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Abstract

Modern surveys aim at fostering accurate information on demographic and other vari-
ables. The necessity for providing figures on regional levels and on a variety of subclasses
leads to fine stratifications of the population. Optimizing the accuracy of stratified random
samples requires incorporating a vast amount of strata on various levels of aggregation.
Accounting for several variables of interest for the optimization yields a multivariate op-
timal allocation problem in which practical issues such as cost restrictions or control of
sampling fractions have to be considered. Taking advantage of the special structure of the
variance functions and applying Pareto optimization, efficient algorithms are developed
which allow solving large-scale problems. Additionally, integrality- and box-constraints
on the sample sizes are considered. The performance of the algorithms is presented com-
paratively using an open household dataset illustrating their advantages and relevance for
modern surveys.

Keywords: stratified random sampling, multi-criteria optimization, linear constraints, integer
optimization, Pareto optimality, semismooth Newton.

1. Introduction

Accurate population figures provide an important basis for political and economic decision
processes. In light of urban audits and regional policies, these figures, however, have to be
made available in sufficient regional detail as well as for many sub-classes, which requires
introducing a vast number of strata by regions and content. Censuses, registers, or adequate
surveys can provide the information necessary for such research. Using surveys, stratified
random sampling provides an adequate basis that allows integrating further optimization
techniques while considering practical settings with various constraints. Additionally, several
variables of interest may be incorporated in the optimization process which either contains
complementary or conflictory information. This finally leads to a multivariate optimal allo-
cation problem under constraints regarding regional as well as context-specific stratifications.

For the stratified random sampling problem we assume a finite population U of size N with
disjoint cross-classification strata h = 1,...,H. Let 7y denote the total of a variable of
interest Y. In stratified random sampling, an unbiased estimator is ﬂs/trRS = Zthl Npin,
where g, is the sample mean of variable Y and N, is the population size in stratum h. Its
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variance is
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with known stratum-specific variances Sfl of variable Y and stratum-specific sample sizes ny,
for all strata h = 1,..., H (Lohr 2010, chapter 4). In practice, earlier surveys or highly
correlated variables yield the necessary information for S,%. In our presentation, we tacitly
assume that adequate proxies are available as a discussion of proxy quality and its implications
is beyond the scope of this work.

Minimizing the variance (1) with respect to the stratum-specific sample sizes n;, while respect-
ing a given total sample size nyax leads to the (univariate) optimal allocation introduced by
Tschuprow (1923) and Neyman (1934). In contrast to the equal and proportional allocation,
see Cochran (1977), the optimal allocation depends on the variable of interest. The resulting
optimal allocation is given in closed form by
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This allocation method is extended in Gabler, Ganninger, and Miinnich (2012) and Miinnich,
Sachs, and Wagner (2012b), such that for each stratum-specific sample size nj, box-constraints
mp,, My, with

2<my <np <My <Ny (3)

are added to the optimization problem. As zero sample sizes in single strata lead to biased
estimates and variance estimation of the total estimate requires stratum-specific sample sizes
of at least two, a lower constraint my > 2 is applied. Upper constraints M; < Njp have to
be introduced to avoid overallocation in strata where ny, given by (2) exceeds Nj,. A further
reduction of Mj allows to control sample fractions, for example to avoid highly different
response burdens in various regions or strata. In addition, M}, prevents a stratum-specific full
census which is prohibited by law in specific surveys, for example by judgment of the German
Federal Administrative Court (BVerwG, 03/15/2017, 8 C 6.16).

Altogether, the optimal allocation problem under box-constraints is given by

min  Var(77R9)
ne]Rf
H
s.t. Z np = Nmax (4)
h=1

mhgnhSMh thl,...,H.

The problem can equivalently be stated with the inequality constraint Zthl np < Nmax, but
equality holds at every optimal solution.

Friedrich, Miinnich, de Vries, and Wagner (2015) provide a further extension that ensures
integrality of the solution of the optimal allocation. Using Gabler et al. (2012) and by sepa-
rating different sub-regions, the method can be rewritten to a simultaneous optimal allocation
for multiple areas. This is achieved by using a quadratic separable decision function.

In the multivariate generalization of the optimal allocation problem, K different variances
Var(77589) .. Var(72%89) are considered simultaneously. Dalenius (1953) discusses this
problem in detall and distinguishes two solution strategies. In the first, one or more of the
variances Var(f',?trp”s), k=1,...,K, are bounded from above and treated as constraints of an
optimization problem in which the total sample size (or the cost of the survey) is minimized.
This leads to a univariate optimization problem with non-linear constraints. In the second,
the variances are minimized simultaneously subject to linear size (or cost) constraints. This
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perspective leads to a multi-objective optimization problem with conflicting objectives that
requires an appropriate mathematical theory. In particular, an adequate notion of optimality,
such as Pareto optimality, is essential and the problem has to be transformed into a form
that is solvable by optimization algorithms. Most of the literature dealing with multivariate
allocation splits up depending on which of these two formulations is used.

