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Abstract

We introduce generic definitions of symbolic variance and covariance for random
interval-valued variables, that lead to a unified and insightful interpretation of four known
symbolic principal component estimation methods: CPCA, VPCA, CIPCA, and SymCov-
PCA. Moreover, we propose the use of truncated versions of symbolic principal compo-
nents, that use a strict subset of the original symbolic variables, as a way to improve the in-
terpretation of symbolic principal components. Furthermore, the analysis of a real dataset
leads to a meaningful characterization of Internet traffic applications, while highligting
similarities between the symbolic principal component estimation methods considered in
the paper.
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1. Introduction

The low cost of information storage combined with recent advances in search and retrieval
technologies has made available huge amounts of data, the so-called big data explosion. New
statistical analysis techniques are now required to deal with the volume and complexity of this
data. One promising technique is Symbolic Data Analysis (SDA), introduced by E. Diday
(1987).

In conventional data analysis, the variables that characterize an object can only take sin-
gle values. SDA introduces symbolic random variables which can take values over complex
data structures like lists, intervals, histograms or even distributions (Billard and Diday 2006).
Symbolic data may exist on their own right or may result from the aggregation of a base
dataset according to the researchers interest. For example, suppose that our goal is to char-
acterize the ages of university teachers. The variable that records the teachers’ age will have
as many observations as teachers, and these can differ among universities. Let us assume that
a given university has 1000 teachers, and the values w1, ... ,wig00 are the teachers’ ages. SDA
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calls these values micro-data. In conventional statistical analysis, the universities would have
to be characterized by single-valued variables, e.g. the mean teachers’ age. SDA can deal
with more complex data structures, called macro-data. For example, the teachers’ age can
be aggregated into one or multiple intervals. Our main interest in this paper is on interval-
valued data, where macro-data corresponds to the interval between minimum and maximum
of micro-data values: [a,b] = [min {w1,...,wip00}, max {w1,..., w1000}

The paper is organized as follows. Section 2 presents basic descriptive statistics, including
symbolic variances and covariances, for interval-valued data. Section 3 introduces Symbolic
Principal Component Analysis (SPCA) for interval-valued data. Section 4 uses SPCA on
the analysis of Internet data produced by six different Internet applications. Finally, some
conclusions are drawn in Section 5.

2. Basic descriptive statistics

There have been several proposals for definitions of symbolic versions of sample mean, vari-
ance, covariance, and correlation, according to various types of symbolic data, including
interval-valued data (Billard and Diday 2006).

We assume that the collected interval-valued data are realizations of random vectors. As such,
we consider a random interval-valued vector X = (X1, ..., X,)!, where X; = [4;, Bj], with A;
and B; being random variables verifying P(A; < Bj) = 1, denotes the j-th random interval-
valued variable of X. Even though this is the common representation of random interval-
valued variables, we follow the approach of Vilela (2015) and write the intervals X; in terms
of their centers, C; = (4; + B;)/2, and their ranges, R; = B; — A;. Equivalently, [4;, B;] =
[C; — R;j/2, C; + R;/2]. This choice leads to a clear interpretation of an interval in terms of
its “location” on the real line along with its length; moreover it enables for the unification of
several results in the literature (cf. Vilela (2015) and references therein). Likewise, the random
vector X is equivalently represented by the random vector of centers, C = (C,...,C,)!, and
the random vector of ranges, R = (Ry, ..., R,)".

Let (C1q,...,C)! and (Ry,..., R,)! denote the vectors of centers and ranges obtained from
a random sample of size n from X, where C; = (Cj1,...,Cy)" and R; = (Ri1,..., Rip)"
characterize the i-th entity or object of the sample. In this setting, a natural proposal for
sample symbolic mean of the interval-valued variable X is to use the traditional sample mean
of the centers, X, = C; with C; = Y | Ci;/n (Billard and Diday 2006).

As concerns the sample symbolic variance of the interval-valued variable X;, we express the
proposals available in the literature as the sum of two components, the first accounting for
the variability of the associated centers and the second for the size of the associated ranges,
in the form

L (0 -Ty) R

S :Zin +ay. ~, (1)

i=1 i=1

with the nonnegative weight a accounting for the relevance given to the sizes of the ranges.
In particular, we address three cases, with respective values 0, 1/4, 1/12, for the weight a.
The first case (a« = 0) ignores the contribution of the ranges, simply turning the symbolic
variance into the variance of the centers (Billard and Diday 2006). Concerning the second
case (ov = 1/4), we note that as R;;/2 represents the radius of the j-th random interval-valued
variable measured at the i-th entity, thus Y ", R?j (4n) may be interpreted as the sample
second order moment of the radius of the j-th random interval-valued variable. This was
originally proposed by De Carvalho, Brito, and Bock (2006). The third case, presented in
Bertrand and Goupil (2000), corresponds to choosing the weight o = 1/12, which is derived
assuming that micro-data are uniformly distributed on the associated macro-data interval.

