
AJS

Austrian Journal of Statistics
March 2016, Volume 45, 55–69.

http://www.ajs.or.at/

doi:10.17713/ajs.v45i1.89

Simulation Tools for Small Area Estimation:

Introducing the R Package saeSim

Sebastian Warnholz
Freie Universität Berlin

Timo Schmid
Freie Universität Berlin

Abstract

The demand for reliable regional estimates from sample surveys has substantially
grown over the last decades. Small area estimation provides statistical methods to pro-
duce reliable predictions when the sample sizes in specific regions are too small to apply
direct estimators. Model- and design-based simulations are used to gain insights into the
quality of the methods utilized. In this article we present a framework which may help
to support the reproducibility of simulation studies in articles and during research. The
R package saeSim is adjusted to provide a simulation environment for the special case
of small area estimation. The package may allow the prospective researcher during the
research process to produce simulation studies with minimal coding effort.

Keywords: Package, R, reproducible research, simulation study, small area estimation.

1. Introduction

The demand for reliable small area statistics from sample surveys has substantially grown
over the last decades due to their use in public and private sectors. In this paper we present
a framework for simulation studies within the field of small area estimation. This tool might
be useful for the prospective researcher or data analyst to provide reproducible research.

Reproducible research has become a widely discussed topic. In the field of statistics many
open source tools like the R language (R Core Team 2014) and LATEX, dynamic reporting
packages like knitr (Yihui 2013), Sweave (Leisch 2002) and more recently rmarkdown (Allaire,
McPherson, Xie, Wickham, Cheng, and Allen 2014), make the integration of text and source
code for statistical analysis possible. Publishing source code and data alongside research
results draws special attention to authoring the analysis. However, the requirements for
source code are different from the written words in the article itself.

Instead of imagining that our main task is to instruct a computer what to do, let
us concentrate rather on explaining to human beings what we want a computer to
do. (Knuth 1992, p.99)

Besides the combination of text and source code, reproducible research aims at the availabil-
ity of the full academic research, which is the paper combined with the full computational

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v45i1.89
www.osg.or.at

56 Simulation Tools for Small Area Estimation

environment, like data and source code. However, real data are often very sensitive and gov-
erned by strict confidentiality rules. Synthetic data generation mechanisms as discussed in
Alfons, Kraft, Templ, and Filzmoser (2011) or Kolb (2013) can be used to provide safe data
which are publicly available to enable the community to reproduce the analysis and results.
Burgard, Kolb, and Münnich (2014) interpreted this as an open research philosophy. Such
synthetic data sets can be used to test newly proposed statistical methods in a close-to-reality
framework. In general, simulation studies in statistics can be divided into two concepts:

� Design-based: The simulation study is based on true or synthetic data of a fixed popu-
lation. Then, samples are selected repeatedly from the underlying finite population and
different estimation methods are applied in each replication. The estimates so obtained
are compared to the true values of the population, for instance, in terms of relative bias
(RB) or relative root mean squared error (RRMSE).

� Model-based: The simulation study uses data drawn from certain distributions. In each
iteration, the population is generated from a model and a sample is selected according
to a specific sampling scheme. The sample is used to estimate the quantity of interest
for which quality measures (like RB and RRMSE) are derived.

Further discussion regarding model- and design-based simulations is available in Münnich,
Schürle, Bihler, Boonstra, Knotterus, Nieuwenbroek, Haslinger, Laaksonen, Eckmair, Quatem-
ber, Wagner, Renfer, Oetliker, and Wiegert (2003), Salvati, Chandra, Giovanna-Ranalli, and
Chambers (2010) or Alfons, Templ, and Filzmoser (2010).

Alfons et al. (2010) provide the R package simFrame which helps to conduct simulation studies
in a reproducible environment. It includes a wide range of features (like data generation, sam-
pling schemes, outlier contamination mechanisms and missing values) to conduct simulation
studies. simFrame was originally developed for simulations in the context of survey statistics
but is now designed to be as general as possible (cf. Alfons et al. 2010). Furthermore the pack-
age simPop (Meindl, Templ, Alfons, Kowarik, and with contributions from Ribatet M 2014)
supports the generation of synthetic population data. This can be a suitable environment
in scenarios where the reproducibility of results and confidentiality issues play an important
role.

Survey statistics are used, for example, in order to deliver specific indicators as a basis for
economic and political decision processes. Of special interest here are regional or group
specific comparisons (cf. Schmid and Münnich 2014). Surveys which are utilized to report
these regional indicators, however, are generally designed for larger areas. Hence sample
information on more detailed levels, e.g. municipalities, is hardly available so that classical
estimation methods (direct estimators) may lead to high variances of the estimates (cf. Ghosh
and Rao 1994). In this case small area estimation methods may reveal highly improved results
for the target estimates. Small area estimation has become more and more attractive over
the last decade:

In 2002, small area estimation (SAE) was flourishing both in research and appli-
cations, but my own feeling then was that the topic has been more or less exhausted
in terms of research and that it will just turn into a routine application in sample
survey practice. As the past 9 years show, I was completely wrong; not only is
the research in this area accelerating, but it now involves some of the best known
statisticians... Pfeffermann (2013)

However, simulation studies in the context of small area estimation are often presented very
briefly. Thus there is a need to have a suitable framework to guarantee the reproducibility of
analysis. To the best of our knowledge, there is no R package or framework adjusted for the
special case of small area estimation which provides a simulation environment.