Indeed, Chatterjee (1968), Chatterjee (1972), and Huddleston, Claypool, and Hocking (1970)
use the first variant. Multivariate optimal allocation problems are addressed in the same
way in Kokan (1963) and supplemented by existence and uniqueness results in Kokan and
Khan (1967). Introducing overhead costs, Ahsan and Khan (1982) discuss the problem with
variance constraints for a more general objective function. More recently, Bankier (1988),
Hohnhold (2009a), and Hohnhold (2009b) have published allocation techniques with more
than one level of strata. These techniques are based on a compensation of the accuracy of
regional estimates and population total estimates and, hence, also belong to the first class of
methods. Falorsi and Righi (2015) present a generalized framework for defining the optimal
inclusion probabilities in multivariate and multi-domain surveys. Falorsi and Righi (2008)
and Falorsi and Righi (2016) introduce a solution method using a balanced sampling design.

Combining aspects from both strategies, Kish (1976) proposes to combine aspects of variance
and cost minimization in a non-linear model with the help of loss functions and discusses
various choices for the objective function within his model.

Turning to the second solution strategy introduced by Dalenius (1953), the multivariate opti-
mal allocation is threated in Folks and Antle (1965) as a multi-objective optimization problem
with linear constraints. They discuss the mathematical theory of scalarization and the re-
lationship between the multi-objective problem and the scalarized problem. Moreover, they
prove a sufficiency result for the set of efficient (or Pareto optimal) solutions for the simple
problem without box-constraints and neglecting the integrality of the solutions. Diaz-Garcia
and Ramos-Quiroga (2014) solve the multivariate allocation as a multi-objective problem as
well but with the help of stochastic programming. Khan, Ali, Raghav, and Bari (2012) use
stochastic programming on another model. Both methods lead to non-linear integer opti-
mization problems which are hard to solve even for small instances. Khan, Khan, and Ahsan
(2003) solve multivariate allocation problems by exploiting the separability of the objective
function and applying dynamic programming. While dynamic programming is a classical so-
lution method for allocation problems (Arthanari and Dodge 1981, chapter 5), it is not very
efficient in practice as the computational study of Bretthauer, Ross, and Shetty (1999) shows.

All strategies using the multi-objective perspective on the problem have to use scalarization
techniques to combine the variances for the variables in a one single objective function. The
selection of a scalarization technique can be interpreted as the choice of a suitable decision-
making function (Schaich and Miinnich 1993 and Diaz-Garcia and Cortez 2006). The optimal
allocation then highly depends on the concrete choice of a scalarization function.

We also take the second of the two perspectives of Dalenius (1953) and treat the multivariate
allocation problem as a multi-objective problem. We extend the theoretical result in Folks
and Antle (1965) by giving a (necessary and sufficient) characterization of all Pareto optimal
points. Moreover, in contrast to earlier publications, we solve the problem while respecting
integrality and box-constraints. We compute the set of Pareto optimal solutions, the so-called
Pareto frontier, for this refined problem formulation which allows decision makers to choose
a personally specified preference from this set.

The solution of allocation problems under the box-constraints (3) may yield non-differentiable
points and many standard algorithms, such as classical Newton techniques, may fail to provide
the correct optimal solution. To avoid convergence issues, we propose using the semismooth
Newton method (Miinnich, Sachs, and Wagner 2012a and Wagner 2013). Because stratum-
specific sample sizes are integer values, we also provide an alternative algorithm to derive a
multivariate optimal allocation in which all stratum-specific samples are integer-valued. This
strategy avoids rounding and is based on the integer optimal allocation techniques published
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in Friedrich et al. (2015).

Each scalarization for multivariate optimal allocation contains an additive linking of variances.
Due to the scaling of units of the variables of interest, the variances have to be standardized
for comparability. We present an alternative solution that extends the techniques published
in Schaich and Miinnich (1993).

Finally, it is of great importance for practical applications to solve large problem instances in
appropriate time. Our methods solve multivariate optimal allocation problems with several
thousand strata within seconds and are reliable tools when dealing with real-world data.
This stands in contrast with other algorithms for multivariate allocation problems that are
generally computationally tractable for only a small number of strata. The computationally
efficient solution of large (integer) multivariate optimal allocation problems supplements the
theoretical discussion and certainly is another central innovation of our methods.

In Section 2, we use the method of box-constrained optimal allocation presented in Miinnich
et al. (2012b) as a starting point to derive a generalized multivariate box-constrained optimal
allocation problem with various decision-making functions and standardization techniques.
Moreover, we establish the link between the multivariate allocation problem and the theory
of Pareto optimization. In Section 3, we provide efficient numerical algorithms for selected
variants of the developed problem. These are fast enough to solve even large problem instances
and avoid rounding the solution by finding the globally optimal integer-valued solution. In
Section 4, we present selected performance and simulation results based on the open AMELIA
household dataset (Alfons, Burgard, Filzmoser, Hulliger, Kolb, Kraft, Miinnich, Schoch, and
Templ 2011, as well as Merkle, Burgard, and Miinnich 2016).

