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Abstract

Questions of life expectancy are highly relevant in clinical practice, in particular if one
is interested in the life expectancy loss due to a certain disease in comparison with the
general population. Therefore, we propose a methodology which enables the researcher to
compare more easily life expectancies between a study cohort and a reference population.
Firstly, we take the formula commonly used in official statistics and adapt it to a survival
analytic setting, thus establishing a link between official statistics and survival analysis.
Further, we discuss two commonly encountered sources of potentially severe bias, and how
to remedy them. We hope that the proposed approach facilitates the use of life tables,
particularly in clinical studies with mortality as primary endpoint.

Keywords: life expectancy, life table, life expectancy comparison, survival analysis, expected
remaining life, Larynx dataset.

1. Introduction

In medical studies, the survival experience of a patient cohort is often expressed in terms of
some risk measure, for example, the risk of dying. However, sometimes, this type of quanti-
ties is not completely satisfying: A patient suffering from a certain disease is probably more
interested in his or her loss of remaining lifetime than the mere information that he or she has
a risk of dying elevated by some factor compared to healthy persons, because the first quan-
tity is much easier and more naturally interpretable than the latter one. Consequently, the
doctors should also be able to provide their patients with information about life expectancies.
But interestingly, it seems as if the number of studies merely examining some risk measures
such as standardized mortality ratios or hazard ratios is much higher than the number of
life expectancy analyses. In particular, life expectancy comparisons between a patient group
and some reference population are hardly available, although this kind of question is a very
natural and highly relevant one.
There are basically two measures of life expectancy (for another concept of “life expectancy”,
see Bradshaw, Stobie, Knuiman, Briffa, and Hobbs 2015): The so-called mean residual life is
used in survival analysis, a certain branch of mathematical statistics (Kalbfleisch and Pren-
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tice 2002), whereas the average expectation of life or life expectancy at exact age x is pop-
ular in the context of life table calculations in offical statistics (Chiang 1979). The latter
measure can also be used in analyses of study cohorts, which is a quite popular method in
life expectancy analyses (Nusselder, Slockers, Krol, Slockers, Looman, and van Beeck 2013;
DuGoff, Canudas-Romo, Buttorff, Leff, and Anderson 2014; Guaraldi, Cossarizza, Franceschi,
Roverato, Vaccher, Tambussi, Garlassi, Menozzi, Mussini, and D’Arminio Monforte 2014; Na-
gai, Kuriyama, Kakizaki, Ohmori-Matsuda, Sone, Hozawa, Kawado, Hashimoto, and Tsuji
2011). On the other hand, survival analytic quantities such as Kaplan meier estimators are
sometimes used, too (Chang, Lu, Lee, Hwang, Cheng, and Wang 2015; Luangasanatip, Hong-
suwan, Lubell, Limmathurotsakul, Teparrukkul, Chaowarat, Day, Graves, and Cooper 2013).
Moreover, there are also “mixtures” between these two concepts insofar as, at first, a survival
analytic model is fitted to the data and, then, life expectancies are calculated based on the
life table methodology (Li, Hüsing, and Kaaks 2014; Strauss, DeVivo, Paculdo, and Shavelle
2006; Gaitatzis, Johnson, Chadwick, Shorvon, and Sander 2004). However, in some of these
studies (Li et al. 2014; Nagai et al. 2011; Strauss et al. 2006), life expectancy comparisons
are made only between different subgroups of the study cohort, but not between the patients
and some reference population. Even in those cases where comparisons are carried out (Lu-
angasanatip et al. 2013; Gaitatzis et al. 2004), some mathematical and conceptual issues are
not completely clear. Therefore, clarification is needed as to how a study cohort and some
reference population can be compared with regard to their life expectancy. Such clarification
should rest on both statistically and conceptually rigorous arguments. These theoretical clar-
ifications will hopefully lead to a methodology which can facilitate understanding by statistics
practitioners, too. Furthermore, we will establish a link between official statistics and survival
analysis, which is, in our opinion, a desirable goal not only for scientific, but also for practical
reasons (see the closing part of this paper).

2. Basic quantities measuring life expectancy

To set the stage, let’s assume that we want to define the life expectancy for a person of exact
age x years. As it would hardly make any sense to take an unrestricted range for x, we
assume x ∈ {0, 1, ..., xmax}, where xmax is chosen appropriately, for example, xmax = 95 or
xmax = 100. Furthermore, let X denote a nonnegative continuous random variable measuring
the time from birth to death of this person. For sake of simplicity, we do not take gender into
account here.
Then, in the context of life table calculations, the following definitions are popular (Hanika
and Trimmel 2005):

(i) The death probability in the age interval [x, x+ 1) is defined as

qx := P (x ≤ X < x+ 1|X ≥ x).

(ii) Let l0 ∈ N. The number of survivors at age x is defined as

lx :=

{
l0 x = 0

lx−1 · (1− qx−1) x ≥ 1

(iii) The number of years lived in the age interval [x, x+ 1) is defined as

Lx :=
1

2
(lx + lx+1) .

