Anderson-Darling (A∗) and Cramér-von Mises (W ∗)
statistics (full details can be found in Chen and Balakrishnan, 1995). In general, the model
with minimum values for these statistics could be chosen as the best model to fit the data.

Tables 4 and 5 list the MLEs of the model parameters, their corresponding standard errors
(given in parentheses) and the values of these statistics (−2̂̀, A∗ and W ∗) for the fitted models
to both data sets.

Tables 3 and 4 compare the BExFr model with the BFr, EFr, Fr, GIG, McL, ZBLL and GL
distributions. It is noted, from Tables 4 and 5, that the BExFr distribution gives the lowest
values for the−2̂̀, A∗ andW ∗ statistics among all fitted models. Thus, the BExFr distribution
could be chosen as the best models. These results are obtained using the MAT-HCAD PROGRAM.

Table 3. MLEs, their corresponding standard errors and the statistics −2̂̀, W ∗ and A∗ for
the first data set.

Model Estimates −2̂̀ W ∗ A∗

θ̂ β̂ â b̂ λ̂

BExFr 29.5877 0.1107 21.0415 19.7308 1.7253 308.117 0.11211 0.70495
(201.769) (0.146) (64.505) (62.632) (4.578)

BFr 6.89494 0.13852 16.8911 24.04154 308.213 0.11407 0.71477
(60.760) (0.138) (43.704) (47.769)

EFr 13.3423 0.5732 1.4581 310.894 0.15728 0.95136
(14.377) (0.206) (1.007)

Fr 7.8651 0.6944 311.997 0.17306 1.0475
(2.091) (0.091)

GIG 3.1481 0.89959 8.42866 0.29097 18.95355 308.233 0.11333 0.7127
(45.860) (4.01682) (10.3956) (0.033) (17.1406)

McL 0.57665 8.46832 1.62102 1.72961 0.46481 310.958 0.13714 0.84928
(1.067) (28.781) (2.762) (2.593) (3.251)

ZBLL 7.45579 1.01264 1.4687 318.823 0.156487 0.95522
(0.248) (0.138) (0.179)

GL 1.1115 3.52517 2.1469 311.037 0.1419 0.86637
(0.271) (6.722) (1.6968)

Figures 3 and 4 display the estimated pdf’s and cdf’s of the BExFr distribution for the first
real data set, where figures 5 and 6 represent the same for the second data set respectively.
It is shown from these figures that the BExFr provides a close fit to these data sets.
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Figure 3: The fitted BExFr density for the first data set

Table 4. MLEs, their corresponding standard errors and the statistics −2̂̀, W ∗ and A∗ the
second data set

Model Estimates −2̂̀ W ∗ A∗

θ̂ β̂ â b̂ λ̂

BExFr 12.6463 0.4852 25.7682 14.2299 7.2493 112.704 0.05574 0.31204
(75.689) (0.978) (71.831) (67.197) (28.051)

BFr 25.03468 0.55403 7.91533 185.80664 113.065 0.0558 0.32555
(21.8041) (0.255) (6.395) (155.015)

EFr 4.2957 2.3636 7.0322 112.701 0.05895 0.31988
(1.613) (1.028) (8.513)

Fr 2.7214 5.4338 117.804 0.12884 0.69597
(0.067) (0.508)

GIG 1.7724 0.26685 3.12731 3.72201 8.12837 113.065 0.06669 0.3536
(0.5801) (1.18644) (3.3986) (2.082) (6.41594)

McL 1.89877 3.68277 37.12441 26.14064 2.85382 113.018 0.05712 0.32925
(14.485) (10.640) (37.783) (236.492) (5.007)

ZBLL 2.7035 8.16714 1.45705 140.08 0.10167 0.53337
(0.0033) (0.823) (0.13)

GL 67.73728 2.76071 50.15703 112.922 0.05965 0.33634
(29.078) (4.312) (36.5936)
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Figure 4: The fitted BExFr density for the second data set.
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Figure 5: The estimated cdf of the BExFr model for the first data set.

9. Concluding remarks

In this paper, we propose a new five-parameter model, called the beta exponential Fréchet
(BExFr) distribution, which extends the Fréchet distribution. In fact, the BExFr distribution
is motivated by the wide use of the Fréchet distribution in extreme value theory and also for the
fact that the generalization provides more flexibility to analyze real data. The BExFr density
function can be expressed as a mixture of Fréchet densities. We derive explicit expressions for
the ordinary and incomplete moments, moment generating function, entropies, mean residual
life and mean inactivity time. We discuss the maximum likelihood estimation of the model
parameters. Two applications illustrate that the proposed model provides consistently better
fit than the other competitive models.

Estimation of the model parameters under the bayesian paradigm is currently underway
and will be reported in a separate article elsewhere. However, we must make a note of
the fact under the Bayesian setting, a non informative prior approach is essentially maximum
likelihood estimation under the classical approach. In the absence of an appropriate conjugate
prior, the choice of prior will be a challenging in such a setting.

As a future work we will consider the following:

• Bivariate and multivariate extension of the BExFr distribution. In particular with the
copula based construction method, trivariate reduction etc.

• Comparison of the derived models with the available popular bivariate beta- G and
bivariate exponential type models.
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Figure 6: The estimated cdf of the BExFr model for the second data set.



Austrian Journal of Statistics 61

Acknowledgment

The authors would like to thank the editor and anonymous referees for their valuable com-
ments and suggestions that improved the quality of the paper.

References

Agresti, A. (1984). Analysis of Ordinal Categorical Data. New York: John Wiley.

Afify, A.Z., Hamedani, G.G., Ghosh, I. and Mead M.E. (2015a). The Transmuted
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Abstract

We propose a new generator of continuous distributions with one extra positive para-
meter called the odd Lindley-G family. Some special cases are presented. The new density
function can be expressed as a linear combination of exponentiated densities based on the
same baseline distribution. Various structural properties of the new family, which hold for
any baseline model, are derived including explicit expressions for the quantile function,
ordinary and incomplete moments, generating function, Rényi entropy, reliability, order
statistics and their moments and k upper record values. We provide a Monte Carlo simu-
lation study to evaluate the maximum likelihood estimates. We discuss estimation of the
model parameters by maximum likelihood and provide an application to a real data set.