2. Multivariate optimal allocation

2.1. Preliminaries

In a multivariate optimal allocation problem, several variables of interest are considered si-
multaneously. The resulting optimization problem has several conflicting objective functions.
Thereby, the correlation between the variables of interest, the variable types as well as the
purpose of the survey are decisive factors. The use of a scalarization technique is mandatory
to treat this conflict of objectives and to solve the optimization problem numerically. The
choice of a scalarization technique is not clear in advance, depends on the application, and
has a considerable influence on the solution of the problem.

The most intuitive scalarization technique is the weighted sum method, for which each objec-
tive is weighted and the weighted objectives are cumulated (Jahn 1986). Another widespread
technique is the epsilon-constraint method, which corresponds to minimizing the cost while
respecting variance restrictions (Ehrgott 2005 and Falorsi and Righi 2015). As we focus on
the minimization of the variance, we do not consider the epsilon-constraint method here.
Moreover, we propose a p-norm of the objectives (p = 1,2, 4,8, 00), which is discussed in Lin
(2005). Schaich and Miinnich (1993) study the particular case p = co which is equivalent to
the so-called min-mazr method.

In addition to scalarization, standardization techniques are also important for standardizing
variances of various types of variables of interest. Schaich and Miinnich (1993) suggest to
replace the variance of the estimators by the coefficient of variation to receive additively
comparable values. In order to retain the mathematical properties of the variance function,
we use the squared coefficient of variation

Var %StrRS
Cv2(7¢)§trRS) = ( }2/ )
Ty

with the population total 7y of variable Y for the (CV2)-standardization. Although the
principal effect is similar, squaring the coefficient of variation may lead to small differences
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in some settings. A drawback of using the squared coefficient of variation is the requirement
for the population total 7y of variable Y, which is generally not given in advance and which,
as it is a ratio, is even more demanding than using only the proxies for the stratum-specific
variances.

Furthermore, we propose the alternative (opt) standardization, in which the objectives are
standardized by the unique univariate optimal allocations as standardization factors. The
standardized objective for the variable of interest Y is given by

Opt( StrRS) Var( Sotrf{S)
Var(?

where Var(;,pt is the univariate optimal allocation for the variable Y computed, for example,
with the box-constraint optimal allocation by Miinnich et al. (2012b). This standardization
technique reflects the relative loss for each variable under consideration when using the com-
promise allocation rather than the single variable optimized allocation. In contrast to (CV2),
an advantage of this technique is that the total 7y of variable Y is not required. Moreover, if
S? has to be estimated, the uncertainty and blur of this estimation is symmetrically present
in the numerator and denominator of the objectives, and, thus, eliminated. Hence, a stan-
dardization by the univariate optimal variances results in a more robust multivariate optimal
allocation.

2.2. Methods of multivariate optimal allocation

The optimal allocation with respect to only one variable of interest Y with box-constraints
for stratum-specific sample sizes is given by (4). The simultaneous consideration of several

variables of interest Y1, ..., Yk yields the following multi-criteria optimization problem
min (Var(%lstrp”s) ., Var(7 StrRS))
ne]Rf
H
s.t. Znh = Nmax (5)
h=1

mhgnthh thl,...,H

where

H
N2 S np
Var StI‘RS h h <1 _ >
cE U

with H cross-classification strata, stratum sizes N, and stratum-specific variances (S ,’j )2 given
for each stratum A = 1,..., H and variables of interest £k = 1,..., K. To prove the existence
of a solution, we refer to Jahn (1986, Theorem 6.3). The multivariate allocation problem
(5) can be reformulated as a single-objective optimization problem with objective function
f: Rf — R4+ by combining the K original objective functions in one scalar expression. In
this scalarization the objective functions are also standardized to make them comparable.
Next, we explain the standardized scalarization in detail.

Weighted sum scalarization

Using the weighted sum scalarization method, we obtain the objective function f given by
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which depends on externally given weights wy,...,wx € R4 with Z,[f:l wg = 1. Using the
squared coefficient of variation as a standardization method, factor « € RX is defined by
Qp = 7',? forall k =1,..., K. Alternatively, if we apply the single unique optimal allocations
as a standardization technique, we set aj, := Valrzpt forallk=1,... K.

Alternative scalarization techniques

Alternatively, by using the p-norm (p < co) as scalarization method, we obtain the objective

K Var(75URS) "\
f(n) = Z S . (7)
k=1

If we define f by the 2-norm, it is equivalent to the weighted sum with equal weights. Finally,
using the min-max method, f is given by

f(n) := max m. (8)

k=1,...,.K O

Properties of the objective function

In the case of the weighted sum scalarization, the objective function f in (6) is continuously
differentiable, strictly convex, and separable (Miinnich et al. 2012b). These properties are
essential for the fast algorithms presented in Section 3. If the alternative scalarization methods
are used, f changes and may loose some of these properties. In particular, the objective f in
(7) is continuously differentiable and strictly convex, but only separable if p = 2. If f is not
separable, as in the case p # 2, special attention must be paid to the selection of the solution
algorithm.