In the same manner, we consider proposals for the sample symbolic covariance between two
interval-valued variables X; and X; that express it as the sum of two components, the first
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accounting for the sample covariance of the associated centers and the second for the size of
the associated ranges, in the form

S =3 ( ]31( 1= 1) +5Z]Tl’ 2)
=1

=1

with the nonnegative weight 5 accounting for the relevance given to the sizes of the ranges
associated to the interval-valued variables X; and X;. The case 8 = 0 was introduced by
Billard and Diday (2003), 5 = 1/12 by Billard (2008), and finally 5 = 1/4 by Vilela (2015).
In sequence, we may use (1)-(2) to construct a sample symbolic covariance matrix S **
having on the diagonal the sample symbolic variances S;j‘-”), given in (1), and outside the

diagonal the sample symbolic covariances S j(f ) j #1, given in (2), leading to

RR' RR'
+B

S = 8ce + (a— B) Diag ( _— (3)

n

with Scc denoting the sample covariance matrix of the centers and R = [R;;] the (n x p)
matrix of random sample ranges. Particular cases of sample symbolic covariance matrices,
S@? with o € {0,1/12,1/4} and 8 = a or 8 = 0 have been introduced in the literature
(vide Vilela (2015) and references therein). Details about the links between these sample
symbolic covariance matrices and SPCA for interval-valued data are discussed in the next
section.

3. Symbolic principal component analysis

Principal component analysis (PCA) is one of the most popular statistical methods to analyse
real data. There have been several proposals to extend this methodology to the symbolic
data analysis framework, in particular to interval-valued data. The majority of the available
methods rely on a strategy called symbolic-conventional-symbolic, meaning that: (i) input
data is symbolic (interval-valued, in here), (ii) the data is converted into conventional, to which
the conventional PCA method is applied, and (iii) at the end, the PCA results are turned
into symbolic, usually by a method called Maximum Covering Area Rectangle (MCAR).

We study four SPCA methods: centers (CPCA) and vertices (VPCA) methods, presented
in Cazes, Chouakria, Diday, and Schektman (1997); the Complete Information PCA method
(CIPCA), introduced by Wang, Guan, and Wu (2012); and Symbolic Covariance PCA (Sym-
CovPCA), proposed by Le-Rademacher and Billard (2012). CPCA and VPCA corresponds
to the first SPCA methods proposed in the literature and the last two are among the most
recent alternatives. All these methods rely on the symbolic-conventional-symbolic strategy,
which can be specified as follows: (i) compute the associated (p x p) sample symbolic covari-
ance matrix S ? (vide Table 1); (ii) obtain the spectral decomposition of S as in the

conventional PCA, and (iii) transform the conventional scores into symbolic scores, e.g. using
MCAR.

Note that § @ and § (2 (vide Table 1) are covariance matrices that use a definition of
symbolic variance of an interval-valued variable that does not coincide with the definition of
symbolic covariance between the same interval-valued variable and itself. On one hand, this
violates a basic rule in the conventional framework, namely that the variance of a variable
equals the covariance of the variable with itself. On the other hand, S 39 and § 12 can be
seen as the sum of two symmetric semi-positive definite matrices, which guarantees that they
are themselves symmetric semi-positive definite matrices and, therefore, its eigenvalues and
eigenvectors verify the usual properties associated with conventional principal components.
Overall, Wang et al. (2012), who proposed S(%’m, argue that the variance of a variable being
defined differently from the covariance of the variable with itself turns into an advantage of
their method.
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Table 1: Sample symbolic covariance matrices, S “?, defined by the combination of several
proposals for symbolic variances and covariances along with the corresponding SPCA method.