Keywords: estimation, Lindley distribution, generating function, odd Lindley-G distribution;
k upper record values, moment, Monte Carlo simulation.

1. Introduction

In recent years, several ways of generating new distributions from classic ones has attracted
theoretical and applied statisticians due to their flexible properties. Many classical distribu-
tions have been extensively used over the past decades for modeling data in several areas.
In fact, for instance, Johnson, Kotz, and Balakrishnan (1994, 1995) presented a comprehen-
sive discussion on hundreds of continuous univariate distributions. However, in many applied
areas including, but not limited to lifetime analysis, finance and insurance, there is a clear
need for extended forms of these distributions, which are more flexible for fitting specific real
world scenarios. Consequently, recent developments focus on definition of the new families
of distributions that extend well-known distributions and at the same time provide great
flexibility in modelling data in practice. Some well-established generators and other recently
proposed are the Marshall-Olkin generated family (MO-G) by Marshall and Olkin (1997),
beta-G by Eugene, Lee, and Famoye (2002), Kumaraswamy-G (Kw-G for short) by Cordeiro
and de Castro (2011), McDonald-G (Mc-G) by Alexander, Cordeiro, Ortega, and Sarabia
(2012), gamma-G by Zografos and Balakrishnan (2009), transformed-transformer (T-X) by
Alzaatreh, Lee, and Famoye (2013), exponentiated T-X by Alzaghal, Felix, and Carl (2013),
Weibull-G by Bourguignon, Silva, and Cordeiro (2014), exponentiated half-logistic family by
Cordeiro, Alizadeh, and Ortega (2014), logistic-X by Tahir, Cordeiro, Alzaatreh, Mansoor,
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and Zubair (2016a), a new Weibull-G by Tahir, Zubair, Mansoor, Cordeiro, Alizadeh, and
Hamedani (2016b) and Kumaraswamy odd log-logistic-G by Alizadeh, Emadi, Doostparast,
Cordeiro, Ortega, and Pescim (2015). The Lindley distribution was originally proposed by
Lindley (1958) as a counterexample of fiducial statistics. Ghitany, Atieh, and Nadarajah
(2008) showed through a numerical example that the hazard function of the Lindley distri-
bution does not exhibit a constant hazard rate, indicating its flexibility over the exponen-
tial distribution. It has recently received considerable attention as an appropriate model to
analyze lifetime data especially in applications modeling stress-strength reliability; see, for
example, Ghitany et al. (2008), Zakerzadeh and Dolati (2009), Mazucheli and Achcar (2011),
Gupta and Singh (2012), Warahena-Liyanage and Pararai (2014). Several other authors in-
cluding Sankaran (1970), Nadarajah and Tahmasbi (2011) and Asgharzedah, Bakouch, and
Esmaeli (2013) developed some structural properties of various generalized Lindley distri-
butions. Nonetheless, there are situations in which the Lindley distribution and all of its
generalizations may not be suitable from a theoretical or an applied point of view.

Let r(t) be the probability density function (pdf) of a random variable T ∈ [a, b] for −∞ ≤
a < b < ∞ and let W [G(x)] be a function of the cumulative distribution function (cdf) of a
random variable X such that W [G(x)] satisfies the following conditions:





(i) W [G(x)] ∈ [a, b],

(ii) W [G(x)] is differentiable and monotonically non-decreasing, and

(iii) W [G(x)]→ a as x→ −∞ andW [G(x)]→ b as x→∞.
(1)

Alzaatreh et al. (2013) defined the T-X family of distributions by

F (x) =

∫ W [G(x)]

a
r(t) dt, (2)

where W [G(x)] satisfies the conditions (1). The pdf corresponding to (2) is given by

f(x) =

{
d

dx
W [G(x)]

}
r {W [G(x)]} . (3)

In this paper, we propose a new wider class of continuous distributions called the Odd Lindley-
G (“OL-G” for short) family by taking W [G(x)] = G(x;ξ)

1−G(x;ξ) and r(t) = a2

1+a (1 + t) e−a t, t >

0, a > 0, where G(x; ξ) is a baseline cdf, which depends on a parameter vector ξ and G(x; ξ) =
1−G(x; ξ) is the baseline survival function. Its cdf is given by

F (x; a, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0

a2

1 + a
(1 + t) e−a t dt

= 1− a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
−a G(x, ξ)

G(x; ξ)

}
. (4)

For each baseline G, the OL-G family of distributions is defined by the cdf (4). Equation (4)
is a wider family of continuous distributions. Further, we can omit sometimes the dependence
on the vector ξ of the parameters and write simply G(x) = G(x; ξ).

The corresponding density function to (4) is given by

f(x; a, ξ) =
a2

(1 + a)

g(x, ξ)

G(x; ξ)3
exp

{
−a G(x, ξ)

G(x; ξ)

}
, (5)

where g(x; ξ) is the baseline pdf. Equation (5) is most tractable when the cdf G(x) and the pdf
g(x) have simple analytic expressions. Hereafter, a random variable X with density function
(5) is denoted by X ∼ OL-G(a, ξ). Table 1 lists G(x; ξ)/G(x; ξ) and the corresponding
parameters for some special distributions.
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Most of the distributions lack physical motivation for modeling lifetime data. We now provide,
in a similar context, a physical interpretation for the proposed family inspired in Cooray
(2006). Let Y be a lifetime random variable having a certain continuous G distribution. The
odds ratio that an individual (or component) following the lifetime Y will die (failure) at time
x is G(x; ξ)/G(x; ξ). Consider that the variability of this odds of death is represented by the
random variable X and assume that it follows the Lindley model with scale a. We can write

Pr(Y ≤ x) = Pr

(
X ≤ G(x; ξ)

G(x; ξ)

)
= F (x; a, ξ),

which is given by (4). The rest of the paper is organized as follows. In Section 2, we present

Table 1: Distributions and corresponding G(x; ξ)/G(x; ξ) functions

Distribution G(x; ξ)/G(x; ξ) ξ

Uniform (0 < x < θ) x/(θ − x) θ

Exponential (x > 0) eλx − 1 λ

Weibull (x > 0) eλx
γ − 1 (λ, γ)