Furthermore, for p = oo the objective (8) is not continuously differentiable. However, many
classical optimization methods, such as the Newton method, rely on differentiability and are
not applicable in this case. For more details we refer to Section 3.

2.3. Weighted sum and Pareto optimization

The scalarization by the weighted sum fits in the theory of Pareto optimality. When opti-
mizing competing objectives, the Pareto frontier describes the set of all efficient solutions in
the sense that for all points in the frontier one objective can only be improved by diminish-
ing another. Therefore, the Pareto frontier gives a very suitable characterization of all those
points decision makers should consider in a multi-criteria optimization problem. On the other
hand, it is not advisable to choose an allocation which is not on the Pareto frontier, because
it could be improved without cost.

Moreover, the Pareto frontier describes the optimal solutions independently from the weight-
ing, that means independently from the ranking of the variables of interest by decision makers.
Instead of determining the ranking in advance, our method allows users to select a preferred
solution among all Pareto optimal points after the optimization step. Advantages of this pro-
cedure are the ability to optimize without a known priority ranking of the variables of interest
and the possibility to use additional information at the time of decision, for example variance
structures or sensitivity, and the robustness of the solution with respect to the weights.

We describe the entire frontier of Pareto optimal solutions to the multivariate allocation prob-
lem (5) mathematically in Appendix A and extend the results by Folks and Antle (1965). We
prove that each optimal solution of the weighted sum reformulation for an arbitrary choice
of weights is a Pareto optimal solution for (5). Moreover, if we solve the weighted sum prob-
lem for all possible choices of weights, we obtain all Pareto optimal solutions of the original
problem (subject only to the discretization of the weights). This way, we compute the whole
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Pareto frontier of the multivariate allocation problem. We refer to Sections 4.2 and 4.3 for
computation algorithms of the Pareto frontier, their implementation, and exemplary numer-
ical results.

2.4. Multivariate optimal integer allocation

So far, we have ignored the requirement that the calculated stratum-specific sample sizes
in an (univariate or multivariate) optimal allocation problem have to be in the set of non-
negative integers for almost all application problems because, for example, a fraction of a
person cannot be drawn in a sample. In general, the solution of the allocation problems in
continuous variables presented in Section 2.2 is not an integer but a fractional number. In
practical applications this problem is commonly solved by a rounding strategy in the post-
processing of the results. However, a rounded solution obtained this way is in general not
an optimal solution in the set of all integral solutions as in the example data presented in
Section 4.4. Therefore, we also discuss an algorithm for the computation of the globally
optimal solution in integer variables.

3. Algorithmic solution of allocation problems

In this section we present two efficient algorithms for the numerical solution of (5) in contin-
uous and integer variables. The strict convexity and separability of the scalarized objective
function f is crucial for the correctness of both algorithms. Concerning the scalarization and
standardization techniques presented in Section 2, f is only separable for the weighted sum
or the 2-norm but not for the other p-norms or min-max.

3.1. Semismooth Newton

The algorithm is based on developments and derivations published in Miinnich et al. (2012b)
who consider a univariate optimal allocation problem with box-constraints. After scalarization
and standardization with the techniques described in Section 2, it is also applicable to the
multivariate problem. The main characteristic of the algorithm is to express the stratum-
specific sample sizes ny, as a function of the Lagrange multiplier A € R by transforming the
Karush-Kuhn-Tucker optimality conditions. Then, the expression for np(\) is substituted
into the equality-constraint of the original problem, which leads to a one-dimensional system
of equations depending on A

H

(A) = 14(A) = Nmax = 0 (9)

h=1

=

with np(A) := Proj (1m0, M] (%) 2, where Proj[mh’Mh] denotes the projection into the inter-
val [mp, Mp]. Due to this cut-off, ® is not continuously differentiable. Nevertheless, Qi and
Sun (1993) show semismoothness for ®. Miinnich et al. (2012b) suggest a fixed-point itera-
tion to solve (9). We chose a semismooth Newton method because it allows for additional
generalizations. For a detailed presentation of the semismooth Newton method in the context
of survey statistics, we refer to Miinnich et al. (2012a).

It is also necessary to solve non-separable settings of the continuous allocation problem for
a complete comparison of the methods in Section 4. These instances are solved with the R
package nloptr (Ypma, Borchers, and Eddelbuettel 2014).

3.2. Solution as integer optimization problem

As in the continuous case, the multivariate optimal integer allocation problem is algorith-
mically tractable whenever the objective function f is separable and convex. The problem
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reduces to a single-objective optimization problem and algorithms developed for the univariate
allocation problem can be applied directly.

Friedrich et al. (2015) present three algorithms for the problem that use the fact that the
minimization of a separable and convex function is polynomially solvable in integer variables if
the feasible set is a so-called polymatroid, which is a convex polytope with strong combinatorial
properties. An exhaustive discussion of the mathematical background is given in Friedrich
(2016). The algorithms are based on so-called Greedy strategies and find the globally optimal
integer solution.