Austrian Journal of Statistics 57

The aim of this article is to introduce a new R package, saeSim, which supports the process
of making simulation studies in the field of small area estimation reproducible. To be more
precise, the suggested package has three main objectives: First, to provide tools for data
generation. Second, to unify the process of simulation studies. Third, to make the source code
of simulation studies available, such that it supports the conducted research in a transparent
manner.

This paper is organised as follows. In Section 2 we give a short introduction to small area
estimation focusing mainly on unit-level (Battese, Harter, and Fuller 1988) and area-level
models (Fay and Herriot 1979). Section 3 introduces a framework for simulation studies and
how it is supported by the R package saeSim. To illustrate some of the features of the package
we present a model- and design-based simulation study in Section 4. We conclude the paper
in Section 5 by summarising the main findings and by providing some avenues for further
research.

2. Small area estimation

The aim of small area estimation is to produce reliable statistics (means, quantiles, propor-
tions, etc.) for domains where few or no sampled units are available. Groups may be areas
or other entities defined, for example, by socio-economic characteristics. The demand for
such estimators is increasing as they are used for fund allocation, educational and health
programs (Pfeffermann 2013). As direct estimation of such statistics are considered to be
unreliable (with respect to MSE), methods in small area estimation try to improve the do-
main predictions by borrowing strength from neighbouring or similar domains. This can be
achieved by using additional information from census data or registers to assist the prediction
for non-sampled domains or domains with small sample sizes.

For the purpose of this article we will introduce two basic models frequently used in small
area estimation, the unit-level model introduced by Battese et al. (1988) and the area-level
model introduced by Fay and Herriot (1979). The unit level model (Battese et al. 1988) can
be expressed as:

yij = x>ijβ + vi + eij

vi
iid∼ N(0, σ2v)

eij
iid∼ N(0, σ2e),

where i = 1, . . . , D and j = 1, . . . , ni. The population of size N is divided into D non-
overlapping small areas of sizes Ni and into n sampled and N −n non-sampled units, denoted
by s and r respectively. yij is the dependent variable for domain i and unit j, and xij are
the corresponding auxiliary information for that unit. Furthermore v and e are independent.
Let β̂ denote the best linear unbiased estimator (BLUE) of β and v̂i the best linear unbiased
predictor (BLUP) of vi (cf. Henderson 1950 or Searle 1971). The empirical best linear unbiased
predictor (EBLUP) for the mean in small area i in the Battese-Harter-Fuller model is then
given by

ŷ
BHF
i = N−1i

{ ∑
j∈si

yij +
∑
j∈ri

(x>ij β̂ + v̂i)
}
. (1)

Due to reasons of confidentiality unit-level information is not always available. Instead only
aggregates for the domains or direct estimators may be supplied. In this case the feasible
direct estimates are known to be unreliable in the case of small sample sizes. Here area-level
models can be valuable. The area-level model introduced by Fay and Herriot (1979) is built
on a sampling model:

yi = µi + ei,

58 Simulation Tools for Small Area Estimation

where yi is a direct estimator of a statistic of interest µi for an area i. The sampling error
ei is assumed to be independent and normally distributed with known variances σ2e,i, i.e.
ei|µi ∼ N (0, σ2e,i). The model assumes a linear relationship between the true area statistic µi
and some auxiliary variables xi:

µi = x>i β + vi,

with i = 1, . . . , D. The model errors vi are assumed to be independent and normally dis-
tributed, i.e. vi ∼ N (0, σ2v). Furthermore ei and vi are assumed to be independent. Combin-
ing the sampling model and the linking model leads to:

yi = x>i β + vi + ei. (2)

The Fay-Herriot (FH) model in (2) is effectively a random-intercept model where the distri-
bution of the error term ei is heterogeneous and known. The EBLUP of the small area mean
in the FH model is given by

ŷ
FH
i = x>i β̂ + v̂i. (3)

3. A simulation framework

Population

Sample

Aggregate

Data table

Data generation

Computations on

the population

sim base()

sim gen()

sim comp pop()

Drawing sample

from population

Computations

on the sample

sim sample()

sim comp sample()

Aggregating data

Computations on

aggregated data

sim agg()

sim comp agg()

%>%

%>%

%>%

%>%

%>%

%>%

re
p
ea
t
R
-t
im

es

Figure 1: Process of simulation. Left column
are the steps in a simulation. Right column are
the corresponding function names to represent
those steps in R.