Fréchet (x > 0) (eλx
γ − 1)−1 (λ, γ)

Half-logistic (x > 0) (ex − 1)/2 ∅
Power function (0 < x < 1/θ) [(θ x)−k − 1]−1 (θ, k)

Pareto (x ≥ θ) (x/θ)k − 1 (θ, k)

Burr XII (x > 0) [1 + (x/s)c]k − 1 (s, k, c)

Log-logistic (x > 0) [1 + (x/s)c]− 1 (s, c)

Lomax (x > 0) [1 + (x/s)]k − 1 (s, k)

Gumbel (−∞ < x <∞) {exp[exp(−(x− µ)/σ)]− 1}−1 (µ, σ)

Kumaraswamy (0 < x < 1) (1− xα)−β − 1 (α, β)

Normal (−∞ < x <∞) Φ((x− µ)/σ)/(1− Φ((x− µ)/σ)) (µ, σ)

four special models of the new family. A range of mathematical properties of Equation (5)
is derived in Section 3 including a useful expansion for the pdf and explicit expressions for
the moments and generating function. General expressions for the Rényi entropy, reliability,
order statistics and k upper record values are discussed in Section 4. Estimation of the model
parameters by maximum likelihood is performed in Section 5. In Section 6, we conduct a
simulation study for specific choices of a model parameter. An application to a real data set
illustrates the performance of the new family in Section 6. The paper is concluded in Section
7.

2. Four special models of the OL-G family

In this section, we present four special models of the OL-G family.

2.1. Odd Lindley Weibull (OLW)

The Weibull cdf with parameters α > 0 and λ > 0 is G(x) = 1− e−(λx)
α

(for x > 0). The cdf
of a random variable X having the OLW distribution, say X∼ OLW(a, α, λ), is given by

FOLW(x) = (1 + a)−1 exp{−a[a+ e(λx)
α
]}
{

(1 + a+ a2) exp[ae(λx)
α
]− ea(1+a)

[
1 + a e(λx)

α]}
,

and the associated density function reduces to

fOLW(x) = a2 (1 + a)−1 αλα xα−1 e2(λx)
α

exp{−a[e(λx)
α − 1]}. (6)
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The hazard rate function (hrf) corresponding to (6) is given by

τOLW(x) = a2 αλα xα−1 e2(λx)
α

exp{−a[e(λx)
α − 1]}

{
1 + a− exp{−a[a+ e(λx)

α
]}

×
[
(1 + a+ a2) exp[ae(λx)

α
]− ea(1+a)

{
1 + a e(λx)

α}]}−1
.

Plots of the density and hrf of the OLW distribution for some parameter values are displayed
in Figure 1.
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Figure 1: Plots of the OLW density and hrf functions for some parameter values.

2.2. Odd Lindley Kumaraswamy (OLKw)

The Kumaraswamy cumulative distribution (for x ∈ [0,1]) is G(x) = 1− (1−xα)β, where the
parameters are α > 0 and β > 0. The OLKw cumulative distribution is given by

FOLKw(x) = (1 + a)−1
{

(1 + a+ a2) e−a
2

+ exp[a− a(1− xα)−β] [−1− a(1− xα)−β]
}

and the associated density function reduces to

fOLKw(x) = a2 (1 + a)−1 αβ xα−1 (1− xα)−2β−1 exp{−a[(1− xα)−β − 1]}. (7)

The hrf corresponding to (7) is given by

τOLKw(x) = αβ xα−1 (1− xα)−2β−1 exp{−a[(1− xα)−β − 1]}

×
{

1 + a−
[
(1 + a+ a2) e−a

2
+ exp[a− a(1− xα)−β] {−1− a(1− xα)−β}

]}−1
.

Plots of the density and hrf of the OLKw distribution for some parameter values are displayed
in Figure 2.

2.3. Odd Lindley half-logistic (OLHL)

The half-logistic cumulative distribution (for x > 0) is given by G(x) = 1−e−x
1+e−x . The OLHL

cumulative distribution becomes

FOLHL(x) = [2(1 + a)]−1 exp
[a

2
(1− 2a− ex)

]

×
{
− (2 + a) ea

2
+ 2(1 + a+ a2) exp

[a
2

(−1 + ex)
]
− a ea

2+x
}
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Figure 2: Plots of the OLKw density and hrf functions for some parameter values.

and the associated density function reduces to

fOLHL(x) = a2 [4(1 + a)]−1 (1 + ex) exp
[a

2
(1− ex) + x

]
. (8)

The corresponding hrf to (8) is given by

τOLHL(x) =
a2

2
(1 + ex) exp

[a
2

(1− ex) + x
]{

2(1 + a)− exp
[a

2
(1− 2a− ex)

]

×
[
− (2 + a) ea

2
+ 2(1 + a+ a2) exp

[a
2

(−1 + ex)
]
− a ea

2+x
]}−1

.

Plots of the pdf and hrf of the OLHL distribution for some parameter values are displayed in
Figure 3.
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Figure 3: Plots of the OLHL density and hrf functions for some parameter values.
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2.4. Odd Lindley Burr XII (OLBXII)

Zimmer, Keats, and Wang (1998) introduced the three parameter Burr XII (BXII) distri-

bution with cdf and pdf (for x > 0): G(x; s, k, c) = 1 −
[
1 +

(
x
s

)c]−k
and g(x; s, k, c) =

c k s−c xc−1
[
1 +

(
x
s

)c]−k−1
, respectively, where k > 0 and c > 0 are shape parameters and

s > 0 is a scale parameter. The OLBXII cumulative distribution becomes

FOLBXII(x) = (1 + a)−1 exp
{
a+

[
1 +

(x
s

)c]k}

×
{

(1 + a+ a2) exp
{
a
[
1 +

(x
s

)c]k}− ea(1+a)
(

1 + a
[
1 +

(x
s

)c]k)
}

and the associated density function reduces to

fOLBXII(x) = a2 c k s−c (1 + a)−1 xc−1
[
1 +

(x
s

)c]2k−1
exp
[
a
{

1−
[
1 +

(x
s

)c]k}]
. (9)

The corresponding hrf is given by

τOLBXII(x) = a2 c k s−c xc−1
[
1 +

(x
s

)c]2k−1
exp
[
a
{

1−
[
1 +

(x
s

)c]k}]

×
{

1 + a− exp
{
a+

[
1 +

(x
s

)c]k}

×
[
(1 + a+ a2) exp

{
a
[
1 +

(x
s

)c]k}− ea(1+a)
(

1 + a
[
1 +

(x
s

)c]k)]
}−1

.