Based on these quantities, we define the life table life expectancy (LTLE) at age x as

Ex :=
1

lx

xmax∑
y=x

Ly. (1)
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Note that this quantity is usually referred to as life expectancy at exact age x. However, we
choose this terminology to stress the contrast to the life expectancies calculated for the study
cohort (see below). Next, we turn to the survival analytic setting, which requires slightly dif-
ferent assumptions. We consider a situation typically encountered in clinical studies, namely
that we have a study cohort which is followed over a certain time period. Let T be a non-
negative continuous random variable measuring the time from the starting point of the study.
Then, the mean residual life at time t ≥ 0 is defined as

r(t) := E[T − t|T ≥ t].

If E[T ] <∞, it can be shown that for all t ≥ 0, we have

r(t) =
1

S(t)

∫ ∞
t

S(u)du,

where S(t) = P (T > t), t ≥ 0, is the so-called survivor function. The survivor function can
be estimated either by some step function (e.g., the Kaplan-Meier estimator) or by specifying
a certain parametric model such as the Weibull model.
Since this model will be used for illustrative purposes in the theoretical considerations below,
we shall state now how it is specified. A Weibull model is characterized by setting

S(t) = exp(−λtp),

where λ, p > 0. According to the impact on the survival function, λ is usually called scale
parameter, whereas p is referred to as shape parameter. As in other parametric models used
in survival analysis, covariates can be easily incorporated by an additional term of the form
exp(β′x): The survivor function is then given as

S(t,x) = exp(−λtpexp(β′x)).

The parameters of such a model can be estimated by means of maximum likelihood estimation,
which eventually yields an estimator Ŝ of the survivor function S. For details concerning these
pieces of survival analytic theory, we refer to Kalbfleisch and Prentice (2002).

3. Comparing a study cohort to some reference population

Now, the question arises if a link between these two life expectancy measures can be estab-
lished in order to compare the study cohort with a reference population. In general, we can’t
just calculate the differences between the mean residual lifetimes (originating from the cohort
data) and the corresponding LTLEs: For example, in the context of life tables, the deaths are
assumed to be uniformly distributed in each age interval [x, x + 1), whereas this is not the
case if we, for example, fit a Weibull model to the study cohort data. However, if we take
a closer look at the LTLE formula, it turns out that there is a possibility for the survivor
function S to enter the stage. We will see in the following sections that for subsequent years
after start of follow-up, we are thus able to calculate life expectancies for the study cohort.

3.1. Mathematical justification

To begin with, note that for all x ∈ {0, 1, ..., xmax}, we have

Ex =
1

2
+
S̃(xmax + 1)

2S̃(x)
+

1

S̃(x)

xmax∑
k=x+1

S̃(k), (2)

where S̃(x) = P (X > x).

For a proof of this equality, see Appendix A.
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Now, based on the LTLE formula (2) just derived, we want to calculate the life expectancy
at time t ≥ 0 after start of follow-up for a person from the study cohort. The only thing
left is to examine the relation between S(t) = P (T > t) and S̃(x) = P (X > x). Recall that
X measures the time from birth to death, whereas T takes start of follow-up as the time
origin. Therefore, if we let aE denote the exact age of that person at start of follow-up, we
have T = X − aE . Thus, we get that for all x ∈ {aE , aE+1, ..., xmax} (note that x < aE
wouldn’t make any sense since we are only interested in time points after start of follow-up!),
the following equations hold:

S̃(x) = P (X > x) = P (X − aE > x− aE) = P (T > x− aE) = S(x− aE).

So, we can write (2) as

Ex =
1

2
+
S(xmax − aE + 1)

2S(x− aE)
+

1

S(x− aE)

xmax∑
k=x+1

S(k − aE),

for x ∈ {aE , aE+1, ..., xmax}. If we set t := x− aE and do some re-indexing, we can define the
study cohort life expectancy as

SCLE(t) :=
1

2
+
S(xmax − aE + 1)

2S(t)
+

1

S(t)

xmax−aE∑
k=t+1

S(k), (3)

where t ∈ {0, 1, ..., xmax − aE}.
Now, we are ready to compare life expectancies between the study cohort and a reference
population: At first, we have to pick a certain estimator Ŝ for the survivor function S of the
study cohort (e.g., the survivor function of a regression model fitted to the data). Then, we
calculate SCLE(t) for some values t ∈ {0, 1, ..., xmax− aE} of interest. Due to the derivation
carried out above, the corresponding value from the life tables which should be taken for
comparison is Et+aE .

3.2. Conceptual considerations

So far, we have established a method where we use the LTLE formula not only for calculations
in the context of life tables, but also for quantities based on a survival analytic model. How-
ever, although the structure of the formula is the same now, we may need further refinements
in certain situations to make sure that we control several sources of bias.