(a, B) S SPCA Method
(0,0) Sce CPCA
By Sees ! RE -
(5> 1) Scc + % RE' SymCovPCA
(3,0) Scc+ iDz‘ag (th) VPCA
(73,0) Scc + %Diag (th> CIPCA

Similarly to the conventional PCA, it may be interesting to define the SPCA based on stan-
dardized interval-valued variables, and to do so we introduce the sample correlation matrix

1/2
as: PP = U(_O})S(‘”*ﬁ)U(_al)7 where U () = Diag <S§?),...,SZ()§>) , for §@A) = [Sj(f’m],

where Sj(;’ﬁ) = S](;) and Sj(f’ﬁ) = Sj(f), for j # I. Equivalently, S** = U ,,P*?U ..
Thus, SPCA methods based on standardized interval-valued variables just have to use P (*#
instead of § (>,

The most common way to transform conventional objects into symbolic ones for methods fol-
lowing the symbolic-conventional-symbolic strategy is the MCAR representation. This repre-
sentation was introduced by Chouakria (1998) to obtain the symbolic scores of the CPCA and
VPCA methods, but can be used with any other method following the symbolic-conventional-
symbolic strategy. Accordingly with this proposal, the sample interval-value score of the i-th
object on the j-th symbolic principal component (SPC) is:

SP/TC@‘ = |PC;(min1), PC;(max 7,)} , (4)

where j =1,...,p, i=1,...,n and 4; is the j-th eigenvector of §*, the sample symbolic
covariance matrix under consideration. Moreover, the lower bound is formed by the linear
combinations of the lower bounds of the original intervals in case of positive weights, 4; > 0,
plus the combination of the upper bounds if the weights are negative, 4; < 0 , leading to

PC;(mini) = Y (aq—a); + Y (ba— @), ()

1:%1;>0 I:%1;,<0

1 & a;; + by
here ¢; = — £ Likewise
where ¢ n; 5 ikewise,

PCj(maxi) = Y  (bg—a)dy; + > (aq—a). (6)

l:’?lj>0 l:’%j<0
Moreover, the hyper-rectangle formed by the first k SPC, (S/P?Cil, e ,SP/\Cik)t is the MCAR

k-dimensional representation of the i-th object.

4. Analysis of Internet data

In this section we illustrate the use of SPCA through a dataset of Internet traffic, typically
observed in backbone networks, and measured during July 2014. Specifically, the dataset
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contains traffic produced by six different Internet applications, namely Web browsing (pro-
duced by HTTP), file sharing (produced by Torrent), streaming, video (YouTube), port scans
(produced by NMAP), and snapshots. The first four applications correspond to regular traf-
fic and the last two to Internet attacks. The analysis usually aims at detecting the various
Internet applications within a traffic aggregate and/or the separation between regular and
illicit traffic.

The dataset comprises 917 traffic objects, corresponding to packet flows of specific applica-
tions, which we call datastreams. For each datastream, we registered five different traffic
characteristics observed in 0.1 seconds intervals, during 5 minutes. The traffic characteristics
registered were the following: number of upstream packets (PUp), number of downstream
packets (PDw), number of upstream bytes (BUp), number of downstream bytes (BDw), and
number of active TCP sessions (Ses). Thus, each object is characterized by a total of 3000
observations per traffic characteristic, which constitutes our micro-data.

The conventional approach to analyse this data is based on summary statistics of each traffic
characteristic. In particular, (Pascoal, Oliveira, Valadas, Filzmoser, Salvador, and Pacheco
2012; Pascoal 2014) used 8 summary statistics (minimum, 15! quartile, median, mean, 3rd
quartile, maximum, standard deviation, and median absolute deviation) for the above five
traffic characteristics, giving a total of 40 variables to describe the datastreams. This approach
usually requires a pre-processing step to remove irrelevant and redundant variables; Pascoal
(2014) used a robust feature selection method based on mutual information for that purpose.

This dataset is naturally symbolic, since each traffic characteristic is multi-valued. SDA takes
into consideration the complex structure of these data, and may lead to clearer interpre-
tation and new insights. In our case, we will use interval-valued variables for each traffic
characteristic (our macro-data), instead of the 8 summary statistics listed above.

Given the nature of the data and the existence of potential atypical observations among
the micro-data, we decided to trim 1% of the lower and 1% of the higher values. This
was only done for the regular applications given that illicit ones have few datastreams and
small variability and would be completely eliminated from the dataset, even for such small
trimming percentiles. Apart from that, and following the recommendations in (Pascoal et al.
2012; Pascoal 2014), data was smoothed using a logarithm transformation (In(x + 1), to
overcome the existence of zeros). SPCA, estimated according with the four methods under
study, was applied to this dataset and percentages of explained variance from the conventional
and symbolic approach are summarized in Table 2.

Table 2: Eigenvalues of the sample symbolic covariance matrices for each estimation method,
and associated cumulative percentage of total conventional variance.