In the case of convex objective functions that are not necessarily separable, the problem can
still be reformulated as a single-objective integer optimization problem, but the fast Greedy
algorithms do not find the optimal solution. Nevertheless, it is possible to solve these more
general problems with the help of a reformulation as linear integer problems (Hochbaum
1995). A reformulation of this type has been solved with the commercial software FICO
Xpress Optimization Suite in Friedrich et al. (2015) with the result that computation times
worsen significantly (many hours instead of seconds). Therefore, we do not solve the integer
version of the non-separable problems in Section 4.

4. Simulation study and results

We use the synthetic AMELIA dataset (Merkle et al. 2016) for a simulation study to verify and
compare the presented methods. It is a household dataset reflecting the household structure
of Europe containing 3 781 289 households and 10012600 individuals. We use the household
structure with stratification levels districts (DIS — 40 strata), household size (HHS — 6 strata),
and degree of urbanization (DOU — 3 strata). This results in 40-6-3 = 720 cross-classification
strata. As variances have to be compared, cross-classification strata with a total size of Nj, < 2
are eliminated, so that the simulation only contains 676 strata. The size distribution of the
676 strata is shown in Figure 1 clustered by the classes of household size. Classes 1 up to 5
contain households with the respective number of persons, class 6 contains households with
more than five persons.

Size of strata

0e+00 4e+04 8e+04
|

class1 class2 class3 class4 class5 class6

Figure 1: Size distribution of the 676 cross-classification strata clustered by the classes of
household size.

We choose the total household income (INC), the social income (SOC), and the age of the
main income earner (HAGE) as variables of interest. The social income of a household is
defined as the sum of unemployment, old-age, survivors, sickness, disability, and education-
related benefits of all people within the household, see Merkle et al. (2016). Although the three
variables of interest are all continuous, our method is applicable to proportions of categorical
variables as well.

The correlations within each district are presented in the boxplots in Figure 2. The corre-
lations over the population are depicted as vertical lines. In particular, concerning variable
HAGE, we observe some differences between the overall correlation and the separated district
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correlations.
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Figure 2: Boxplots of the correlations of the variable of interest per district in contrast to the
total population (vertical lines).

We compare the estimates under various settings with the relative mean squared error (RMSE).
Because the sampling design is stratified random sampling, the estimates are unbiased and
the RMSE comparison is equivalent to the variance comparison (Lohr 2010, chapter 2). Since
the AMELIA dataset is used, the true values of the RMSEs can be computed directly for
the comparative analysis rather than the Monte Carlo equivalences. Furthermore, most of
the following figures and graphs do not contain absolute values of errors, variances or sample
sizes, but relative values compared to the case of an independent univariate optimal allocation
of the three variables of interest.

4.1. Comparison of variances depending on the decision-making strategy

In the following, we compare the results of the four decision-making functions 2-norm, 4-
norm, 8-norm, and min-max as well for the (CV2)-standardization and the alternative (opt)-
standardization presented in Section 2.1. The variance functions for each variable of interest
have equal weights in these settings and, as pointed out before, the 2-norm is equivalent to
the weighted sum with equal weights.
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Figure 3: Relative change of RMSE for the estimated population totals for various standard-
ization and scalarization techniques.

In Figure 3 we show the relative increase of the RMSE for the total population estimates of
the three variables of interest compared to the optimal univariate allocation computed by the
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method of Miinnich et al. (2012b). For a better visibility, the 4-norm is not displayed in the
figure. Its graph is between the graphs of the 2- and 8-norm. As every univariate optimal
allocation is optimal, the RMSEs have to be higher or equal in the multivariate case compared
to the univariate RMSEs. As a consequence, the graphs in Figure 3 are located on or above
the horizontal one-line. In the settings with (CV2)-standardization, the error-increases are
not well balanced. Because

CVA(7566%) > CVA(IRE™) > OV (Aac)

for all appropriate allocations, the increase of the RMSE is smallest in variable SOC. In the
min-max case (p = 00), the increase for SOC is zero, which means that the multivariate
optimal allocation is equal to the univariate optimal allocation with respect to SOC.

In contrast, we observe a well balanced increase of the RMSEs for the (opt)-standardization
because the p-norm of the relative change of the variances compared to the univariate optimal
allocations is minimized. This results in a well compensated allocation. For p = co we obtain
an almost equal increase.

In Figure 4 we plot the same settings as in Figure 3, but the RMSEs of the subtotal estimates
of each of the 40 districts are presented. As before, the errors are illustrated relative to the
errors when using the univariate optimal allocations. Dots which are located to the right of
the vertical one-line correspond to subtotal estimates with an increase of the district specific
RMSEs. Accordingly, dots to the left of the one-line correspond to estimates with a decrease.
Again, the settings with the most compensated errors are those corresponding to the (opt)-
standardization. Although the RMSEs in Figure 3 are higher than the univariate RMSEs, the
multivariate allocation also leads to error-decreases in some districts, shown as points located
to the left of the one-line in the boxplots.
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Figure 4: Relative change of RMSE for the estimated district totals for various standardization
and scalarization techniques.