Bias due to “infinite life” models

To begin with, the follow-up time in clinical studies is usually restricted to one or several years.
As a consequence, we expect that in general, some of the subjects will be still alive at the end of
the study period. For these persons, we don’t have the exact survival times. This phenomenon
itself, known as right-censoring, which is a key issue in survival analytic methodology, doesn’t
cause any serious problems. But, especially when we want to estimate life expectancies, we
have to be aware of the fact that we often can’t avoid making extrapolations to some extent.
For example, to calculate the life expectancy of a subject aged 20 at study entry using formula
(3), we need values S20(j) up to j = xmax − 19. By the subscript 20, we indicate that we
take the age at entry as a covariate into account here (e.g., by specifying some regression
model as mentioned above). Most likely, xmax − 19 will be greater than the follow-up time,
which means that we have to extrapolate beyond the range of our data. In other words, it
may not be possible to judge whether, for example, the estimate of S20(50) is reliable or not
because most likely, the follow-up time won’t be 50 years. Observe that although we may
well have data of patients aged 70 at study entry, we must not assume that S70(0) = S20(50)
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holds in general. Thus, we see that looking at the values of the survivor functions of the
patients who were fairly old at time of entry doesn’t help solving the problems concerning
extrapolation. Therefore, especially for the patients who were quite young at study entry,
the estimation of at least some values of the survivor function can be crucial. This point
is very important to keep in mind, especially when using models such as the Weibull model
which yields values S(t) for all t ≥ 0: Although it seems as if we could immediately get all
we need for the calculation of life expectancies from such a model, we must not use these
values without examining their appropriatness. For example, if we consider a Weibull model,
it can be shown that the so-called hazard function, which measures the “instantaneous risk of
dying”, is given as

h(t) = λptp−1,

which is either decreasing (p < 1), increasing (p > 1) or constant (p = 1) (Kalbfleisch and
Prentice 2002). So, if our data yields a maximum likelihood estimate p̂ of p which is smaller
than 1, this suggests that the risk of dying decreases over time. Whereas this could be
reasonable to some extent (for example, think of a risk reduction due to protective effects of
clinical monitoring etc.), this is most likely wrong for large values of t: At some time point,
the “force of death” will be stronger than any protective effects. If we don’t take this issue
into account, we will get life expectancy estimators which may be extremely biased since the
behaviour of the hazard discussed above translates to a biased survivor function.
To deal with this problem, it may help to pick a model which allows for more flexibility
(e.g., more complicated shapes of the hazard function). Although such questions of model
appropriatness are important and should not be neglected, it can well be that in some cases,
the values of S(t) remain unrealistic: For example, if we have a cohort of relatively young
subjects and the follow-up time is, say, 5 years, we can’t see a substantial increase in the risk
of dying at age 50 simply because we don’t observe persons at this age!
Consequently, we suggest defining some kind of “breakpoint” value tB from which on we don’t
“trust” the model any more, or at least put some restrictions on the use of model death
probabilities (i.e., the qj ’s in formula (6) in the appendix, based on the survivor function of
the model), which are defined as

q(t) := 1− S(t+ 1)

S(t)
, t ∈ {0, 1, ..., xmax − aE}.