Plots of the density and hrf of the OLBXII distribution for some parameter values are dis-
played in Figure 4.
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Figure 4: Plots of the OLBXII density and hrf functions for some parameter values.

3. Main properties

3.1. Survival and hazard

The corresponding survival function to (4) is given by

S(x; a, ξ) = 1− F (x; a, ξ) =
a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
−a G(x, ξ)

G(x; ξ)

}
. (10)
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The hrf of X becomes

τ(x; a, ξ) =
a2 g(x, ξ)

G(x; ξ)2 [a+G(x; ξ)]
=

a2

G(x; ξ) [a+G(x; ξ)]
τ(x; ξ), (11)

where τ(x; ξ) = g(x; ξ)/G(x; ξ). The multiplying quantity a2/{G(x; ξ) [a + G(x; ξ)]} works
as a corrected factor for the baseline hrf. Equation (4) can deal with general situations in
modeling survival data with various shapes of the hrf.

3.2. Quantile functions

Let X be an arbitrary random variable with cdf F (x) = Pr(X ≤ x), where x ∈ R. For any
u ∈ (0, 1), the uth quantile function (qf) Q(u) of X is the solution of

F (Q(u)) = u, (12)

for Q(u) > 0.

For any fixed a > 0, from Equation (4), we obtain

−1 + a−G(Q(u))

1−G(Q(u))
e
− aG(Q(u))

1−G(Q(u)) = (1 + a)(u− 1).

Multiplying both sides of this equation by e−(1+a) gives

−1 + a−G(Q(u))

1−G(Q(u))
e
− 1+a−G(Q(u))

1−G(Q(u)) = (1 + a)(u− 1) e−(1+a).

In the above equation, we note that −1+a−G(Q(u))
1−G(Q(u)) is the Lambert W function of the real

argument (1 + a)(u− 1)e−(1+a). The Lambert W function is defined by

W (x) eW (x) = x.

The Lambert function has two real branches with a branching point located at (−e−1, 1). The
lower branch, W−1(x), is defined in the interval [−e−1, 1] and has a negative singularity for
x→ 0−. The upper branch, W0(x), is defined for x ∈ [−e−1,∞].

Then, we have

W
(

(1 + a)(u− 1)e−(1+a)
)

= −
(

1 +
a

1−G(Q(u))

)
. (13)

Clearly, for any a > 0 and u ∈ (0, 1), we have
(

1 + a
1−G(Q(u))

)
> 1 and then (1 + a)(u −

1)e−(1+a) < 0. Therefore, considering the lower branch of the Lambert W function, we can
write (13) as

W−1
(

(1 + a)(u− 1)e−(1+a)
)

= −
(

1 +
a

1−G(Q(u))

)
.

Hence, the qf of X is given by

Q(u) = G−1
{

1 + a
[
1 +W−1

(
(1 + a)(u− 1)e−(1+a)

) ]−1}
. (14)
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3.3. Shapes of the OL-G family

The shapes of the density and hazard rate functions can also be described analytically. The
critical points of the OL-G density function are the roots of the equation:

g′(x)

g(x)
+ 3

g(x)

G(x)
− a g(x)

G(x)2
= 0. (15)

The critical points of h(x) are obtained from the following equation

g′(x)

g(x)
+

g(x)

a+G(x)
+ 2

g(x)

G(x)2
= 0. (16)

By using most computer algebra systems, we can examine Equations (15) and (16) to deter-
mine the local maximums and minimums and inflexion points.

3.4. Useful expansions

Several structural properties of the extended distributions may be easily explored using mix-
ture forms of exponentiated-G (“Exp-G”) distributions. In this section, we obtain expansions
for f(x) and F (x). First, we define the Exp-G distribution for an arbitrary parent distribution
G(x), say W ∼ Exp-G(c), if W has cdf and pdf given by

Hc(x; ξ) = G(x; ξ)c and hc(x; ξ) = c g(x; ξ)G(x; ξ)c−1,

respectively. Next, we obtain an expansion for f(x). Using the power series for the exponential
function, we have

exp

{
−a
[
G(x; ξ)

G(x; ξ)

]}
=

∞∑

k=0

(−1)k ak

k!

[
G(x; ξ)

G(x; ξ)

]k
.

Inserting this expansion in Equation (5), we have

f(x; a, ξ) =
a2

1 + a
g(x, ξ)

∞∑

k=0

(−1)kak

k!

G(x; ξ)k

G(x; ξ)k+3
. (17)

By using the generalized binomial expansion, we can write

G(x; ξ)−(k+3) =
∞∑

i=0

Γ(i+ k + 3)

i! Γ(k + 3)
G(x; ξ)i. (18)

Inserting (18) in (17), the OL-G density function can be expressed as an infinite mixture of
Exp-G density functions

f(x; a, ξ) =
∞∑

i, k=0

γi,k hi+k+1(x; ξ), (19)

where

γi,k =
(−1)k a2+k Γ(i+ k + 3)

(a+ 1)(i+ k + 1) i! k! Γ(k + 3)
.

The cdf of X can be given by integrating (19) as

F (x; a, ξ) =

∞∑

i, k=0

γi,kHi+k+1(x; ξ). (20)
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The properties of Exp-G distributions have been studied by many authors in recent years, see
Mudholkar and Srivastava (1993) and Mudholkar, Srivastava, and Freimer (1995) for expo-
nentiated Weibull, Gupta, Gupta, and Gupta (1998) for exponentiated Pareto, Gupta and
Kundu (1999) for exponentiated exponential, Nadarajah (2005) for exponentiated Gumbel,
Shirke and Kakade (2006) for exponentiated log-normal and Nadarajah and Gupta (2007) for
exponentiated gamma distributions.