Figures 3 and 4 show that the (CV2)-standardization and a scalarization with a larger p
accentuate single variables, in particular those with a comparably high CV. This contrasts
compensatory methods which may be preferable in cases where no most important variable
is obvious.



Austrian Journal of Statistics

4.2. Comparison of variances depending on the chosen weights

Predefined weights

Here, we focus on the weighted sum as decision-making function. As illustrated in Section 2.3,
this decision-making function facilitates the computation of the whole set of Pareto optimal
solutions. We plot the relative increases of the district specific RMSEs for ten combinations
of weights for the (CV2)-standardization in Figure 5 and for the (opt)-standardization in
Figure 6. The relative error-increases of the total population estimates are comparatively

INC SOC HAGE
1.00 | 0.00 | 0.00 n o
0.67]0.33 0.00 .
0.67|0.00]0.33 ' .
0.33/0.33]0.33

0.33]0.67 | 0.00
0.33/0.00]0.67
0.00|0.33]0.67

e

-
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0.00 | 1.00 | 0.00
0.00 | 0.00 | 1.00

Combination of weights in weighted sum

08 09 1.0 11 12
Relative change of the RMSE

0.8 09 10 11 1.2

Figure 5: Relative change of the RMSE for the estimated district totals for ten combinations
of weights with (CV2)-standardization. Red boxes correspond to a weight of 0.00, orange
boxes to a weight of 0.33, and yellow boxes to a weight of 0.67 for the respective variable.

shown as vertical lines. The settings in row one, nine, and ten are equal to the univariate
optimal allocations with respect to one of the three variables of interest, which is why the
boxplots for the corresponding variables have no spread. In most cases, higher weights coincide
with lower estimation errors of the district totals. Nevertheless, this coincidence is not a
general statement and depends, among others, on the correlation structure of the variables
of interest. Comparing the results of Figures 5 and 6, we observe more compensated error-

Combination of weights in weighted sum

1.00 | 0.00 | 0.00
0.67|0.33] 0.00
0.67|0.00]0.33
0.33/0.33]0.33
0.330.67]0.00
0.33]0.00] 0.67
0.00 | 0.33]0.67
0.00|0.67]0.33
0.00 ] 1.00 | 0.00
0.00 | 0.00 | 1.00
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H
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Relative change of the RMSE

Figure 6: Relative change of the RMSE for the estimated district totals for ten combinations
of weights with (opt)-standardization. Red boxes correspond to a weight of 0.00, orange boxes
to a weight of 0.33, and yellow boxes to a weight of 0.67 for the respective variable.
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increases over all variables and all districts using the (opt)-standardization than using the
(CV2)-standardization. For example, in Figure 5 the variable SOC is dominant. If SOC
is assigned any weight higher than zero, the increase in the error of the estimates is low
for SOC, but high for the other variables of interest. This effect does not occur for the
(opt)-standardization and the particular weight combinations w = (1/3,1/3,1/3) and w =
(0,1/3,2/3) in Figure 6.

Pareto optimization

To obtain a characterization of the Pareto frontier, we compute the multivariate optimal
allocations for all possible combinations of weights with a resolution of 0.1.

In the heatmaps in Figure 7 we plot the increase of the variances of the total estimates with
respect to the univariate optimal allocation variances. Each dot represents one combination
of weights. The percentage weight for each separate variable is marked on the related axis.
In consequence of the scaling resolution of 0.1, the dots which represent the equal weighting

Increase of the variances of INC Increase of the variances of INC
(CV2)-standardization (opt)-standardization
HAGE HAGE
1.12 1.12
1.10 1.10
1.08 1.08
1.06 1.06
1.04 1.04
1.02 1.02
Increase of the variances of SOC Increase of the variances of SOC
(CVv2)-standardization (opt)-standardization
HAGE HAGE
1.12 1.12
1.10 1.10
1.08 1.08
1.06 1.06
1.04 1.04
1.02 1.02
Increase of the variances of HAGE Increase of the variances of HAGE
(CVv2)-standardization (opt)—standardization
HAGE HAGE
1.12 1.12
1.10 1.10
1.08 1.08
1.06 1.06
1.04 1.04
1.02 1.02

Figure 7: Relative increase of the variances of the population estimates under (CV2)- and
(opt)-standardization for 66 combinations of weights for each variable of interest. The per-
centage weight for each separate variable is marked on the related axis.

w = (1/3,1/3,1/3) and the weighting w = (0,1/3,2/3) are not contained in the heatmaps.
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However, they can be accurately approximated by the surrounding dots. Blue dots are favor-
able because they represent combinations of weights with a lower increase of the variances. For
example, the minimal variance for variable INC is located at the vertex where variable INC is
given the full weight 1.00. The variances differ depending on the choice of the standardization
strategy.