In this section we will present the simula-
tion framework implemented in saeSim. The
framework relies strongly on the idea to de-
scribe a simulation as a process of data ma-
nipulation. Independent of simulation stud-
ies, Wickham and Francois (2015) and Wick-
ham (2014) strongly promote this idea by
providing tools for cleaning and transform-
ing data. In those frameworks every de-
fined function takes a data.frame as input
and returns it modified. This leads to a
natural connection between all defined func-
tions since the result of one function can
be directly passed to the next as an argu-
ment. The symbioses of these packages with
the pipe operator (%>%) from the package
magrittr (Bache and Wickham 2014) only
emphasizes the process of data manipulation.
To avoid nested function calls the operator
can be used to improve the readability as ex-
pressions can be read from left to right (cf.
Section 4).

In saeSim we extend this approach to simula-
tion studies in the field of small area estima-
tion. The main focus lies in the description of
a simulation as a process of data manipula-
tion. Each step in this process can be defined
as a self contained component (function) and
thus can be easily replaced, extended and
most importantly reused. Before we go into
the details of the functionality of the pack-
age we discuss the process behind simulation
studies and how saeSim maps this process
into R.

Austrian Journal of Statistics 59

Simulation studies in small area estimation address three different levels; these are the pop-
ulation, the sample and data on aggregated level. Figure 1 illustrates these levels. The
left column describes the steps of data manipulation, the right column presents the function
names to define the corresponding steps. The population-level defines the data on which
a study is conducted and may be a true population, synthetic population data or randomly
generated variates from a model. We see two different points of view to define a population:
Firstly, design-based simulations, which means that a simulation study is based on true or
synthetic data of one population. Secondly, model-based simulations, which have changing
random populations drawn from a model.

The scope of this article is not to opt for viewpoints. The aim is to incorporate the different
simulation concepts in a common framework. The base (first component in Figure 1) of a
simulation study is a data table; here the question is whether these data are fixed or random
over simulations. Or from a more technical point of view, is the data generation (the second
step in Figure 1) repeated in each simulation run or omitted. Depending on the choice of
a fixed or random population it is necessary to re-compute the population domain-statistics
like domain means and variances, or other statistics of interest (third component in Figure
1).

The sample-level is necessary when domain predictions are conducted for unit-level models.
Independently of how the population is treated - whether as fixed or random - this phase
consists of two steps: Firstly, drawing a sample according to a specific sampling scheme.
Secondly, conducting computations on the samples (fourth and fifth component in Figure
1). Given a sample, small area methods are applied. Of interest are, for instance, estimated
model parameters, domain predictions or measures of uncertainty (MSE) for the estimates.

Since the sample-level is necessary when unit-level models are applied, the aggregate-level
is conducted when area-level models are applied (the seventh and last component in Figure
1). Area-level models in small area estimation typically only use information available for
domains (in contrast to units). Thus the question for simulation studies for area-level meth-
ods is whether the data are generated on unit-level and is used after the aggregation (sixth
component in Figure 1) or whether the data are generated directly on area-level, i.e. drawn
from an area-level model. Depending on whether or not unit-level data and sampling are part
of the simulation process, the aggregate-level follows the generation of the population or is
based on the aggregated sample.

Depending on the topic of research, some steps in this simulation framework can be more
relevant than others. From our perspective, these steps are more a complete list of phases
one can conduct. Single components may be omitted if not relevant in specific applications.
For example data generation is not relevant if you have population data, or the sample-level
is not used, when the sample is directly drawn from the model.

Seen this way, saeSim maps the different steps into R. Two layers with separate responsibilities
need to be discussed. The first is how different simulation components can be combined, and
the second is when they are applied. Regarding the first, in saeSim we put a special emphasis
on the interface of each component. To be precise, we use functions which take a data.frame

as argument and have a data.frame as return value. The return value of one component is
the input of the next. This definition of interfaces is used for all existing tools in saeSim. The
second column in Figure 1 shows how the different steps in a simulation can be accessed. It
is important to note that the functions in Figure 1 control the process, the second layer, i.e.
when components are applied. Each of these functions take a simulation setup object to be
modified and a function with the discussed interface as arguments. Hence, the pipe operator
(%>%) can be used to combine separate components to a simulation setup.