Thus, some structural properties of the new family such as the ordinary and incomplete
moments and generating function can be determined from well-established properties of the
Exp-G distributions.

Note that Equations (19) and (20) are the main results of this section.

3.5. Moments

From now on, we assume that Yi+k ∼ Exp-G(i+ k+ 1). Many of the important features and
characteristics of a distribution can be obtained using ordinary moments. A first formula for
the nth moment of X can be obtained from (19) as

µ′n = E(Xn) =
∞∑

i, k=0

γi,k E(Y n
i+k). (21)

Closed-form expressions for moments of several Exp-G distributions are given by Nadarajah
and Kotz (2006) that can be used to obtain OL-G moments. For instance, the moments of the
OLW model (for n > −α) discussed in Section 2 can be derived from closed-forms moments
of the exponetiated Weibull given by Nadarajah and Kotz (2006). In this case, we obtain

µ′n = λ−n Γ(n/α+ 1)
∞∑

i,k=0

(i+ k + 1) γi,k

∞∑

j=0

(−i− k)j

j! (j + 1)n/α+1
. (22)

A second alternative formula for µ′n can be obtained from (21) in terms of the baseline quantile
function QG(u). We obtain

µ′n =
∞∑

i,k=0

(i+ k + 1) γi,k τn,i+k, (23)

where the integral depends on the baseline qf

τn,j =

∫ 1

0
QG(u)n ujdu. (24)

Note that the ordinary moments of several OL-G distributions can be determined directly
from Equations (23) and (24). We now provide the PWMs (Probability Weighted Moments)
for one distribution discussed in Section 2. Cordeiro and Nadarajah (2011) determined τr,s
for some well-known distribution such as normal, beta, gamma, and Weibull distributions,
which can be applied to obtain raw moments of the corresponding OL-G distributions.

For instance, in OL-N distribution discussed in Section 2, the quantities τr,s can be expressed
in terms of the Lauricella functions of type A, Exton (1978) and Trott (2006) defined by

F
(n)
A (a; b1, . . . , bn; c1, . . . , cn;x1, . . . , xn) =
∞∑

m1=0

. . .

∞∑

mn=0

(a)m1+...+mn(b1)m1 . . . (bn)mn
(c1)m1 . . . (cn)mn

xm1
1 . . . xmnn
m1! . . .mn!

,

where (a)i = a(a + 1) . . . (a + i − 1) is the ascending factorial given by (with the convention
that (a)0 = 1).
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In fact, Cordeiro and Nadarajah (2011) determined τr,s for the standard normal distribution
as

τr,s = 2r/2 π−(s+1/2)
s∑

l=0
(r+s−l) even

(
s

l

)
2−l πl Γ

(
r + s− l + 1

2

)
×

F
(s−l)
A

(
r + s− l + 1

2
;
1

2
, . . . ,

1

2
;
3

2
, . . . ,

3

2
;−1, . . . ,−1

)
.

This equation holds when r+ s− l is even and it vanishes when r+ s− l is odd. So, any OLN
moment can be expressed as an infinite weighted linear combination of Lauricella functions
of type A.

Further, the central moments (µr) and cumulants (κr) of X can be determined from the
ordinary moments using the recurrence equations

µr =
r∑

k=0

(−1)k
(
r

k

)
µ′k1 µ

′
r−k and κr = µ′r −

r−1∑

k=1

(
r − 1

k − 1

)
κk µ

′
r−k,

respectively, where κ1 = µ′1. Then, κ2 = µ′2−µ′21 , κ3 = µ′3− 3µ′2µ
′
1 + 2µ′31 , κ4 = µ′4− 4µ′3µ

′
1−

3µ′22 +12µ′2µ
′2
1 −6µ′41 , etc. The skewness ρ1 = κ3/κ

3/2
2 and kurtosis ρ2 = κ4/κ

2
2 can be obtained

from the second, third and fourth cumulants.

The incomplete moments play an important role for measuring inequality. For example, the
main application of the first incomplete moment refers to the Lorenz and Bonferroni curves.

The nth incomplete moment of X is calculated as

mn(y) = E (Xn|X < y) =

∞∑

i,k=0

(i+ k + 1) γi,k

∫ G(y)

0
QG(u)nui+kdu.

The last integral can be evaluated for most baseline G distributions.

3.6. Generating function

Here, we provide two formulae for the mgf M(t) = M(t; a, ξ) = E[exp(tX)] of X. The first
one comes from (19) as

M(t) =
∞∑

i,k=0

γi,kMi+k(t), (25)

where Mi+k(t) is the mgf of Yi+k. Hence, M(t) can be determined from the generating
function of the Exp-G distribution.

A second formula for M(t) can be derived from (19) as

M(t) =
∞∑

i,k=0

(i+ k + 1) γi,k ρ(t, i+ k), (26)

where

ρ(t, b) =

∫ ∞

−∞
exp(tx)G(x)b g(x)dx =

∫ 1

0
exp {tQG(u)}ubdu. (27)

We can obtain the mgf of several OL-G distributions directly from Equations (26) and (27).
These equations are the main results of this section.
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4. Other measures

4.1. Entropy

The entropy of a random variable X with density function f(x) is a measure of variation of
the uncertainty. Two popular entropy measures are due to Shannon (1951) and Rényi (1961).
A large value of the entropy indicates the greater uncertainty in the data. The Rényi entropy
is defined by (for γ > 0 and γ 6= 1)

IR(γ) =
1

1− γ log

(∫ ∞

0
fγ(x)dx

)
.

The Shannon entropy is given by E {− log[f(X)]}. It is a special case of the Rényi entropy
when γ ↑ 1.
Here, we derive expressions for the Rényi entropy for the OL-G distribution. Due to the fact
that the parameter γ is not in general a natural number, it is difficult to use (19) for entropy
derivation. So, we use (5), the power series for the exponential and the generalized binomial
expansion to obtain the Rényi entropy of X as

IR(γ) =
1

1− γ



γ log

(
a2

1− a

)
+ log



∞∑

i,k=0

(−1)k (a γ)k Γ(3γ + i+ k)

i! k! Γ(3γ + k)
K(γ, i, k)





 .

