
AJS

Austrian Journal of Statistics
March 2016, Volume 45, 3–23.

http://www.ajs.or.at/

doi:10.17713/ajs.v45i1.86

Treatment of Multivariate Outliers in Incomplete

Business Survey Data

Marc Bill
FHNW School of Business

Beat Hulliger
FHNW School of Business

Abstract

The distribution of multivariate quantitative survey data usually is not normal. Skewed
and semi-continuous distributions occur often. In addition, missing values and non-
response is common. All together this mix of problems makes multivariate outlier de-
tection difficult. Examples of surveys where these problems occur are most business
surveys and some household surveys like the Survey for the Statistics of Income and Liv-
ing Condition (SILC) of the European Union. Several methods for multivariate outlier
detection are collected in the R package modi. This paper gives an overview of the package
modi and its functions for outlier detection and corresponding imputation. The use of
the methods is explained with a business survey data set. The discussion covers pre- and
post-processing to deal with skewness and zero-inflation, advantages and disadvantages of
the methods and the choice of the parameters.
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1. Introduction

In surveys on monetary values, often several monetary variables are collected in order to
capture the economic situation of an entity. This holds for business surveys, where many
particular types of expenditures may be asked. Examples are surveys on expenditures for
research and development or investments and expenditures for environment protection. Also
for household or person surveys on the economic situation, several economic variables are
needed. Examples are surveys on the economic situation of students, where sources of fi-
nancing, expenditures for dwelling, travelling, food etc. are needed, or household surveys like
the Statistics on Income and Living Conditions (SILC) of the European Union where var-
ious income sources are collected. Of course also non-monetary quantitative variables may
be collected like various health indicators in a health survey or physical production param-
eters in a business survey or in a survey on livestock of farms. All these surveys have some
common features: They have a complex sample design including stratification and possibly
sub-sampling; they have elaborated questionnaires; they have unit and item non-response,
and they typically have zero inflated distributions because of the multi-faceted economic sit-
uation. Zero-inflation occurs because a particular entity usually only needs a subset of the
possible dimensions to describe its situation. For example in the SILC surveys, retired persons
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usually (but not always) do not have labour income. Or in a business survey on environment
protection, expenditures of an educational institution may not have investments into waste
water treatment.

It is challenging to deal with outliers in these situations because, in addition to the above
problems, the size effect of families, farms or businesses may yield heavily skewed distributions.
There may be outliers which are correct observations and which must be taken into account
when population totals, like waste water treatment expenditures of a branch of economy, must
be estimated. However, taking the outliers into account introduces a large variability and, if
actually the values are not correct, entail a large bias, too. Chambers (1986) introduced the
notion of a representative outlier to conceptualise this dilemma.

In sample surveys, the definition of an outlier usually cannot rely on a parametric model. The
outlier generating mechanisms may depend on other variables and therefore are not simple
mixture models as in classical robust statistics (see, e.g., Hampel, Ronchetti, Rousseeuw, and
Stahel 1986). Therefore, Béguin and Hulliger (2008) introduced the notion of an outlier at
random, and Hulliger and Schoch (2013) discuss a full model of outlier generating mechanisms
and the connections between missingness and outlyingness.

It is important to note that the results in the following example differ widely whether weights
are used or not. In general, the outlyingness, the missingness mechanisms (item non-response),
the sample design and the unit non-response mechanism are correlated and cannot be ignored.
The package modi (Hulliger 2015) for the statistical environment R (R Core Team 2014)
can handle outlyingess, missingness and sample design issues at once and in a multivariate
framework.

To the best of our knowledge, the R package modi is at the moment the only package that at
the same time deals with missing values and survey weights. The package rrcovNA (Todorov
2014b) is an extension of the package rrcov (Todorov and Filzmoser 2009; Todorov 2014a)
with methods that cope with missing values but does not take survey weights into account.
Therefore, a comparison is difficult. A notable paper comparing the outlier detection al-
gorithms of an earlier version of the packages rrcovNA and modi is Todorov, Templ, and
Filzmoser (2011).

Section 2 gives an overview of the package modi. Section 3 introduces the SEPE data set
which is used in Section 4 to show the application of different methods of the package. Section
5 gives a conclusion.