4. Case studies

We present two applications of saeSim, one model-based simulation in Section 4.1 and a

60 Simulation Tools for Small Area Estimation

design-based simulation in Section 4.2. First, though, we introduce some basic functionalities
as the pipe operator (%>%) needs some explanation. The pipe operator is designed to make
otherwise nested expressions more readable as a line can be read from left to right, instead
from inside out (Bache and Wickham 2014). As a simple example see the following lines
which are equivalent with respect to their functionality:

> library("magrittr")

> colMeans(matrix(rnorm(10), ncol = 2))

> rnorm(10) %>% matrix(ncol = 2) %>% colMeans

In saeSim, we rely on this operator. Although all functions can be used without it, we strongly
recommend its usage. The following example shows some of the aspects of the package:

> library("saeSim")

> setup1 <- sim_base_lm() %>% sim_sample(sample_number(5))

> setup2 <- sim_base_lm() %>% sim_sample(sample_fraction(0.05))

Without knowing anything about the setup defined in sim_base_lm() we notice that setup1
and setup2 only differ in the applied sampling scheme. sim_sample() is responsible as a
control when a function is applied (after the population-level) and sample_number(5) and
sample_fraction(0.05) define the explicit way of drawing samples. Separating the respon-
sibility of each component into what is applied and when it is applied makes it possible to
add new components to any step in the process. The composition of a simulation in that
manner will focus on the definition of components and hide control structures. Any function
can be passed to sim_sample() which has a data.frame both as input and as return value.
The only responsibility of that function is to draw a sample, which makes it easy to find,
understand and reuse when published. The operator %>% is used to add new components to
the setup.

4.1. Model-based simulation

In the following we show one way how to construct a simulation in a model-based setting.
The aim is to estimate the domain predictions under a FH model. Involved components are
data generation and computing on aggregated data (cf. Figure 1). The first step is to generate
the data under the model:

yi = 100 + 2 · xi + vi + ei,

where xi
iid∼ N(0, 42), vi

iid∼ N(0, 1) and ei
indep∼ N(0, σ2i) with σ2i = 0.1, 0.2, . . . , 4 and i =

1, . . . , 40 as index for the domains. xi, vi and ei are independent from each other. The
area-level data for the simulation are generated in each Monte Carlo replication.

In this case the base-component is a data frame with an id variable named idD and constructed
with the function base_id(). Any random number generator in R can be used. However, we
have normally distributed variates, for which some predefined functions are available in the
package. For the reproducibility of the following results we also set the seed to 1. The seed
is not part of a simulation setup in saeSim but needs to be defined by the researcher.

> set.seed(1)

> setup <- base_id(nDomains = 40, nUnits = 1) %>%

+ sim_gen_x(mean = 0, sd = 4) %>%

+ sim_gen_v(mean = 0, sd = 1)

> setup

Austrian Journal of Statistics 61

data.frame [40 x 3]

idD x v

1 1 -2.5058152 -0.1645236

2 2 0.7345733 -0.2533617

3 3 -3.3425144 0.6969634

4 4 6.3811232 0.5566632

5 5 1.3180311 -0.6887557

6 6 -3.2818735 -0.7074952

..

Note that if you print a simulation setup to the console, as in the above example, one sim-
ulation run is performed and only the first rows (the head) of the resulting data table are
printed. This enables interactivity with the object itself; however, it hides the fact that the
setup object is a collection of functions to be called. In this model the error component ei has
different variances which is not covered by a predefined function. Thus, as a generator com-
ponent, we define a function which takes a data.frame as input and returns it after adding
a variable named vardir with the variances and the variable e with the generated random
numbers:

> gen_e <- function(dat) {

+ dat$vardir <- seq(0.1, 4, length.out = nrow(dat))

+ dat$e <- rnorm(nrow(dat), sd = sqrt(dat$vardir))

+ dat

+ }

> setup <- setup %>% sim_gen(gen_e)

> setup

data.frame [40 x 5]

idD x v vardir e

1 1 -2.2746749 -0.5059575 0.1 0.1344285

2 2 -0.5407145 1.3430388 0.2 -0.1067262

3 3 4.7123480 -0.2145794 0.3 0.5797550

4 4 -6.0942672 -0.1795565 0.4 0.5606229

5 5 2.3757848 -0.1001907 0.5 -0.4378710

6 6 1.3318015 0.7126663 0.6 1.7088396

..

The last step in data generation is to construct the response variable which is named y and is
added to the data. Furthermore, we add the true area statistic under the model to the data:

> setup <- setup %>%

+ sim_resp_eq(y = 100 + 2 * x + v + e) %>%

+ sim_comp_pop(comp_var(trueStat = y - e))

To add the area-level predictions from a Fay-Herriot model we need to define another com-
ponent. The function takes a data.frame as input and returns the modified version. For the
estimation of the EBLUP under the FH model we use the function eblupFH() from the pack-
age sae (Molina and Marhuenda 2013). To avoid naming conflicts between the dependencies
of sae and the package dplyr (Wickham and Francois 2015) we make use of the double colon
operator in order to call the function eblupFH() without attaching the package. Hence we
define a function named comp_FH() and add it to the process:

62 Simulation Tools for Small Area Estimation

> comp_FH <- function(dat) {

+ modelFH <- sae::eblupFH(y ~ x, vardir, data = dat)

+ dat$FH <- as.numeric(modelFH$eblup)

+ dat

+ }

> setup <- setup %>% sim_comp_agg(comp_FH)

> setup

data.frame [40 x 8]

idD x v vardir e y trueStat FH

1 1 1.637607 0.7073107 0.1 0.1258998 104.10843 103.98253 104.06121

2 2 6.755493 1.0341077 0.2 -0.1822523 114.36284 114.54509 114.23876

3 3 6.346354 0.2234804 0.3 0.7253263 113.64151 112.91619 113.45213

4 4 -1.323631 -0.8787076 0.4 -0.4434978 96.03053 96.47403 96.45416

5 5 -9.140942 1.1629646 0.5 -0.4105563 82.47052 82.88108 82.46045

6 6 9.990646 -2.0001649 0.6 -0.7754272 117.20570 117.98113 118.08379

..