For example, it would make sense to take the maximum of the model and the life table death
probability qt+aE for time points t greater than tB. From a medical point of view, this means
that from a certain time point after diagnosis onwards, you assume that the patients are at a
risk of dying which is at least as high as for the reference population. To illustrate this idea,
assume that we have decided to set tB = 5y. This means that for the first 5 years following
study entry, we use q(0), q(1), q(2), ..., q(5) as annual death probabilities for our calculations.
But, for all time points t = 6, 7, ..., xmax − aE , we take max{q(t), qt+aE} as annual death
probability. Of course, if xmax− aE < 6, that is, the patient is fairly old at time of diagnosis,
this modification doesn’t have any effect on the life expectancies because we only need annual
death probabilities up to, for example, 3 years after study entry.
Besides, putting a restriction like the one above on the death probabilities for the entire
time range would not make sense (unless you have good reasons for such a decision) since
we would thus wipe out any protective effects due to, for example, regular visits at the
hospital. Note that at least in some studies, it’s indeed reasonable to account for such a sort
of effect: For example, if we consider cancer patients, we can rightfully assume that they are
scheduled for regular examinations, which may imply that some other diseases are detected
earlier than in healthy subjects. Note that this does not mean the results are biased: Of
course, if we, for example, examined the effect of a certain therapy on the survival of patients
suffering from brain tumors, it’s obvious that the effect measure would indeed be biased when
the control group contains far more subjects with cardiovascular disease than the treatment
group. But, note that in this case, the occurence of brain tumors is not supposed to be
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related to cardiovascular disease. By contrast, in the example with the regular medical checks
from above, we don’t have confounding because as we stated before, the main point is that
these examinations are caused by the fact that the patient suffers from cancer. Therefore, the
possibly beneficial effect actually turns out to be a part of the disease effect.
Moreover, protective disease-related effects may also be caused by the fact that a patient is
sometimes forced to change his or her lifestyle: For example, if you have epilepsy, you are
usually not allowed to drive a car any more. Likewise, you won’t do any dangerous activities
such as parachuting or climbing. Thus, you most likely reduce your risk of dying substantially
compared to the overall population.
Summing up, we want to point out that although at first sight, it seems as if protective
effects introduce bias to the results, we see that in fact, the contrary is true - if we wiped
out these effects in our analysis, we would actually eliminate a part of the disease effect! Of
course, it’s theoretically possible to eliminate the impact of the protective effects mentioned
above in order to arrive at some, let’s say, “cleaned” effect estimate which, loosely speaking,
measures the effect of the disease “itself” (i.e., the loss of life due to medical reasons only).
However, what’s the practical relevance of such an estimate? For example, is there any use
in calculating the effect of epilepsy “itself” (i.e., the impact of the fact that the patients don’t
drive cars is somehow eliminated) if there isn’t anyone who has epilepsy and is allowed to
drive a car? To cut it short, we would then have calculated an effect for a person which
actually doesn’t exist!
To turn back to the breakpoint issue, we must admit that the choice of such a breakpoint value
is a crucial task. We suggest taking a look at carefully collected and thoroughly analysed data
such as the most recent life tables for the population the patients come from. For example,
the Austrian life tables from 2000/02 show a monotonic increase of the death probabilities
from age 30 onwards (Hanika and Trimmel 2005). Alternatively, medical experts may also
provide useful information concerning this issue. Moreover, an appropriate breakpoint value
may be suggested by the design of the study, for example, if at some time point, the members
of the study cohort are not scheduled for regular visits at the hospital and thus don’t take
advantage of protective effects any more. However, keep in mind that for example, there can
be protective effects which may influence the survival experience for the entire time range
(e.g., if the patients aren’t allowed to drive cars any more).
To sum things up, it may be quite difficult to find an appropriate breakpoint value. We suggest
taking not only one of the approaches outlined above, but various different considerations
into account. For example, medical experts may have quite a good idea of the amount of
risk decrease due to protective effects. On the other hand, a look at some life tables may
indicate at which age the “force of death” is most likely stronger than any protective effects.
Of course, we must admit that this way of solving the problem might not be satisfying at
first sight. But, on the other hand, this means of correction is quite easy to carry out and
helps to avoid an amount of bias that can be quite large. To cut it short, having a breakpoint
which is roughly appropriate is definitely better than introducing no breakpoint value at all:
Note that if we have an extremely unrealistic assumption such as a decreasing risk of dying
even for large values of t, we sum up this bias when calculating life expectancies and thus
get results which are actually useless. So, with our method, we can substantially reduce this
kind of bias, with the only drawback that we don’t have a formally justified method at hand
to determine the breakpoint value tB.
By the way, recall that the extrapolation issue was the main point we started from. If we
are indeed interested in calculating life expectancies, we suggest following the “breakpoint”
idea discussed in detail above. But, instead of calculating this quantity (i.e., the expected
number of years the subject has left to live), we may also think of restricting ourselves to
looking only at some time span such as, for example, 5 years after study entry. All we have
to do is to choose xmax appropriately. To stay with our example, we just set xmax = aE + 5.
Note that due to the concept underlying the life table calculations (see section 2), we then
get the expected number of years a subject aged aE has left to live during the following
5 years. Especially in studies with short follow-up time, extrapolation is quite a serious
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concern. To circumvent this problem, the idea outlined above may be a good alternative
to life expectancy calculations. Likewise, when analyzing data from patients who are at a
very high risk of dying in a moreorless short time interval after study entry (e.g., if some
surgical procedure is defined as the start of follow-up), there may be no need to calculate life
expectancies - instead, something like a “average 5-year lifetime” as proposed above would
perhaps be a more useful measure.