2. Overview of the modi package

Several multivariate outlier detection and imputation procedures are contained in Version
1.6 of the package modi. The BACON-EEM algorithm (Béguin and Hulliger 2008, func-
tion BEM()) detects outliers under the assumption of a multivariate normal distribution. The
BACON-EEM algorithm starts from an outlier free subset, uses the EM-algorithm to estimate
the center and scatter of the observations of this subset and then judges outlyingness of the
full data set by the Mahalanobis distance (MD) in order to define a new outlier free subset.
This procedure is iterated until convergence. Sampling weights are taken into account. The
Transformed Rank Correlation (TRC) algorithm (Béguin and Hulliger 2004, function TRC())
uses Spearman rank correlations and, similar to Maronna and Zamar (2002), an orthogo-
nal transformation to arrive at a robust estimate of the mean and covariance. Before the
transformation, missing values are imputed provisionally by simple robust regression. The
Epidemic Algorithm (EA) (Béguin and Hulliger 2004) is based on a type of data depth. It is
run forward to detect outliers (function EAdet()) and backward to impute for outliers (func-
tion EAimp()). The GIMCD algorithm (Béguin and Hulliger 2008, function GIMCD()) uses
non-robust Gaussian imputation, i.e. an EM-algorithm, followed by a highly robust minimum
covariance determinant (MCD) algorithm (Rousseeuw and Van Driessen 1999). The GIMCD
algorithm is similar to the poor man’s algorithm of Todorov et al. (2011). The nearest neigh-
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Table 1: Algorithms of the package modi.

Algorithm Function Use

BACON-EEM BEM() Detection of outliers
Epidemic for detection EAdet() Detection of outliers
Epidemic for imputation EAimp() Imputation of outliers and NA’s
Transformed Rank Correlation TRC() Detection of outliers
ER ER() Detection of outliers
Gaussian imputation and MCD GIMCD() Detection of outliers
Nearest Neighbour Imputation POEM() Imputation of outliers and NA’s
Winsorization and Gaussian imputation Winsimp() Imputation of outliers and NA’s

bour imputation algorithm POEM can cope with outliers (Charlton 2003, function POEM()).
Another algorithm of modi for imputation is based on winsorization followed by a multivariate
normal model (function Winsimp()). Also the first robust multivariate detection algorithm
which was adapted to missing values by Little and Smith (1987) is included (function ER()).
A list of the algorithms of the modi package is shown in Table 1.

In addition to the algorithms, the modi package contains a set of utility functions which
are mostly internal. To mention are a plot for Mahalanobis distances (function PlotMD())
based on the χ2-distribution or the F-distribution, implementing the proposal by Little and
Smith (1987), function weighted.var() to calculate weighted variances analogue to the base
function weighted.mean(), and function MDmiss() to calculate Mahalanobis distances when
missing values occur.

The package modi contains two data sets. The bushfire data (Campbell 1989) with a version
that contains missing values (bushfirem) and a set of (fictive) weights (bushfire.weights).
The bushfire data set is used in the examples of the package documentation. The second data
set sepe stems from a real survey on environment expenditures of private companies carried
out by the Swiss Federal Statistical Office. It is explained in detail in Section 3.

3. The SEPE data set

The sepe data set is an anonymised sample of the pilot survey on environment protection
expenditures of the Swiss private economy conducted in 1993 by the Swiss Federal Statistical
Office. The units are enterprises and the monetary variables are in thousand Swiss Francs
(CHF). The data contain 675 observations on 23 variables overall. The sample design is
stratified according to branch of economy and size. The sampling rate increases with the
size class of the strata. For confidentiality reasons, a random subsample was chosen from the
original sample and certain enterprises were excluded specifically. In addition, random small
perturbation was added to certain variables, and some categories have been collapsed. The
data set has missing values where in the original data collection the respondent indicated
that the value was a guess rather than copied from records. The sepe data set has first been
prepared for the FP5 project EUREDIT (Charlton 2003) and later been used as protected
data for educational purposes. For this demonstration of the modi package, we focus on
8 variables representing the most important expenditure-areas (exp) and investment-areas
(inv). In particular, the areas are water protection(wp), waste management (wm) and air
protection (ap). The variables for noise protection (np) and other protection areas (op)
are excluded from the following examples. The chosen variables are totinvwp, totinvwm,
totinvap, totinvto, totexpwp, totexpwm, totexpap and totexpto, where the prefix tot