Here, K(γ, i, k) denotes the integral

K(γ, i, k) =

∫ 1

0
gγ−1[QG(u)]ui+kdu,

to be evaluated for each OL-G model. For the OL-exponential (with parameter λ > 0),
OL-Weibull (with parameters α > 0 and λ > 0) and OL-Pareto (with parameter γ > 0)
distributions, we obtain

K(γ, i, k) = λγ−1B(i+ k, γ − 1),

K(γ, i, k) = βγ−1 Γ

(
(α− 1)(γ − 1)

α
+ 1

) i+k∑

p=0

(−1)p (p+ γ)−
(α−1)(γ−1)

α
−1
(
i+ k

p

)
,

where α > (γ − 1)/γ, and

K(γ, i, k) = γγ−1B(i+ k, (1 + γ−1)(γ − 1)),

respectively.

4.2. Reliability

The measure of reliability of industrial components has many applications especially in the
area of engineering. The reliability of a product (system) is the probability that the product
(system) will perform its intended function for a specified time period when operating under
normal (or stated) environmental conditions. The component fails at the instant that the
random stress X2 applied to it exceeds the random strength X1, and the component will
function satisfactorily whenever X1 > X2. Hence, R = P (X2 < X1) is a measure of compo-
nent reliability (see Kotz, Lai, and Xie (2003)). We derive the reliability R when X1 and X2

have independent OL-G(x, a1, ξ) and OL-G(x, a2, ξ) distributions with the same parameter
vector ξ for the baseline G. The reliability is defined by
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R =

∫ ∞

0
f1(x)F2(x)dx.

The pdf of X1 and cdf of X2 are obtained from Equations (19) and (20) as

f1(x) =
∞∑

i,j=0

pi,j(a1) g(x, ξ)G(x; ξ)i+j and F2(x) =
∞∑

k,l=0

qk,l(a2)G(x; ξ)k+l+1,

where

pi,j =
(−1)ja2+j1 Γ(i+ j + 3)

i!j!(a1 + 1)Γ(j + 3)

and

qk,l =
(−1)la2+l2 Γ(k + l + 3)

k!l!(a2 + 1)(k + l + 1)Γ(l + 3)
.

Hence,

R =

∞∑

i,j,k,l=0

pi,j(a1) qk,l(a2)

∫ ∞

0
g(x; ξ)G(x; ξ)i+j+k+l+1 dx.

Setting u = G(x; ξ), the reliability of the OL-G distribution reduces to

R =
∞∑

i,j,k,l=0

pi,j(a1) qk,l(a2)

i+ j + k + l + 2
.

4.3. Order statistics

A branch of statistics known as order statistics plays a proeminent role in real-life applications
involving data relating to life testing studies. These statistics are required in many fields,
such as climatology, engineering and industry, among others. A comprehensive exposition of
order statistics and associated inference is provided by David and Nagaraja (2003). Let Xi:n

denote the ith order statistic. The density fi:n(x) of the ith order statistic, for i = 1, . . . , n,
from independent and identically distributed random variables X1, . . . , Xn having the OL-G
distribution is given by

fi:n(x) = M f(x)F (x)i−1 [1− F (x)]n−i,

where M = n!/[(i− 1)! (n− i)!]. First of all, by adding and subtracting aG(x) in numerator

of a+G(x)

(1+a)G(x)
, the cdf (4) can be rewritten as

F (x) = 1−
{

1 +
a

(1 + a)

[
G(x)

G(x)

]}
exp

{
−a G(x)

G(x)

}
. (28)

From Equations (5) and (28),

fi:n(x) = M
a2

1 + a

g(x)

G(x)

i−1∑

k=0

(−1)k
(
i− 1

k

) {
1 +

a

1 + a

G(x)

G(x)

}k+n−i

× exp

{
−a (k + n− i+ 1)

G(x)

G(x)

}
.
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The folowing equations are obtained by using the power series for the exponential function
and the generalized binomial expansion:

exp

{
−a (k + n− i+ 1)

[
G(x)

G(x)

]}
=

∞∑

m=0

(−1)m am (n+ k − i+ 1)m

m!

[
G(x)

G(x)

]m
(29)

and

[1−G(x)]−(j+m+1) =
∞∑

p=0

(
j +m+ p

j +m

)
G(x)p. (30)

Based on Equations (29) and (30), the density of the order statistic Xi:n can be expressed as
a mixture of Exp-G densities.

fi:n(x) =
∞∑

m,p=0

k+n−i∑

j=0

γj,m,p hj+m+p(x), (31)

where

γj,m,p =
M aj+m+2

m! (1 + a)j+1 (j +m+ p+ 1)

(
j +m+ p

j +m

) i−1∑

k=0

(−1)k+m
(
k + n− i

j

)(
i− 1

k

)
.

Clearly, the cdf of Xi:n can be expressed as

Fi:n(x) =
∞∑

m,p=0

k+n−i∑

j=0

γj,m,pHj+m+p(x). (32)

Hence, several mathematical quantities of the OL-G order statistics such as the ordinary,
incomplete and factorial moments, mgf and mean deviations can be determined from those
quantities of the Exp-G distributions. For example, from Equation (31), the moments and
mgf of Xi:n are given by

E(Xs
i:n) =

∞∑

m,p=0

k+n−i∑

j=0

γj,m,pE(Zsj+m+p)

and

Mi:n(t) =

∞∑

m,p=0

k+n−i∑

j=0

γj,m,pE(et Zj+m+p),

where Zj+m+p ∼ Exp-G(j + m + p). Equations (31) and (32) are the main results of this
section.

4.4. K upper record values

Chandler (1952) formulated the theory of record values as a model for successive extremes
in a sequence of independently and identically random variables. Record values are found
in many real life applications involving data related to economics, sports, weather and life
testing problems. The statistical study of record values has now spread in various directions.
Dziubdziela and Kopocinski (1976) proposed the model of k upper record values by observing
successive k largest values in a sequence, where k is a positive integer.

Let X
(k)
n denote the kth upper record value. The pdf f

X
(k)
n

(x) of the kth upper record value,

for k = 1, . . . , n, from independent and identically distributed random variables X1, . . . , Xn

from the OL-G distribution is given by

f
X

(k)
n

(x) =
kn

(n− 1)!
{− log[1− F (x)]}n−1 [1− F (x)]k−1 f(x). (33)
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By expanding the logarithm function in power series and using the binomial expansion, we
have

f
X

(k)
n

(x) =
kn

(n− 1)!