The object setup stores all necessary information to run one iteration of the simulation. In
the following R = 100 repetitions are performed. The result is a list of data.frames. The
function bind_rows() from the package dplyr is used to combine the resulting list:

> library("dplyr")

> simResults <- sim(setup, R = 100) %>% bind_rows

> simResults %>% select(idD, idR, simName, trueStat, y, FH)

Source: local data frame [4,000 x 6]

idD idR simName trueStat y FH

1 1 1 107.87088 108.21065 108.30528

2 2 1 113.29033 114.13809 113.80733

3 3 1 105.88208 105.55180 105.63108

4 4 1 84.61171 84.36450 84.63272

5 5 1 103.68692 103.39260 103.42371

6 6 1 104.26130 103.97032 103.79131

7 7 1 97.85114 97.54439 97.43298

8 8 1 101.93187 101.66741 101.49500

9 9 1 92.51517 93.88300 93.67397

10 10 1 104.07055 103.37302 104.01407

..

An additional variable idR is automatically added as an ID-variable for the iteration as well
as a variable simName to distinguish between scenarios. In saeSim we do not provide further
tools to process the resulting data as there are many tools readily available in R. In the
design-based scenario we show how to process the result data into graphs with only a few
lines of code.

4.2. Design-based simulation

In the design-based simulation we illustrate the use of saeSim under a fixed population. For
this purpose we use a synthetic population generated from Austrian EU-SILC (European
Union Statistics on Income and Living Conditions) data. The data consist of 25 thousand
households. It is published alongside the R package simFrame (Alfons et al. 2010) where it is

Austrian Journal of Statistics 63

also used as an example data set. To keep this study as simple as possible, we further restrict
the data to the main income holder and only use some of the available auxiliary information.

> data(eusilcP, package = "simFrame")

> simDat <- eusilcP %>%

+ mutate(agesq = age^2, eqIncome = as.numeric(eqIncome)) %>%

+ filter(main) %>%

+ select(region, eqIncome, age, agesq, gender)

> head(simDat)

region eqIncome age agesq gender

1 Upper Austria 11128.45 25 625 male

2 Styria 19694.85 53 2809 male

3 Styria 5066.24 30 900 female

4 Upper Austria 31480.01 32 1024 male

5 Vienna 17813.40 77 5929 female

6 Lower Austria 13501.53 35 1225 male

Using this data set as population, we repeatedly draw samples from it. Then we predict the
domain means by using a direct estimator and a unit-level model. The sampling design is to
draw a 10 per cent sample from each region with simple random sampling. For each region
the direct estimator for income and the EBLUP under the BHF model is computed. Although
the data offer some more information, we only use gender, age and agesq as covariates. The
function eblupBHF() from the package sae is an implementation of the BHF estimator. This
function takes three data objects and returns the domain predictions. The three objects are
the sampled data, the population means of the auxiliary variables and the population sizes
in each domain.

Before we begin to construct the simulation setup, we store these data frames as attributes to
the population data. This allows us to process meta data alongside the main data frame. It
is important to note that not all functions for manipulating data frames in R preserve these
attributes. Users of saeSim have to keep this in mind when they implement new functions.
Defining the interfaces between components differently is one possibility to avoid the usage
of attributes. This can be done, for example, by using generic vectors or S4 classes instead of
data frames. However this will add complexity to the process of data manipulation underlying
the package which we try to avoid by following the paradigm: data frame in, data frame out.
Thus all functions in saeSim preserve the attributes of the main data frame.

> attr(simDat, "popMeans") <- group_by(simDat, region) %>%

+ summarise(age = mean(age),

+ agesq = mean(agesq),

+ genderFemale = mean(as.integer(gender) - 1),

+ trueStat = mean(eqIncome))

> attr(simDat, "popMeans")

Source: local data frame [9 x 5]

region age agesq genderFemale trueStat

1 Burgenland 54.50063 3269.677 0.3366708 22005.42

2 Lower Austria 51.95259 3009.934 0.3777874 19813.37

3 Vienna 46.98310 2486.448 0.4662797 20395.84

4 Carinthia 51.81428 2995.735 0.3540337 19486.18

5 Styria 50.64087 2886.845 0.3573538 19335.39

6 Upper Austria 50.18644 2795.804 0.3443871 20517.29

64 Simulation Tools for Small Area Estimation

7 Salzburg 51.44943 2965.268 0.4189108 19890.33

8 Tyrol 51.76707 2995.451 0.3975648 19350.89

9 Vorarlberg 49.06904 2697.382 0.3583756 22156.12

> attr(simDat, "popN") <- group_by(simDat, region) %>% summarise(N = n())