CPCA SymCovPCA VPCA CIPCA
A;  Cumul Aj  Cumul. A;  Cumul Aj  Cumul.
PCi 4.292 65.4% 18.731 87.5% 25.939 50.8%  10.999 51.4%
PCy 1.625 90.1% 1.736  95.6% 16.743 83.6%  6.178 80.3%
PC5 0.540 98.4%  0.740 99.1%  3.584 90.6% 1.900 89.1%
PCy 0.098 99.9%  0.181 100.0% 2.734 95.9%  1.401 95.7%
PC5 0.009 100.0% 0.011 100.0% 2.072 100.0% 0.922 100.0%

The conventional analysis of Table 2 suggests to retain 2 principal components, explaining
between 80.3% (CIPCA) and 95.6% (SymCovPCA) of the total sample variance associated
with §?, meaning that e.g. for CIPCA, (A1 + A2)/ 3271 A; = 0.803.

The results obtained with CPCA and SymCovPCA are similar, and so are the results obtained
with VPCA and CIPCA. Moreover, these similarities are easily explained by the expressions
of Table 1.

Table 3 shows the loadings of the first and second SPC, obtained with the four methods. In
the case of SymCovPCA, the number of upstream and downstream bytes (BUp, BDw) have
the highest loading (on absolute value) in the definition of the first SPC. Thus, the center
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Table 3: Eigenvectors of the sample symbolic covariance matrices for each estimation method,
called loadings.

CPCA SymCovPCA VPCA CIPCA
’3/1 ;72 ;71 ’?2 ;Yl PAY2 6’1 ;)/2
In(PDw+1) -0.316 -0.152 -0.264 -0.171  -0.049 -0.036 -0.125 -0.059
In(BDw + 1) -0.752 -0.016 -0.730 -0.043 -0.986 0.157 -0.932 0.337
In(PUp+1) -0.295 -0.151  -0.255 -0.168  -0.044 -0.038 -0.113 -0.070
)
)

In(BUp+1) -0.491 0.050 -0.571 0.075 -0.153 -0.986 -0.318 -0.937
In(Ses +1) -0.082 0.976 -0.079 0.967 -0.011 -0.012 -0.029 -0.027

and range of the first SPC can be interpreted as a weighted sum of the number of upstream
and downstream bytes. The number of bytes is sometimes referred to as the traffic volume.
For the center, the negative coefficients indicate that datastreams with high (low) number of
bytes in both directions have low (high) center values on the first SPC. For the range, the
coefficients are taken in absolute value, so datastreams with high (low) number of bytes in
both directions have high (low) range values on the first SPC. Recall that the range expresses
the inner variability of micro-data. As for the second SPC, the loading associated with number
of sessions stands out. Thus, datastreams characterized by an high (low) number of sessions
have high (low) center and range values on the second SPC.

The SymCovPCA scores are shown in Figure 1(a). Each datastream is represented by a
rectangle, defined by the centers and ranges of the first two SPC. It can be said that the
various Internet applications are, in general, well identified, since the datastreams show similar
patterns for the same application. Most datastreams have a small minimum traffic volume
(number of bytes), with the corresponding rectangles leaning to the right side. HTTP shows
no distinctive characteristic, since the datastreams spread over all score ranges. This can
be explained by the heterogeneity of user behaviours and accessed Web pages, typical of
Web browsing. Torrent is concentrated on the upper part of the graph, due to its high
number of sessions. The high number of sessions and large variability of the traffic volume
is mostly explained by the variation on the number of available peers during traffic sharing
sessions. The graph also suggests the existence of several Torrent groups, but this pattern will
become clearer with the CIPCA method. The behaviour of video related with the second SPC
contrasts with that of Torrent: it is concentrated in the lower part of the graph, due to its low
number of sessions. Moreover, video is the application with the highest traffic volume. We
may say that video datastreams are characterized by a low number of high volume sessions,
and Torrent by a high number of high volume sessions. Streaming has a behaviour similar to
video, but with higher number of sessions and lower traffic volume. NMAP is the application
with smallest volume and variability, and has also a relatively low number of sessions. Finally,
the behaviour of snapshot is in-between video and streaming, both in terms of volume and
number of sessions. Snapshot has two clear groups, that differ on the peak traffic volume,
and correspond to full desktop and partial desktop uploads, respectively.