{ ∞∑

p=0

ap F (x)p+1

}n−1{ k−1∑

j=0

(−1)j
(
k − 1

j

)
F (x)j

}
f(x), (34)

where ap = 1/(p+ 1).

Here, we use an equation by Gradshteyn and Ryzhik (2007) (Section 0.314) for a power series
raised to a positive integer n

( ∞∑

i=0

ai u
i

)n
=
∞∑

i=0

cn,i u
i, (35)

where the coefficients cn,i (for i = 1, 2, . . .) are determined from the recurrence equation

cn,i = (i a0)
−1

i∑

m=1

[m (n+ 1)− i] am cn,i−m,

where cn,0 = an0 .

Based on Equations (34) and (35), the pdf (33) can be expressed as

f
X

(k)
n

(x) =
kn

(n− 1)!

∞∑

p=0

k−1∑

j=0

(−1)j cn−1,p

(
k − 1

j

)
F (x)j+n+p−1 f(x),

where cn−1,p can be obtained from the quantities a0, . . . , ap as in Equation (35).

From Equations (5) and (28), and following similar algebra of Section 4.3, we obtain

f
X

(k)
n

(x) =

q∑

r=0

∞∑

s,t=0

φr,s,t hr+s+t+1(x), (36)

where

φr,s,t =

(
n

k

)(
r + s+ t+ 2

r + s+ 2

)
kn ar+s+2

(r + s+ t+ 1) (n+ 1)! (1 + a)r+1

×
∞∑

p=0

k−1∑

j=0

j+n+p−1∑

q=0

(
q

r

)(
k − 1

j

)
(−1)j+q (q + 1)s cn−1,p.

Equation (36) is the main result of this section. It reveals that the pdf of the OL-G k upper
record values is a triple linear combination of Exp-G densities.

5. Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the new family
from complete samples only. Let x1, . . . , xn be observed values from the OL-G distribution
with parameters a and ξ. Let Θ = (a, ξ)> be the p × 1 parameter vector. The total log-
likelihood function for Θ is given by

`(Θ) = 2n log(a)− n log(1 + a) +
n∑

i=1

log[g(xi; ξ)]− 3
n∑

i=1

log[G(xi; ξ)]− a
n∑

i=1

V (xi; ξ),

where V (x; ξ) = G(x; ξ)/G(x; ξ). We assume that the folllowing standard regularity condi-
tions for the log-likelhood `(Θ) hold: i) The support of X associated to the distribution does
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not depend on unknown parameters; ii) The parameter space of X, say Ψ is open and `(Θ)
has a global maximum in Ψ; iii) For almost all x, the fourth-order log-likelihood derivatives
with respect to the model parameters exist and are continuous in an open subset of Ψ that
contains the true parameter; iv) The expected information matrix is positive definite and
finite; v) The absolute values of the third-order log-likelihood derivatives with respect to the
parameters are bounded by expected finite functions of X.

The components of the score function U(Θ) = (Ua, Uξ)
> are

Ua =
2n

a
− n

1 + a
−

n∑

i=1

V (xi; ξ)

and

Uξk = −a
n∑

i=1

∂V (xi; ξ)/∂ξk +
n∑

i=1

∂g(xi; ξ)/∂ξk
g(xi; ξ)

− 3
n∑

i=1

∂G(xi; ξ)/∂ξk
G(xi; ξ)

.

Setting Ua and Uξ equal to zero and solving the equations simultaneously yields the MLE

Θ̂ = (â, ξ̂)> of Θ = (a, ξ)>. These equations cannot be solved analytically and statistical
software can be used to solve them numerically using iterative methods such as the Newton-
Raphson type algorithms.

For interval estimation on the model parameters, we obtain the (p + 1) × (p + 1) observed
information matrix J(Θ) = {Urs} (for r, s = a, ξk), whose elements are

Uaa = −2n

a2
+

n

(1 + a)2
, Uaξk = −

n∑

i=1

∂V (xi; ξ)/∂ξk

and

Uξkξl = −a
n∑

i=1

∂2V (xi; ξ)/∂ξk ∂ξl −
n∑

i=1

[∂g(xi; ξ)/∂ξk] [∂g(xi; ξ)/∂ξl]

g(xi; ξ)2
+

n∑

i=1

∂2g(xi; ξ)/∂ξk ∂ξl
g(xi; ξ)

+ 3

n∑

i=1

[∂G(xi; ξ)/∂ξk] [∂G(xi; ξ)/∂ξl]

G(xi; ξ)2
− 3

n∑

i=1

∂2G(xi; ξ)/∂ξk ∂ξl
G(xi; ξ)

.

6. Empirical and numerical illustration

6.1. Some numerical values and simulation

The formulae derived in this paper can be easily handled in most symbolic computation
software platforms such as MAPLE, MATLAB and MATHEMATICA. These platforms have
currently the ability to deal with complex expressions. Table 2 provides some numerical va-
lues for the ordinary moments µi (with i = 1, 2, 3, 4.) and quantiles Q(u) of the OLW(a, α, λ)
distribution calculated from MATHEMATICA. These moments were established using nume-
rical integration. The quantile values were obtained by using Equation (14). The values of
the Lambert W function is avaliable in routine ProductLog[·, ·].
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Table 2: The values of the first four moments and some quantiles of the OLW(a, α, λ) distri-
bution for α = 1.0, λ = 4.0 and different values of a

OLW for a: 0.01 0.2 1.0 1.5 2.0

µ1 1.257 0.519 0.199 0.144 0.113

µ2 1.620 0.303 0.053 0.030 0.019

µ3 2.13 0.189 0.017 0.007 0.004

µ4 2.850 0.125 0.005 0.002 <0.001

Q(0.1) 0.993 0.266 0.045 0.027 0.018

Q(0.3) 1.174 0.433 0.122 0.079 0.057

Q(0.7) 1.374 0.627 0.262 0.191 0.149

Q(0.9) 1.490 0.743 0.363 0.280 0.228

OLW for a: 0.3 0.5 0.7 0.9 1.1

µ1 0.427 0.320 0.257 0.215 0.185

µ2 0.212 0.126 0.085 0.062 0.047

µ3 0.114 0.055 0.032 0.020 0.014

µ4 0.066 0.026 0.013 0.007 0.004

Q(0.2) 0.276 0.178 0.127 0.096 0.076

Q(0.5) 0.439 0.323 0.255 0.208 0.175

Q(0.6) 0.483 0.366 0.294 0.244 0.209

Q(0.8) 0.579 0.457 0.381 0.327 0.286

We assess the performance of the MLEs of the OLW distribution with respect to sample size
n. The assessment was based on a simulation study:

1. generate ten thousand samples of size n from (4)-(5). The inversion method was used
to generate samples.