> attr(simDat, "popN")

Source: local data frame [9 x 2]

region N

1 Burgenland 799

2 Lower Austria 4619

3 Vienna 5857

4 Carinthia 1723

5 Styria 3386

6 Upper Austria 4071

7 Salzburg 1671

8 Tyrol 1889

9 Vorarlberg 985

Before we come to the estimation, the first step is to add a sampling scheme. As stated
earlier, the starting point of a simulation setup is to provide a data.frame as base-component
which, in this case, is the population data. Then the sampling component is added, where the
definition is to draw 10 per cent samples of the observations from each domain with simple
random sampling.

> setup <- simDat %>%

+ sim_sample(sample_fraction(0.1, groupVars = "region"))

> setup

data.frame [2,500 x 5]

region eqIncome age agesq gender

1 Burgenland 23572.28 67 4489 male

2 Burgenland 24056.37 26 676 male

3 Burgenland 21613.73 46 2116 male

4 Burgenland 11750.30 40 1600 male

5 Burgenland 9664.08 80 6400 female

6 Burgenland 19369.91 63 3969 female

..

In the next step, we define components which add the estimates of interest to the data. Here
we compute the direct estimator of the mean income in each domain and the EBLUP under
the BHF model. Although this could be done in one step, we separate the two computations to
illustrate how to combine several estimations and how to define each component independently
of the others. This automatically organises the simulation and each component is arranged
using the simulation framework. Hence we define two functions, one for adding the direct
estimates and one for adding the EBLUP.

> comp_direct <- function(dat) {

+ attr(dat, "sampleMean") <-

+ dat %>% group_by(region) %>% summarise(direct = mean(eqIncome))

+ dat

+ }

Austrian Journal of Statistics 65

> comp_BHF <- function(dat) {

+ popMeans <- select(attr(dat, "popMeans"), -trueStat)

+ modelBHF <-

+ sae::eblupBHF(eqIncome ~ age + agesq + gender, region,

+ meanxpop = popMeans, popnsize = attr(dat, "popN"),

+ data = dat)

+ attr(dat, "BHF") <- modelBHF$eblup

+ dat

+ }

A positive aspect of the above definitions is that the code for each step is relatively short and
the purpose is clearly defined. This may help to improve readability and to reproduce the
research. Finally, the simulation results are combined in an aggregation-component, possibly
followed by the application of area-level models. The result of this aggregation step is a
data.frame with one row for each region.

> agg_results <- function(dat) {

+ cbind(attr(dat, "sampleMean"),

+ BHF = attr(dat, "BHF")$eblup,

+ trueStat = attr(dat, "popMeans")$trueStat)

+ }

To combine the simulation setup and the defined components we arrange them using the func-
tion sim_comp_sample() to ensure that the direct estimator and the EBLUP are computed
on the sampled data, and sim_agg() to add the above aggregation step.

> setup <- setup %>%

+ sim_comp_sample(comp_BHF) %>%

+ sim_comp_sample(comp_direct) %>%

+ sim_agg(agg_results)

> setup

data.frame [9 x 4]

region direct BHF trueStat

1 Burgenland 21933.95 21255.53 22005.42

2 Lower Austria 18885.08 19036.29 19813.37

3 Vienna 20734.08 20720.48 20395.84

4 Carinthia 19211.55 19377.21 19486.18

5 Styria 18704.75 18955.96 19335.39

6 Upper Austria 20636.94 20504.37 20517.29

..

To repeat the simulation R = 50 times the simulation setup is passed to the function sim().
The resulting list is directly combined using bind_rows().

> simResults <- setup %>% sim(R = 50) %>% bind_rows

> simResults

Source: local data frame [450 x 6]

region direct BHF trueStat idR simName

1 Burgenland 23083.61 20800.16 22005.42 1

66 Simulation Tools for Small Area Estimation

2 Lower Austria 20414.91 20264.56 19813.37 1

3 Vienna 20756.78 20422.85 20395.84 1

4 Carinthia 19581.64 19912.42 19486.18 1

5 Styria 19443.11 19757.42 19335.39 1

6 Upper Austria 20417.38 20356.38 20517.29 1

7 Salzburg 19900.44 20009.83 19890.33 1

8 Tyrol 18493.29 19540.25 19350.89 1

9 Vorarlberg 21166.20 20444.35 22156.12 1

10 Burgenland 21340.42 20510.92 22005.42 2

..

To further process the simulation results we present two plots using the package ggplot2
(Wickham 2009) and reshape2 (Wickham 2007) for further reshaping of the data. Figure 2
and 3 show the Monte Carlo BIAS and MSE for each region in Austria and for each estimator.
Keep in mind that the BHF was applied to illustrate the simulation framework. There are a
number of issues with regard to model choice, variable selection and outliers, which we will
not discuss in this context.

