The Spatial Sign Covariance Matrix and Its Application for Robust Correlation Estimation


  • Alexander Dürre TU Dortmund
  • Roland Fried TU Dortmund
  • Daniel Vogel University of Aberdeen



We summarize properties of the spatial sign covariance matrix and especially consider the relationship between its eigenvalues and those of the shape matrix of an elliptical distribution. The explicit relationship known in the bivariate case was used to construct the spatial sign correlation coefficient, which is a non-parametric and robust estimator for the correlation coefficient within the elliptical model. We consider a multivariate generalization, which we call the multivariate spatial sign correlation matrix. A small simulation study indicates that the new estimator is very efficient under various elliptical distributions if the dimension is large. We furthermore derive its influence function under certain conditions which indicates that the multivariate spatial sign correlation becomes more sensitive to outliers as the dimension increases.


Bali JL, Boente G, Tyler DE, Wang JL (2011). Robust Functional Principal Components: A Projection-pursuit Approach. The Annals of Statistics, 39(6), 2852-2882.

Bilodeau M, Brenner D (1999). Theory of Multivariate Statistics. Springer Science & Business Media.

Croux C, Dehon C, Yadine A (2010). The k-step Spatial Sign Covariance Matrix. Advances in data analysis and classification, 4(2-3), 137-150.

Croux C, Haesbroeck G (1999). Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator. Journal of Multivariate Analysis, 71(2), 161-190.

Dürre A, Tyler DE, Vogel D (2016). On the Eigenvalues of the Spatial Sign Covariance Matrix in More than Two Dimensions. Statistics & Probability Letters, 111, 80-85.

Dürre A, Vogel D (2016a). Asymptotics of the Two-stage Spatial Sign Correlation. Journal of Multivariate Analysis, 144, 54-67.

Dürre A, Vogel D (2016b). sscor: Spatial Sign Correlation. R package version 0.2, URL

Dürre A, Vogel D, Fried R (2015). Spatial Sign Correlation. Journal of Multivariate Analysis, 135, 89-105.

Dürre A, Vogel D, Tyler DE (2014). The Spatial Sign Covariance Matrix with Unknown Location. Journal of Multivariate Analysis, 130, 107-117.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2015). mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-3, URL

Gradshteyn I, Ryzhik I (2000). Table of Integrals, Series, and Products. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. 6th edition. Amsterdam: Elsevier/Academic Press.

Huber PJ, Ronchetti E (2009). Robust Statistics. Wiley.

Kano Y (1994). Consistency Property of Elliptic Probability Density Functions. Journal of Multivariate Analysis, 51(1), 139-147.

Kemperman JHB (1987). The Median of a Finite Measure on a Banach Space. In Y Dodge (ed.), Statistical Data Analysis Based on the L1-Norm and Related Methods, pp. 217-230. Amsterdam: North-Holland.

Locantore N, Marron J, Simpson D, Tripoli N, Zhang J, Cohen K (1999). Robust Principal Component Analysis for Functional Data. Test, 8(1), 1-28.

Magyar AF, Tyler DE (2014). The Asymptotic Inadmissibility of the Spatial Sign Covariance Matrix for Elliptically Symmetric Distributions. Biometrika, 101(3), 673-688.

Marden JI (1999). Some Robust Estimates of Principal Components. Statistics & Probability Letters, 43(4), 349-359.

Nordhausen K, Oja H (2011). Multivariate L1 Methods: The Package MNM. Journal of Statistical Software, 43(5), 1-28.


R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL

Taskinen S, Croux C, Kankainen A, Ollila E, Oja H (2006). Influence Functions and Efficiencies of the Canonical Correlation and Vector Estimates Based on Scatter and Shape Matrices. Journal of Multivariate Analysis, 97(2), 359-384.

Vogel D, Köllmann C, Fried R (2008). Partial Correlation Estimates Based on Signs. In Proceedings of the 1st Workshop on Information Theoretic Methods in Science and Engineering. TICSP series.



How to Cite

Dürre, A., Fried, R., & Vogel, D. (2017). The Spatial Sign Covariance Matrix and Its Application for Robust Correlation Estimation. Austrian Journal of Statistics, 46(3-4), 13-22.