Bias due to changes in life expectancy over time

Now, let’s turn to a second important issue, namely the information underlying the data from
the study cohort and the life table, respectively. What we haven’t mentioned so far is the
fact that in a clinical study, the subjects often enter the study at different time points, for
example, when the diagnosis of a certain disease is defined as the starting point. As far as the
calculation of estimates within the study cohort is concerned, this does not cause problems at
all: If the follow-up period is quite short, the difference in entry times is negligible, and even
if the subjects are followed over several years, we can for instance fit a regression model which
includes a covariate “year of entry” or something like that. To judge if one should account
for the time point of entry, we suggest using variable selection methods. In addition to that,
a look at the life tables for the population of the area the subjects (mainly) belong to can
be also useful to get an idea of the amount of change during the study period. However,
if we turn to comparisons with life table quantities, we have to be more careful. Again, if
the recruitment as well as the follow-up period are quite short, say, for example, one year,
it suffices to take one single reference life table for comparisons. This is also appropriate if
hardly any changes in the survival experience of the general population can be observed over
the study period. But what if the recruitments and/or follow-ups stretch over several years
and we observe substantial changes in the general population? At first sight, the solution
to this problem is easy: If we want to compare the life expectancy of a patient aged aE
diagnosed in, say, 2000, at time of diagnosis (i.e., in the notation from above, t = 0) to the
corresponding value of the reference population, we just take the number LTLE(aE) from
the life table of 2000 and calculate the difference to SCLE(0). Analogously, if a comparison
of life expectancies 5 years after diagnosis is desired, we calculate SCLE(5) and compare this
quantity with LTLE(aE + 5) from the life table of 2005.
However, note that a period life table is always based on the survival experience of a population
in a very certain year (or a quite short time period, say, for example, three years, see Hanika
and Trimmel 2005). For the calculation of life expectancies, the annual death probabilities for
future years are estimated by the corresponding values of the reporting period, which means
that the status quo is carried forward (Hanika and Trimmel 2005). Although this basically
makes sense, we get into troubles when using the LTLEs for comparison purposes: To turn
back to the example from above, let’s see what happens if we use LTLE(aE) from the life
table of 2000 as comparison value for SCLE(0). We assume that the follow-up time is 10
years, and, as stated above, a substantial change in life expectancies can be seen in the life
tables published during this time span. Then, the key point is that the subject on study
has been followed over these years and, thus, the changes in survival experience are somehow
implicitely accounted for, whereas the comparison value from the life table of 2000 is based
on information of that certain year only and therefore “ignores” the changes observed from
2000 to 2010. To bridge this information discrepancy, we propose the following approach:
Suppose a patient enters the study at age aE in the year y, where y ∈ {yS , yS + 1, ..., yE}. By
yS and yE , we denote the year of study start and end, respectively. For sake of simplicity, we
don’t assume separate recruiting and follow-up periods, although the method outlined below
can be carried out analogously for this case. Although aE can basically take values from 0 to
xmax, for the following algorithm, we exclude xmax because for a person aged xmax, we only
need the values lxmax and lxmax+1 to calculate his or her life expectancy, so the quantities we
have in the table of the year y are already the ones we need. Secondly, our study ends in
yE , so the life table of this year doesn’t require an update since if we assumed any knowledge
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concerning survival experience in yE + 1, yE + 2 and so forth, we would again have different
degrees of information in the study cohort and the population.
Recall that for LTLE calculations (i.e., for life expectancy calculations based on formula (1)
in section 2), we need the numbers of survivors for all ages from aE to xmax + 1, which are
denoted by laE , . . . , lxmax+1. The algorithm used for this purpose can be described as follows:

laE := laE ,y, laE+1 := laE+1,y

laE+k :=

{
laE+k−1 · (1− qaE+k−1,y+k−1) k ∈ {2, 3, ...,min(yE − y + 1, xmax − aE + 1)}
laE+k−1 · (1− qaE+k−1,yE ) k ∈ {yE − y + 2, yE − y + 3, ..., xmax − aE + 1}

The first line means that for aE and aE + 1, we simply take the values from the life table of
the year of entry y. Then, the numbers of survivors are calculated according to the following
scheme: To get laE+2, we multiply laE+1 with the annual survival probability for the age
aE + 1 from the life table of the year y + 1. In this way, we proceed until we reach either
xmax − aE + 1 or yE − y + 1. Now, if xmax − aE ≤ yE − y, we are done since this means
that we already have all numbers of survivors up to lxmax+1. Otherwise, the remaining laE+k’s
are calculated by applying the “standard” method of life table construction, using the annual
survival probabilities of the life table yE .
So, to sum things up, we basically follow the usual formula for the number of survivors, but
with the important modification that for the entire study period, we take all available informa-
tion on the population’s survival experience into account because our calculations are based
on year-wise survival probabilities. In other words, we thus get “dynamic” life expectancies
for the general population which are, in terms of the information used, indeed comparable to
the SCLEs based on the study cohort’s data.

To close this section, we briefly discuss an issue of practical importance. As already men-
tioned at the beginning of this paper, life expectancy is a measure which can be quite easily
understood not only by researchers, but also by people not involved in statistics or medicine.
Therefore, it’s desirable to use the results from a life expectancy analysis as a nice inter-
pretable piece of information the doctors can communicate to their patients. However, we
should be aware of the fact that possible changes in life expectancy are crucial for answering
the question if we can indeed take the values we’ve calculated as estimates for the losses or
gains in lifetime of future patients. For example, if the study was terminated at the end of
2014, it’s most likely fine if a doctor communicates these values to patients who are currently
at his clinic. But, if the follow-up ended in 2000, you should be more cautious of course:
Although the “dynamic” population life expectancies can quite easily be re-calculated by ad-
ditionally taking the life tables from 2001 to 2015 into account, the life expectancies for the
patient cohort can’t be updated since the study was terminated in 2000. However, the pa-
tients’ life expectancies may also substantially change over time, partly due to the changes
in the population, but also as a consequence of therapeutic advances, etc. Of course, if we
fitted a regression model with year of entry to the data, we could theoretically plug in the
current year as covariate value and finally get a life expectancy estimate. But, obviously, the
corresponding regression coefficient was estimated using data from patients who entered the
study before 2000, so we would, again, extrapolate beyond the range of our data.
So, to sum things up, before carrying over the results of studies with limited follow-up time
to future patients, one should carefully think about changes in life expectancies which may
have occurred since the end of the study. For this purpose, information on medical as well
as demographic developments and trends are needed. Besides, it should be mentioned that
sometimes, the follow-up time can be considered as unlimited: For example, if you actually
have the original data (i.e., date of birth, etc.) of the patients at hand and link it with a
death registry (e.g., with some probabilistic record linkage method, see Oberaigner and Stüh-
linger (2005)), the survival experience of the patient cohort can indeed by updated at any
time. Based on this data, the survival analytic model is fitted again, and life expectancies are
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calculated afterwards. Thus, in this case, the estimates are reliable even for a person being
at the doctor’s office right now.