> ggDat <- reshape2::melt(

+ simResults,

+ id.vars = c("region", "trueStat"),

+ measure.vars = c("BHF", "direct"),

+ variable.name = "method",

+ value.name = "prediction")

> library("ggplot2")

> ggplot(ggDat, aes(x = region, y = prediction - trueStat, fill = method)) +

+ geom_boxplot() + theme(legend.position = "bottom")

> ggplot(ggDat,

+ aes(x = region, y = (prediction - trueStat)^2, fill = method)) +

+ geom_boxplot() + scale_y_log10() + theme(legend.position = "bottom")

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

−2000

0

2000

4000

BurgenlandLower Austria Vienna Carinthia Styria Upper Austria Salzburg Tyrol Vorarlberg
region

pr
ed

ic
tio

n
−

 tr
ue

S
ta

t

method BHF direct

Figure 2: Monte Carlo BIAS of direct vs. BHF predictor. 50 predictions for each region and
estimation technique.

Austrian Journal of Statistics 67

●
●●

●

●●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

1e+01

1e+03

1e+05

1e+07

BurgenlandLower Austria Vienna Carinthia Styria Upper Austria Salzburg Tyrol Vorarlberg
region

(p
re

di
ct

io
n

−
 tr

ue
S

ta
t)

^2

method BHF direct

Figure 3: Monte Carlo MSE of direct vs. BHF predictor. 50 predictions for each region and
estimation technique.

5. Outlook

From our perspective, there is a need for sharing tools for data generation and simulation
among the scientific community in order to guarantee the reproducibility of research. saeSim
may provide an adequate framework for pursuing this aim in the field of small area estimation.
By defining the steps of a simulation we may promote a reasonable way to communicate results
in academic articles and during research.

The package source is available on CRAN (http://CRAN.R-project.org/package=saeSim)
and the repository for development on GitHub (https://github.com/wahani/saeSim). As
GitHub allows to share and contribute source code using version control, it is open for submis-
sions. Apart from the availability of specific utility functions, we may promote and support
the design of source code for simulation studies. One aspect is the design of simulations
as processes of data. Furthermore, we encourage the definition of small and self contained
components, i.e. functions. This reduces the lines of code necessary to be read in order to
understand its purpose.

The package provides more features than are introduced in this article. One may mention in
this context the support of outlier contaminated data. Currently only representative outliers
(outlying observations in the population) are supported (cf. Chambers 1986). However, we
plan to extend this feature to non-representative outliers (outliers are part of the sample but
not the population, e.g., incorrectly recorded values). Furthermore, an interface to random
number generators in R is available. The user can also generate group effects as needed in
mixed models. As the response is created by an R expression, any form of non-linearity in
the relationship between response and auxiliary variables as well as error components can be
modeled.

A more technical feature is a back-end for parallel computations which is a link to the paral-
lelMap package in R (Bischl and Lang 2015). Tools to process result data after the simulation,
i.e. summaries or plotting methods, are avenues for further research. Already available are
some simple plots for the simulation setups as well as a summary method to get information
on the expected run time and structure of the resulting data.

http://CRAN.R-project.org/package=saeSim
https://github.com/wahani/saeSim

68 Simulation Tools for Small Area Estimation

References

Alfons A, Kraft S, Templ M, Filzmoser P (2011). “Simulation of Close-to-Reality Popula-
tion Data for Household Surveys with Application to EU-SILC.” Statistical Methods &
Applications, 20(3), 383–407.

Alfons A, Templ M, Filzmoser P (2010). “An Object-Oriented Framework for Statistical
Simulation: The R Package simFrame.” Journal of Statistical Software, 37(3), 1–36.

Allaire J, McPherson J, Xie Y, Wickham H, Cheng J, Allen J (2014). rmarkdown: Dynamic
Documents for R. R package version 0.3.3, URL http://CRAN.R-project.org/package=

rmarkdown.

Bache SM, Wickham H (2014). magrittr: A Forward-Pipe Operator for R. R package version
1.0.1, URL http://CRAN.R-project.org/package=magrittr.

Battese GE, Harter RM, Fuller WA (1988). “An Error-Components Model for Prediction of
County Crop Areas Using Survey and Satellite Data.” Journal of the American Statistical
Association, 83(401), 28–36.

Bischl B, Lang M (2015). parallelMap: Unified Interface to Some Popular Parallelization
Back-Ends for Interactive Usage and Package Development. R package version 1.2, URL
http://CRAN.R-project.org/package=parallelMap.

Burgard JP, Kolb JP, Münnich R (2014). “Generation of Synthetic Universes for Micro-
Simulations in Survey Statistics.” Working Paper.

Chambers R (1986). “Outlier Robust Finite Population Estimation.” Journal of the American
Statistical Association, 81(396), 1063–1069.