Table 3 shows that the loadings obtained with CIPCA are much higher (in absolute value)
for BDw (first component) and BUp (second component). Thus, the first SPC can be inter-
preted as the number of bytes down (BDw) and the second one as the number of bytes up
(BUp). The CIPCA scores are shown in Figure 1(b). Snapshot has the highest upstream peak
traffic volume, and is now better separated from video and streaming. NMAP is again the
application with smaller rectangles. However, it is now better separated from HTTP, since
most HTTP datastreams have higher traffic volume range simultaneously in the upstream and
downstream directions. Video and streaming are also well separated, since video datastreams
have consistently higher traffic volume ranges simultaneously in both directions. Regarding
Torrent, it is now possible to distinguish among three groups: the group centers occur at
approximately the same upstream traffic volume; one group has small traffic range in both
directions (small rectangles) and high downstream volume, another has high traffic ranges
in the downstream direction but small in the upstream direction, and a third one has small
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downstream volumes but high upstream traffic ranges. These groups emerge from differences
on the relative location of peers and the quality/stability of links. The first group corresponds
to closer peers from which it is possible to download at higher speeds, the third to farther
peers for which the links are less stable and unable to download at high speeds, and the third
group is a mixture of the two previous ones.

M} &
~ ~ o] |
o o'
T o | Type of application o Type of application
HTTP (1) | HTTP (1)
—— Torrent (2) e i —_— Torrent_(Z)
Streaming (3) w - . — Streaming (3)
«~ —— NMAP (4) TIE i | — NMAP(4)
" —— Snapshot (5) — Snapshot (5)
Video (6) Video (6)
T T T T T T T T
-10 -5 0 5 -10 -5 0 5
PC_1 PC_1
(a) SymCovPCA. (b) CIPCA.

Figure 1: Symbolic scores, estimated by MCAR method.

To validate these interpretations, we follow an approach similar to Cadima and Jolliffe (2001)
where we consider the truncated SPC with respective loadings, 'Ay?, equal to 4, for the in-
put variables considered to be relevant for interpreting 4, (highlighted in boldface in Table 3)
and zero otherwise. With these truncated weights, we compute the corresponding centers and
ranges of the truncated SPC. Finally, we calculate the correlations between the correspon-
dent truncated and complete (i.e., non-truncated) ranges and centers. If these correlations
are close to 1, then the selection of variables performed to give a meaning to the j-th SPC by
considering its truncated version gets validated. In our case, for CPCA and SymCovPCA we
made the following selection: 45" = (0,421,0,441,0)! and 445" = (0,0,0,0,451)" and for VPCA
and CIPCA we choose 41" = (0,421,0,0,0) and 45 = (0,0,0,442,0). In sequence, the first
two truncated SPC of the centers and ranges are calculated as well as their sample corre-
lation with the corresponding non-truncated SPC of centers and ranges, with the resulting
values being summarized in Table 4. Note that all these correlations are close to 1, with the
exception of the correlation between the truncated and complete versions of SPngmCOUPCA
ranges. We note that if the inclusion of an additional input variable for the interpretation
of SPngmcovPCA ranges has the merit of increasing the correlation between the truncated
and complete versions from 0.774 to 0.902. Nevertheless, it has the drawback of making the

interpretation of SPngmCOUPCA ranges more complex and difficult.

Table 4: Sample Correlation between non-truncated, SPC;VI , and truncated, [SPC;-W Jtr, sym-
bolic principal components centers, C[-], and ranges, R[], according with the selection made
for each estimation method, M.

M
CPCA SymCovPCA VPCA CIPCA

Cor(C[SPCY],C[SPCY)  0.997 0.998 0.997  0.986
Cor(R[SPCM], R[SPCM]'™)  0.989 0.997 0.996 0.984
Cor(C[SPCY],C[SPCY]™) 0.995 0.984 0.988 0.915
Cor(R[SPCY), R[SPCY ') 0.856 0.774 0.988  0.960

85



86 Extracting Information from Interval Data Using Symbolic PCA

5. Conclusion

Starting from a generic definition of symbolic variance and covariance for random interval-
valued variables, we have used a common insightful framework to present four symbolic prin-
cipal component estimation methods that rely on a symbolic-conventional-symbolic strategy:
CPCA, VPCA, CIPCA, and SymCovPCA. This framework highlighted similarities and dif-
ferences between these methods.

Aiming at improving the interpretation of symbolic principal components, we proposed the
use of truncated versions of symbolic principal components, which are obtained from the
(complete) symbolic principal components by relying only on a strict subset of the original
symbolic variables.

The analysis of a symbolic dataset containing Internet traffic lead to a clear interpretation
of the underlying Internet applications (Web browsing, file sharing, streaming, video, port
scans, and snapshots). The analysis pointed out the difficulties in separating illicit traffic
from regular one, suggesting the need to develop outlier detection methods for symbolic data.
Furthermore, the analysis highlighted similarities between the symbolic principal component
estimation methods considered in the paper.
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