4. Data example

To illustrate the methods outlined above, let’s take a look at a dataset which was reported
by Kardaun (1983). The cohort consists of 90 males diagnosed with laryngeal cancer between
1970 and 1978 at a Dutch hospital. The dataset contains their survival times (in years), that
is, the time from entry to either death or Jan 1, 1983, as well as the year of diagnosis, the age
at study entry and the stage of cancer on a scale from 1 to 4. Some descriptives of this data
are contained in Table 1. For details concerning this dataset, we refer to Kardaun (1983) and
Klein and Moeschberger (2003). This dataset is available in the survival package (Therneau
2014) in R (R Core Team 2015).

Table 1: Some descriptives for the Larynx dataset.

number of patients 90
person years of follow-up 377.8
number of deceased (%) 50 (55.6)
median age (range) 65 (41-86)
median diagnosis year (range) 1974 (1970-1978)
stage 1 (%) 33 (36.7)
stage 2 (%) 17 (18.9)
stage 3 (%) 27 (30.0)
stage 4 (%) 13 (14.4)

Following the considerations of the previous chapters, we now carry out the following steps
using R:

1. We fit a Weibull regression model with stage, age at diagnosis and year of diagnosis to
the data by using the packages survival and SurvRegCensCov (Hubeaux and Rufibach
2014). Note that the 4 stages are coded as dummy variables in the following way:
We introduce 3 dummy variables dummyA, dummyB and dummyC such that stage 1
corresponds to dummyA = dummyB = dummyC = 0. The other stages are coded as
100, 010 and 001, respectively. The results of the model fit are displayed in the table
below.

Table 2: Results of Weibull model fit for the Larynx dataset.

estimate standard error
scale (λ) 0.094 0.525
shape (p) 1.121 0.141
dummyA 0.181 0.463
dummyB 0.665 0.356
dummyC 1.780 0.431
age 0.019 0.014
year -0.022 0.073

Recall that the survival function of a Weibull regression model is given as S(t,x) =
exp(−λtp exp(β′x)). As indicated by the estimate of the shape parameter, the proba-
bility of surviving is decreasing moderately fast. To turn to the impact of the different
stages on survival, the estimates of the dummy variables show what we expect for
medical reasons: The higher the stage, the lower the value of the survival function is.
Likewise, it’s small suprise that the probability of surviving decreases with age. Inter-
estingly, patients who were diagnosed later seem to have a better chance of surviving.
However, all the interpretations I’ve mentioned have to be taken with caution since the
estimated standard errors are quite large in most cases.
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2. To deal with the“infinite life”problem discussed in section 3.2., we take a look at the age-
specific death probabilities of the annual Dutch life tables from 1970 to 1982 which are
available upon request at the website of Statistics Netherlands (Statistics Netherlands
2015). Obviously, there is a remarkable increase from age 40 onwards. As the patients’
ages at diagnosis range from 41 to 86 years, it’s reasonable to assume that the whole
study cohort is exposed to a relatively high, increasing risk of dying. Therefore, the
breakpoint should be set to a fairly small value (of course, the choice of the breakpoint
can also be based on medical considerations, as mentioned above). We decided to take 0,
3 and 5 years as breakpoints and compare the results. This means that from 1, 4 and 6
years after diagnosis onwards, respectively, we take the maximum of the model and the
life table death probabilities instead of merely using the model death probabilities, as
described in section 3.2. In step 3, these calculations will be illustrated by an example.

3. For sake of simplicity, we only take one certain covariate combination, namely a person
aged 65 which enters the study in 1974 with the diagnosis of stage 2 cancer. We are
interested in this person’s life expectancy at time of entry (i.e., t = 0) and 2 years after
entry (t = 2), respectively. To calculate the life expectancies based on the model, we at
first take Ŝ, the estimate of the Weibull regression model CDF from step 1, and plug
in the given covariate values for stage, age and year as well as t = 0 (or t = 2). Then,
we calculate the annual death probabilities 1 − Ŝ(1)/Ŝ(0), 1 − Ŝ(2)/Ŝ(1) and so forth,
as stated in section 3.2. and in the proof of (2) in the appendix. As the Dutch life
tables contain values up to an age of 99 years, we need annual death probabilities up
to 1− Ŝ(tmax + 1)/Ŝ(tmax), where tmax = 99− 65 = 34. To explain the latter formula,
recall that we want to calculate the life expectancy for a person aged 65 at time of
diagnosis. To make sure that there is a correspondence between the highest age xmax

