The Beta Exponential Fréchet Distribution with Applications


  • M.E. Mead Zagazig University
  • Ahmed Z. Afify Department of Statistics, Mathematics and Insurance, Benha University
  • G.G. Hamedani Marquette University
  • Indranil Ghosh UNCW



We define and study a new generalization of the Fréchet distribution called the beta exponential Fréchet distribution. The new model includes thirty two special models. Some of its mathematical properties, including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean residual life, mean inactivity time, order statistics and entropies are derived. The method of maximum likelihood is proposed to estimate the model parameters. A small simulation study is also
reported. Two real data sets are applied to illustrate the flexibility of the proposed model compared with some nested and non-nested models.


Afify, A. Z., Hamedani, G. G., Ghosh, I. and Mead, M. E. (2015). The transmuted Marshall-Olkin Fréchet distribution: properties and applications.International Journal of Statistics and Probability, 4, 132-148.

Afify, A. Z., Nofal, Z. M. and Ebraheim, A. N. (2015a). Exponentiated transmuted generalized Rayleigh distribution: a new four parameter Rayleigh distribution. Pak. J. Stat. Oper. Res., 11, 115-134.

Afify, A. Z., Nofal, Z. M., Yousof, H. M., El Gebaly, Y. M. and Butt, N. S. (2015b). The transmuted Weibull Lomax distribution: properties and application. Pakistan Journal of Statistics and Operation Research, 11, 135-152.

Afify, A. Z., Yousof, H. M., Nofal, Z. M. and Cordeiro, G. M. (2015). The Weibull Fréchet distribution and its applications. Submitted.

Alzaatreh, A., Famoye, F. and Lee, C. (2013). A new method for generating families of continuous distributions. Metron, 71, 63-79.

Badar, M. G. and Priest, A. M. (1982). Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi, T., Kawata, K., Umekawa, S. (Eds.). Progress in Science and Engineering Composites. ICCM-IV, Tokyo, 1129-1136.

Baharith, L. A., Mousa, S. A., Atallah, M. A. and Elgayar, S. H. (2014). The beta generalized inverse Weibull distribution. British Journal of Mathematics & Computer Science, 4, 252-270.

Barreto-Souza, W. M., Cordeiro, G. M. and Simas, A. B. (2011). Some results for beta Fréchet distribution. Communications in Statistics-Theory and Methods, 40, 798-811.

Chen, G., Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of Quality Technology, 27, 154-161.

Cordeiro, G. M., Ortega, E. M. M. and Popovic, B. V. (2015). The gamma-Lomax distribution, Journal of Statistical computation and Simulation, 85, 305-319.

De Gusmao F. R. S., Ortega E. M. M., and Cordeiro G. M. (2011). The generalized inverse Weibull distribution. Stat Papers, 52, 591-619.

Elbatal, I. Asha, G. and Raja, V. (2014). transmuted exponentiated Fréchet distribution: properties and applications. J. Stat. Appl. Prob., 3, 379-394.

Feigl, P. and Zelen, M. (1965). Estimation of exponential probabilities with concomitant information. Biometrics, 21, 826-838.

Fréchet, M. (1924). Sur la loi des erreurs d'observation,Bulletin de la Société Mathématique de Moscou, 33, p. 5-8.

Glänzel, W., (1987). A characterization theorem based on truncated moments and its application to some distribution families. Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), B, Reidel, Dordrecht, 75-84.

Guess, F. and Proschan, F. (1988). Mean residual life, theory and applications. In: Krishnaiah, P.R., Rao, C.R. Handbook of Statistics, Reliability and Quality Control, 7, 215-224.

Keller, A. Z. and Kamath, A. R. (1982). Reliability analysis of CNC Machine Tools. Reliability Engineering, 3, 449-473.

Kobayashi, K . (1991). On generalized gamma functions occurring in diffraction theory. Journal Physical Society of Japan, 60, 1501-1512.

Kotz, S. and Nadarajah, S. (2000). Extreme value distributions: theory and applications. Imperial College Press, London.

Krishna, E., Jose, K. K., Alice, T. and Ristic, M. M. (2013). The Marshall-Olkin Fréchet distribution. Communications in Statistics-Theory and Methods, 42, 4091-4107.

Lai, C. D., and Xie, M. (2006). Stochastic ageing and dependence for reliability. Springer Science and Business Media.

Lemonte, A. J. and Cordeiro, G. M. (2013). An extended Lomax distribution. Statistics 47, 800-816.

Mahmoud, M. R. and Mandouh, R. M. (2013). On the transmuted Fréchet distribution. Journal of Applied Sciences Research, 9, 5553-5561.

Mead, M. E. (2015). Generalized inverse gamma distribution and its application in reliability. Commun. Statist. Theory-Meth., 44, 1426 -1435.

Mead, M. E. and Abd-Eltawab A. R. (2014). A note on Kumaraswamy-Fréchet distribution. Aust. J. Basic and Appl. Sci., 8, 294-300.

Nadarajah, S. and Gupta, A. K. (2004). The beta Fréchet distribution. Far East Journal of Theoretical Statistics, 14, 15-24.

Nadarajah, S. and Kotz, S. (2003). The exponentiated Fréchet distribution. InterStat. Available online at

Treyer, V. N. (1964). Doklady Acad, Nauk, Belorus, U.S.S.R.

Zografos, K. and Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference. Stat. Method., 6, 344-362.



How to Cite

Mead, M., Afify, A. Z., Hamedani, G., & Ghosh, I. (2017). The Beta Exponential Fréchet Distribution with Applications. Austrian Journal of Statistics, 46(1), 41-63.