Fay R, Herriot R (1979). “Estimation of Income for Small Places: An Application of James-
Stein Procedures to Census Data.” Journal of the American Statistical Association, 74(366),
269–277.

Ghosh M, Rao JNK (1994). “Small Area Estimation: An Appraisal.” Statistical Science, 9(1),
55–93.

Henderson CR (1950). “Estimation of Genetic Parameters.” Annals of Mathematical Statistics,
21(2), 309–310.

Knuth DE (1992). Literate Programming. CSLI.

Kolb JP (2013). Generation of Synthetic Universes. Ph.D. thesis, University of Trier. URL
http://ubt.opus.hbz-nrw.de/volltexte/2013/816/.

Leisch F (2002). “Sweave, Part I: Mixing R and LATEX.” R News, 2(3), 28–31.

Meindl B, Templ M, Alfons A, Kowarik A, with contributions from Ribatet M (2014). sim-
Pop: Simulation of Synthetic Populations for Survey Data Considering Auxiliary Infor-
mation. R package version 0.2.6, URL http://CRAN.R-project.org/package=simPop.

Molina I, Marhuenda Y (2013). sae: Small Area Estimation. R package version 1.0-2, URL
http://CRAN.R-project.org/package=sae.

Münnich R, Schürle J, Bihler W, Boonstra H, Knotterus P, Nieuwenbroek N, Haslinger
A, Laaksonen S, Eckmair D, Quatember A, Wagner H, Renfer J, Oetliker U, Wiegert
R (2003). “Monte Carlo Simulation Study of European Surveys.” DACSEIS Deliv-
erables D3.1 and D3.2. URL https://www.uni-trier.de/fileadmin/fb4/projekte/

SurveyStatisticsNet/Dacseis_Deliverables/DACSEIS-D3-1-D3-2.pdf.

http://CRAN.R-project.org/package=rmarkdown
http://CRAN.R-project.org/package=rmarkdown
http://CRAN.R-project.org/package=magrittr
http://CRAN.R-project.org/package=parallelMap
http://ubt.opus.hbz-nrw.de/volltexte/2013/816/
http://CRAN.R-project.org/package=simPop
http://CRAN.R-project.org/package=sae
https://www.uni-trier.de/fileadmin/fb4/projekte/SurveyStatisticsNet/Dacseis_Deliverables/DACSEIS-D3-1-D3-2.pdf
https://www.uni-trier.de/fileadmin/fb4/projekte/SurveyStatisticsNet/Dacseis_Deliverables/DACSEIS-D3-1-D3-2.pdf

Austrian Journal of Statistics 69

Pfeffermann D (2013). “New Important Developments in Small Area Estimation.” Statistical
Science, 28(1), 40–68.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Salvati N, Chandra H, Giovanna-Ranalli M, Chambers R (2010). “Small Area Estimation
Using Nonparametric Model-Based Direct Estimator.” Computational Statistics & Data
Analysis, 54(9), 2159–2171.

Schmid T, Münnich R (2014). “Spatial Robust Small Area Estimation.” Statistical Papers,
55(3), 653–670.

Searle SR (1971). Linear Models. John Wiley & Sons, New York.

Wickham H (2007). “Reshaping Data with the reshape Package.” Journal of Statistical
Software, 21(12), 1–20.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag.

Wickham H (2014). tidyr: Easily tidy data with spread and gather functions. R package
version 0.1, URL http://CRAN.R-project.org/package=tidyr.

Wickham H, Francois R (2015). dplyr: A Grammar of Data Manipulation. R package version
0.4.1, URL http://CRAN.R-project.org/package=dplyr.

Yihui X (2013). Dynamic Documents with R and knitr. Chapman & Hall/CRC.

Affiliation:

Timo Schmid
Department of Economics
Freie Universität Berlin
D-14195 Berlin, Germany
E-mail: Timo.Schmid@fu-berlin.de
URL: http://www.wiwiss.fu-berlin.de/fachbereich/vwl/Schmid

Sebastian Warnholz
Department of Economics
Freie Universität Berlin
D-14195 Berlin, Germany
E-mail: Sebastian.Warnholz@fu-berlin.de
URL: http://www.wiwiss.fu-berlin.de/fachbereich/vwl/Schmid/Team/Warnholz.html

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 45 Submitted: 2014-10-31
March 2016 Accepted: 2015-02-11

http://www.R-project.org/
http://CRAN.R-project.org/package=tidyr
http://CRAN.R-project.org/package=dplyr
mailto:Timo.Schmid@fu-berlin.de
http://www.wiwiss.fu-berlin.de/fachbereich/vwl/Schmid
mailto:Sebastian.Warnholz@fu-berlin.de
http://www.wiwiss.fu-berlin.de/fachbereich/vwl/Schmid/Team/Warnholz.html
http://www.ajs.or.at/
http://www.osg.or.at/

	Introduction
	Small area estimation
	A simulation framework
	Case studies
	Model-based simulation
	Design-based simulation

	Outlook