in the life table and the greatest time point tmax after diagnosis, we choose the latter
value such that if we “follow” the patient aged 65 at time of diagnosis for tmax years,
we arrive exactly at the highest life table age xmax. Once we have the annual death
probabilities, we immediately get all the other life table quantities, especially the life
expectancies, by using the definitions given in section 2. Keep in mind that the value
of the breakpoint is crucial for the actual usage of the probabilities just calculated: For
example, if we set tB = 0, we at first use 1−Ŝ(1)/Ŝ(0). But then, we take the maximum
of 1− Ŝ(2)/Ŝ(1) and the annual death probability for a 66-year old from the life table
of 1975, the maximum of 1− Ŝ(3)/Ŝ(2) and the annual death probability for a 67-year
old from the life table of 1976, and so on, as described in section 3.2.
It should be mentioned that for the life expectancy calculations, we can take formula
(3) as well, which is more straightforward than the method outlined above. However,
it’s sometimes good to have the annual death probabilities at hand, too. Therefore, we
used the life table formulas in our calculations.

4. To assess the variability of the estimates calculated in the previous step, we calcu-
late 95% confidence intervals using the bias-corrected and accelerated (BCa) bootstrap
method (Carpenter and Bithell 2000). More to the point, we draw a sample of size
n = 90 with replacement from the dataset, carry out the steps 1-3 2000 times and save
the results (i.e., the life expectancy estimates) in an array. Finally, we use the bootBCa
function in the rms package (Harrell 2015) to get the desired confidence intervals.

5. To turn to the population life tables, we observe life expectancy changes up to 1.6 years
in the period from 1970 to 1982. Especially for ages between 0 and 50, the life expectancy
increase exceeds 1 year. Therefore, we should use “dynamic” life expectancies: Based on
the Dutch life tables, we create a new array containing the “dynamic” life expectancies
by implementing the algorithm proposed in section 3.2.

6. Finally, we take the “dynamic” life expectancies for a 65-year old in 1974 and a 67-
year old in 1976 and subtract them from SCLE(0) and SCLE(2) calculated in step
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3, respectively. In the same manner, we get confidence intervals for the resulting life
expectancy differences: As we consider the population life expectancies as fixed values,
we can simply take the confidence intervals from step 4 and subtract the population
values from the interval endpoints.

The results of the procedure outlined above are displayed in Table 2 and Table 3. Recall
that a negative value indicates a decreased life expectancy of the patient, whereas a positive
number corresponds to an increased life expectancy of the cohort member compared to a
healthy person. So, obviously, a laryngeal cancer patient with the characteristics mentioned
above tends to have decreased life expectancies compared to the population. However, the
variability of the estimates is fairly high (recall that the Weibull parameter estimates come
with a relatively high standard error, see Table 2). Consequently, it is hard to tell if the life
expectancy loss is substantial or not. Likewise, when taking only the point estimates for 0
and 2 years after the start, there seems to be a slight time trend. However, the corresponding
confidence intervals look quite similar, so actually, the data does not allow a clear statement
about any time trends in the life expectancy differences.

Table 3: Life expectancies for a patient aged 65 at time of entry in 1974 and corresponding
values for the reference population. SCLE = study cohort life expectancy (i.e., life expectancy
of the patient with the covariate values mentioned above), LTLEd = dynamic life table life
expectancy. SCLEs are given with 95% confidence intervals in brackets.

SCLE(0) SCLE(2) LTLEd(65, 74) LTLEd(67, 76)
tB = 0 8.86 (5.36, 14.17) 8.36 (4.79, 12.94) 14.16 12.94
tB = 3 8.86 (5.27, 14.04) 8.36 (4.80, 12.97) 14.16 12.94
tB = 5 8.86 (5.18, 14.01) 8.36 (4.62, 12.85) 14.16 12.94

Table 4: Life expectancy differences with 95% confidence intervals for a patient aged 65 at
time of entry in 1974. SCLE = study cohort life expectancy (i.e., life expectancy of the patient
with the covariate values mentioned above), LTLEd = dynamic life table life expectancy

SCLE(0)− LTLEd(65, 74) SCLE(2)− LTLEd(67, 76)
tB = 0 -5.29 (-8.80,0.01) -4.58 (-8.14, 0.00)
tB = 3 -5.29 (-8.89, -0.11) -4.58 (-8.14, 0.03)
tB = 5 -5.29 (-8.98, -0.14) -4.58 (-8.32, -0.08)