A similar behavior between the variances of INC and SOC can be observed because of their
positive correlation of 0.27. In addition to that, the correlation between HAGE and INC
as well as HAGE and SOC is smaller, which results in a higher error-increase of the total
estimate of HAGE, even for roughly equal weights. Similarly to Section 4.1, the setting with
(opt)-standardization is more balanced in the overall comparison of the heatmaps.

The structure of the heatmaps in Figure 8 is equivalent to Figure 7, but the cumulated error-
increase of the total estimates of the three variables of interest is plotted. In the case of the
(CV2)-standardization, the best choice is an asymmetric weighting. In contrast, the setting
with (opt)-standardization is more balanced, so the best choice has roughly equal weights.

Cumulated increase of the variances Cumulated increase of the variances
(CV2)-standardization (opt)—standardization
HAGE HAGE
1.08 1.08
1.07 1.07
1.06 1.06
1.05 1.05
1.04 1.04

Figure 8: Relative cumulated increase of the variances of the population estimates under
(CV2)- and (opt)-standardization for 66 combinations of weights. The percentage weight for
each separate variable is marked on the related axis.

By Theorem A.l, each dot in the heatmaps represents the variance of one Pareto optimal
solution. To be precise, the dots along the edges (where at least one weight is zero) are
weakly Pareto optimal. Combining the heatmaps of the three variables of interest in one
plot, we can display the Pareto frontier in Figure 9. Each dot in the three-dimensional space
represents one Pareto optimal solution. Each of the three axes represents the error-increase
for the corresponding variable. As already observed before, the (opt)-standardization results
in a more balanced Pareto frontier.

Pareto frontier using Pareto frontier using
the (CV2)-standardization the (opt)-standardization
1.12 1.12
‘ 1.06 ‘ 1.06
HAGE HAGE
1.02 1.02
1.12 E— 1.12
L0002 108 114 100102 108 114
SOC SOC
INC INC

Figure 9: Pareto frontiers for the (CV2)-standardization and (opt)-standardization.

The evaluation of these plots offers valuable support for the decision maker to select the
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preferred solution among all efficient solutions. By using the weighted sum and calculating
the Pareto frontier, the decision is based on a higher level of reliable information. This
contrasts using a p-norm that does not give the user the possibility to choose his preferred
solution.

As the computation of the Pareto frontier requires the solution of many optimal allocation
problems, it is only realizable in a practical time frame if efficient algorithms are used. We
show in Section 4.5 that our algorithms are fast enough to facilitate this analysis of the Pareto
frontier for multivariate allocation problems even for large problem instances. Moreover, this
finding holds for both the continuous and integer problem.

4.3. Comparison of stratum-specific sample sizes

In Figure 10 the stratum-specific sample sizes are presented on the district level. Each boxplot
contains the 40 districts and shows the relative change of the stratum-specific sample sizes
compared to the equal weighting w = (1/3,1/3,1/3) in line four.
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Figure 10: Relative differences in stratum-specific sample sizes of the districts.

On the one hand, there is a spread in the stratum-specific sample sizes depending on the
weights (up to 12%), which illustrates the effect of the chosen weighting on the structure of
the optimal allocation and the advantage of knowing the Pareto frontier. On the other hand,
we recognize clear differences between the (CV2)- and (opt)-standardization. The relative
changes of the sample sizes using (opt)-standardization is smaller.

4.4. Comparison of continuous and integer solution
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Figure 11: Absolute differences between district-specific sample sizes for rounded and integer
allocation.
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In Figure 11 we compare the rounded optimal continuous solution of the multivariate al-
location problem, computed by the semismooth Newton method, with the optimal integer
solution, computed by the Greedy method. We plot the cumulative differences in each dis-
trict exemplary for two combinations of weights and both standardization techniques.

The rounded sample sizes differ from the optimal integer sample sizes and the differences
vary from —2 up to 42 per district. The associated RMSEs are also different. This shows the
advantage of the integer optimal allocation — especially when considering that the computing
times of the continuous and integer solver are of the same magnitude (Friedrich et al. 2015).

4.5. Performance of the algorithms

All the numerical results are computed in R on a desktop PC with an Intel Core i7-6700 CPU
at 3.40GHz x 8 and an internal memory of 32 GB.

Miinnich et al. (2012b) and Friedrich et al. (2015) show that the fixed-point iteration or semis-
mooth Newton method for the continuous problem as well as the Greedy algorithm for the
integer problem have huge advantages in computing time compared to the R package nloptr
which provides an R interface to the open-source library NLopt for nonlinear optimization.
However, as pointed out in Section 2.2, the separability of the objective function is mandatory
for these algorithms, so they can only be applied using a weighted sum or 2-norm as standard-
ization technique. The following results are based on the weighted sum setting with equal
weights w = (1/3,1/3,1/3) and (opt)-standardization. Neither the choice of the weights,
nor the selection of the standardization technique changes the numerical performance of the
algorithms significantly. The initial point A° for the continuous solvers is calculated as the
mean of the three separate univariate optimal stratum-specific sample sizes.