2. compute the MLEs for the ten thousand samples, say
(
â, α̂, λ̂

)
for i = 1, 2, . . . , 10000.

3. compute the standard errors of the MLEs for the ten thousand samples, say
(
sâ, sα̂, sλ̂

)

for i = 1, 2, . . . , 10000. The standard errors were computed by inverting the observed
information matrices.

4. compute the biases and mean squared errors given by

biasε(n) =
1

10000

10000∑

i=1

(ε̂i − ε),

MSEε(n) =
1

10000

10000∑

i=1

(ε̂i − ε)2,

for ε = a, α, λ.

We repeated these steps for n = 30, 31, . . . , 100 with a = 1.2, α = 2.5 and λ = 4.0, so
computing biasε(n) and MSEε(n).

Figure 5 shows how the four biases vary with respect to n. The biases for each parameter
either decrease to zero as n → ∞. The reported observations are for only one choice for
(a, α, λ), namely that (a, α, λ) = (1.2, 2.5, 4.0). But the results were similar for a wide range
of other choices for (a, α, λ). Figure 6 shows how the four mean squared errors vary with
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Figure 5: Biases of â, α̂ and λ̂ versus n.

respect to n. The mean squared errors for each parameter decrease to zero as n → ∞. In
particular, i) the biases for each parameter either decreased to zero and appeared reasonably
small at n = 100; ii) the mean squared errors for each parameter decreased to zero and
appeared reasonably small at n = 100.

6.2. Application

We illustrate the flexibility of the OLW distribution by means of a real data set. Similar
investigations could be performed for other OL-G distributions. We choose the Weibull as
baseline because of its popularity. The computations are performed using the software R
version 3.0.3 (package bbmle). The maximization follows the BFGS method with analytical
derivatives. The algorithm used to estimate the model parameters converged for all current
models.

The data set consists of 63 observations of the strengths of 1.5 cm glass fibres, originally
obtained by workers at the UK National Physical Laboratory. Unfortunately, the units of
measurement are not given in the paper. These data have also been analyzed by Bourguignon
et al. (2014). For these data, we compare the fits of the OLW distribution defined by (6),
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Figure 6: Mean squared errors of â, α̂ and λ̂ versus n.

its special Weibull model (W) and of the following distributions: the exponentiated Weibull
(EW) with pdf given by

fEW(x) = a λαλ xλ−1 (1− e−(αx)
λ
)a−1 e−(αx)

λ
,

the beta Weibull (BW) with pdf given by

fBW(x) =
1

B(a, b)
αλ xλ−1 e−(αx)

λ b
(1− e−(αx)

λ
)a−1

and the Kumaraswamy Weibull (KwW) with pdf given by

fKwW(x) = a b λαλ xλ−1 e−(αx)
λ

[1− e−(αx)
λ
]a−1

{
1−

[
1− e−(αx)

λ
]a}b−1

.

All parameters of these distribution are positive numbers. In Table 3, the MLEs and their
standard errors (SEs) (in parentheses) of the parameters from the five fitted models and the
values of the Akaike Information Criterion (AIC), Cramér-von Mises (W*) and Anderson-
Darling (A*) goodness-of-fit statistics are presented. According to the lowest values of the
AIC, W* and A* statistics, the OLW model could be chosen as the best model among the
five fitted models.
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Table 3: MLEs (SEs in parentheses) for some fitted models to the strengths data and the
AIC, W* and A* values

Model a b α λ AIC W ∗ A∗

W
- - 5.781 1.628 34.414 0.237 1.304
- - (0.576) (0.037)

EW
0.671 - 7.285 1.718 35.351 0.636 3.484

(0.249) - (1.707) (0.086)

BW
0.620 10.249 7.759 2.382 37.179 0.196 1.089

(0.248) (95.117) (2.023) (2.897)

KwW
0.606 0.214 6.908 1.337 35.252 0.161 0.908

(0.162) (0.029) (0.004) (0.003)

OLW
0.049 - 1.102 0.492 34.387 0.153 0.870

(0.087) - (0.527) (0.494)

The plots of the fitted OLW pdf and of the two better fitted pdfs are displayed in Figure 7.
The QQ plots for the fitted models are displayed in Figure 8. These plots indicate that the
OLW distribution provides a better fit to these data compared to the other models. Finally,
the proposed distribution can be considered a very competitive model to the EW distribution.
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Figure 7: Fitted densities for the strengths data
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Figure 8: QQ plots for the strengths data

7. Conclusion remarks

In this paper we propose and study a new class of distributions called the odd Lindley-
G family (OL-G). This family can extend several widely known models such as the Weibull,
Kumaraswamy, half-logistic and Burr XII distributions in order to provide more flexibility. We
investigate several of its structural properties such as an expansion for the density function and
explicit expressions for the quantile function, ordinary and incomplete moments, generating
function, Rényi entropy, reliability, order statistics and k upper record values. We estimate the
parameters using maximum likelihood and determine the observed information matrix. We
also discuss inference on the parameters based on Cramér-von Mises and Anderson-Darling
statistics. An example to real data proves empirically the importance and potentiality of the
proposed family.
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Die Begriffe sind wie in einem Wörterbuch alphabetisch geordnet von
”
Achsenmanipula-

tion“ bis
”
Zufallszahlen“. Es querzulesen bzw. gezielt nachzuschlagen erschiene mir deshalb
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