Moreover, the point estimates of the life expectancy differences seem to be a bit surprising
at first sight because they are -5.29 years for t = 0 and -4.58 years for t = 2, no matter
which of the three breakpoint values we choose! When having a look at the annual death
probabilities based on the model, we see that right from t = 0 onwards, these values are much
higher than the corresponding quantities for the population, except for time points which are
quite far away from the time of entry (in the example above, the annual survival probabilities
of the patients exceed the corresponding values for the population from 20 years after start
onwards). Consequently, it’s small suprise that it does not matter if we set tB to 0, 3 or 5 -
the model probabilities will be higher anyway.
However, the choice of tB may be crucial if we consider other covariate combinations, for
example, if the value of age at entry is large. Moreover, the impact of the breakpoint heavily
depends on the parameters of the Weibull CDF, especially on the scale λ and the shape p.
To take a hypothetical example, we set λ = 0.01, instead of λ = 0.09 as in our model fit
above (actually, this choice might not be that hypothetical because the standard error of the
maximum likelihood estimate of λ is quite large!). Then, the values of SCLE(0) are 0.26,
1.01 and 1.71 for tB = 0, 3, 5, respectively. Thus, we see that different choices of tB can
indeed affect the results! In other words, one should be aware of the fact that introducing
a breakpoint is not a question of how pedantic you are: There may be situations where this
idea helps avoiding a substantial amount of bias. As discussed in section 3.2., the survival
probabilities of the patients may be at least partially unrealistic for time points not covered
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by the follow-up time (i.e., time points which are “far away” from the start). To turn back to
the hypothetical example from above, the change in the life expectancy differences indicates
that the survival probabilities of the cohort are higher than the corresponding values for the
population soon after the start. However, it is sometimes crucial to decide which breakpoint
is the most appropriate one. For several possibilities of solving this problem, we refer to the
discussion in section 3.2.

5. Summary and closing remarks

In this paper, we have described an approach to life expectancy comparisons which is based
on a re-formulation of the formula used in the context of life table calculations. Thus, we
have made sure that the study cohort and the population quantities are structurally the same.
Then, we have discussed two common major sources of bias and how to remedy them. We’d
like to emphasize once more that this is not a question of only peripheral interest: If those
sources of bias aren’t controlled, the results will be unreliable or, in fact, even useless.
It should be mentioned that the methodology proposed above can be applied to quite a broad
variety of settings: If we want to set up a more complicated model for the study cohort and
take several covariates such as type of disease, health status, etc. into account, all we have
to do is to fit an appropriate survival analytic model to the study cohort data. Then, we
can proceed in the way outlined above and make life expectancy comparisons with the age-
and gender-matched “dynamic” values from the life tables. Furthermore, although our work
is motivated by questions arising in a medical context (see the introductory section), the
proposed method can be used in other scientific branches (e.g., the Social Sciences), too. In
general, we hope that our method is reasonably well to understand not only for statisticians,
but also for researches who want to use it for their data analyses.
Finally, we’d like to stress the importance of thinking about links between applied mathemat-
ical statistics and official statistics. Apart from the scientific progress gained, there is also
a practical reason for such considerations: As to the life expectancy comparisons, we could
theoretically consider a case-control design and set up a matched control group recruited from
the population as well. However, this would require substantial (monetary) efforts especially
in long-term studies or in studies where quite large sample sizes are desired. So, it is a better
idea to take high-quality and easy-to-access data such as the period population life tables for
comparison purposes.

Acknowledgements
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Appendix

Recall that in section 3.1., we stated that for all x ∈ {0, 1, ..., xmax}, we have

Ex =
1

2
+
S̃(xmax + 1)

2S̃(x)
+

1

S̃(x)

xmax∑
k=x+1

S̃(k), (4)

where S̃(x) = P (X > x).



Austrian Journal of Statistics 65

To prove this, we first expand Ex: According to the definitions given above, we have

Ex =
1

lx

xmax∑
k=x

Lk =
1

2lx

xmax∑
k=x

(lk + lk+1)

=
1

2lx

(
xmax∑
k=x

lk +

xmax+1∑
k=x+1

lk

)

=
1

2lx

(
lx + lxmax+1 + 2

xmax∑
k=x+1

lk

)
. (5)

Now, we use the recursive definition of lk for k ≥ 1 to obtain

lk = lx

k−1∏
j=x

(1− qj), k ∈ {x+ 1, x+ 2, ..., xmax + 1}.

When applying this to (5), lx cancels out, and thus we get

Ex =
1

2
+

1

2

xmax∏
j=x

(1− qj) +

xmax∑
k=x+1

k−1∏
j=x

(1− qj). (6)

Now, according to the definition of qj , we have

P (X > j + 1|X ≥ j) = 1− P (j ≤ X < j + 1|X ≥ j) = 1− qj

for j = 0, 1, ..., xmax. Applying some basic probability theory leads to the equation

1− qj = P (X > j + 1|X ≥ j) =
P (X > j + 1)

P (X ≥ j)
=
S̃(j + 1)

S̃(j)
, j = 0, 1, ..., xmax.

Combining this result with (6) yields

Ex =
1

2
+

1

2

xmax∏
j=x

S̃(j + 1)

S̃(j)
+

xmax∑
k=x+1

k−1∏
j=x

S̃(j + 1)

S̃(j)
=

1

2
+
S̃(xmax + 1)

2S̃(x)
+

1

S̃(x)

xmax∑
k=x+1

S̃(k),

which completes the proof.
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