Table 1: Performance of the semismooth Newton algorithm compared to nloptr.

R package Semismooth
nloptr Newton
Computing time [ms] 6801 1
Iterations 242 4

The performance of the semismooth Newton algorithm is shown in Table 1 and Table 2. Using
similar predefined precisions, we observe distinct improvements in computing time and the
number of iterations compared to the R package nloptr. Moreover, by analyzing column two
of Table 2, we can numerically confirm a quadratic convergence rate, which is proved (locally)
for the semismooth Newton method in Qi and Sun (1993).

Table 2: Convergence of the semismooth Newton algorithm.

Iteration i Residual ||®(\")||]2  Objetive f(n(A\?))

0 2.0-10% 6.0263 - 10'2
1 6.1-10° 6.1512 - 1012
2 6.0-1073 6.1552 - 1012
3 5.8-107° 6.1553 - 10'2
4 1.3-1074 6.1553 - 1012

For the computing times of the Greedy methods for the integer allocation problem we refer to
the detailed analysis in Friedrich et al. (2015), who, in particular, prove a worst-case bound
on the running time. The computing times are generally longer than those for the fixed-point
iteration in the continuous case, but still well below one second.
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5. Conclusion

The optimization of stratified sampling designs must consider many requirements, such as
conflicting variables of interest, cost restrictions, or the control of sampling fractions. This
results in a multivariate optimal allocation problem under constraints.

We have proposed several scalarization and standardization techniques for the efficient solu-
tion of multivariate allocation problems. Whereas the scalarization reflects the decision func-
tion when evaluating conflicting goals, the standardization of the variances yields a rescaling
of the variables fostering comparability. Furthermore, we have shown how the entire Pareto
frontier as the set of all Pareto optimal solutions can be computed. The major benefit is the
possibility of an a posteriori choice of a weighting scheme of the variables of interest, so that
the decision maker is able to incorporate additional information to achieve the application-
specific optimal allocation. As a further advantage, it is not necessary to a priori assess the
conflicting goals or rank the variables of interest. Additionally, we have observed considerable
differences in estimation errors and stratum-specific sample sizes when varying the weighting
schemes. We can underline the importance of the chosen scalarization, standardization, and
weighting in multivariate optimal allocation.

We have computed solutions for instances of the continuous and integer allocation problem
using the AMELIA dataset. This simulation study presents the algorithms comparatively,
underlines their advantages, and allows recommendations for their practical use. In contrast
to standard solvers, using the separability and convexity of the given problem yields a sub-
stantial increase in the numerical performance, which enables calculating the Pareto frontier
in high resolution. The integer algorithm avoids rounding. Moreover, the semismooth Newton
method supports extensions with more general restrictions.
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A. Appendix: Optimality in multi-criteria optimization

It is in general not possible to find all Pareto-optimal points for a multi-criteria optimization
problems by solving the weighted sum problem. In this section we analyze the weighted sum
method for the multivariate allocation problem mathematically. While the sufficient condition
of Theorem A.1 holds in a very general setting, see for example Folks and Antle (1965), this
is not true for the necessary condition of Theorem A.3. We assume that the reader is familiar
with the concept of optimality in multi-objective optimization and in particular with (weak)
Pareto optimality. We refer to Ehrgott (2005, chapter 2) or Jahn (1986, chapter 4) for a
detailed presentation.

Theorem A.1 (Sufficient Condition). Let D C R and let f, : D - R, k = 1,..., K.
For every optimal solution n of min,ecp Zszl wyfr(n) with weights w € RE, the following
statements hold.

1. 1 is a weakly Pareto optimal solution for minpep(fi(n),..., fx(n)) if w > 0.
2. nis a Pareto optimal solution for min,ep(fi(n),..., fx(n)) if w > 0.
Proof. Proposition 3.9 in Ehrgott (2005). O

In what follows, we show that under convexity assumptions it is possible to find all Pareto
optimal points by solving a weighted sum problem.

Lemma A.2. Let D C R¥ be convex and let fr, : D = R, k=1,...,K, be convex functions.
Then the set C(f) == {(fi(n),..., fx(n))T|n € D} + RE is convez.

Proof. Theorem 2.6 in Jahn (1986). ]

Theorem A.3 (Necessary Condition). Let D C R be convex and let fr : D — R for
k=1,...,K be convex functions. Then, for each Pareto optimal solution n of the problem
mingep(fi(n), ..., fx(n)) there exist weights w € RE \ {0} such that i is an optimal solution
of the weighted sum problem min,cp Z,i(:l w fr(n).

Proof. Using the convexity of the objective function, Lemma A.2 shows that the set Cy(f)
mentioned in the lemma is convex. Using this property, the result follows directly from
Theorem 5.4 in Jahn (1986). O

As the convexity assumption of Theorem A.3 holds for the optimal allocation problem for-
mulated in (5), we can apply the theorem and we have proved that (up to discretization) the
computations in Sections 3 and 4 describe the entire Pareto frontier of the problem.
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