indicates that the variables are the aggregates over all types of investment or expenditures.
The variable naming includes the abbreviated type of spending in the middle and the area
at the end. The variables totinvto and totexpto are the overall total expenditure and
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Table 2: Summary statistics of the SEPE data (original scale).

Mean Std-Dev Min Med Max No. Miss

totinvwp 23.68 212.44 0 0 8400 48
totinvwm 15.57 342.70 0 0 18108 53
totinvap 78.13 1331.12 0 0 88248 53
totinvto 136.66 1490.55 0 0 88359 82
totexpwp 22.38 176.93 0 0 8800 90
totexpwm 30.42 236.87 0 3 6490 118
totexpap 8.35 125.86 0 0 8430 72
totexpto 58.11 340.41 0 7 16440 161

investment in all environmental protection areas, respectively. Since these overall totals have
been collected, the balance condition (sub-totals adding to totals) does not always hold. These
inconsistencies are not dealt with in the present analysis but methods for their treatment can
be found in Luzi, De Waal, Hulliger, Di Zio, Pannekoek, Kilchmann, Guarnera, Hoogland,
Manzari, and Tempelman (2007) and Charlton (2003). The sampling weight (weight) has
been adjusted for non-response in the stratum by using the ratio of population size divided
by the net sample size.

The descriptive univariate statistics in Table 2 show the strong asymmetry present in the data.
To handle this, in a first step we logarithmize the data set by applying the transformation
log(x+1).

> data("sepe")

> sepevar8 <- c("totinvwp", "totinvwm", "totinvap", "totinvto",

+ "totexpwp", "totexpwm", "totexpap", "totexpto")

> data <- log(sepe[, sepevar8] + 1)

The pairs() plot in Figure 1 of the transformed data reveals the previously discussed positive
correlation between the overall totals (totexpto and totinvto) and the subcategories. A
large part of the observations lies on the axes, reflecting zeros, but there is always a part
of the data forming a more or less elliptically shaped bivariate distribution. Univariate and
bivariate outliers are visible. Besides 2’595 items containing the value zero, we have 677
missing values out of 5’400 items considered here. Hence, for the algorithms BACON-EEM,
TRC and GIMCD, we need an additional step in data preparation. Because these algorithms
have an underlying distributional assumption of multivariate normality, they have difficulties
handling data sets with zero inflated distributions. Declaring the zeros as missing values,
brings the data into the elliptical-like shape needed to run these functions.

> sepenozero <- recode(sepe, "0=NA")

> datanozero <- log(sepenozero[, sepevar8] + 1)

If we do not set the zeros to missing values, additional problems occur: The values of the
median absolute deviation (MAD) may be 0 and standardisation is not possible then or the
covariance matrix is singular. In the first case, the MADs can be substituted by a user
specified probability quantile of the absolute deviations from the median. For the second
case, we would have to reduce the dimension of the data set by omitting variables.

In the sections on the specific functions, we give recommendations at which stage it is prefer-
able to reintroduce the removed information of zeros. Except for the Epidemic Algorithm,
it is indispensable for outlier detection to declare zeros as missing values or to treat the
zero-inflation in some way.
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Figure 1: pairs() plot of the logarithmized sepe data.

4. Applying the methods

After running an outlier detection algorithm, a suitable imputation method should fill in the
missing data to allow for the analysis of a “clean” and complete data set. The modi package
contains four detection and three imputation functions. Detection with BEM(), TRC() and
GIMCD() is based on the assumption of multivariate normality (of the bulk of the data) and
thus we might want to use the same assumption for the imputation. Then Winsimp() or
POEM() would be suitable choices, and here we stick to Winsimp(). After detecting outliers
by EAdet(), it seems logical to use EAimp() for the imputation. In the following, these com-
binations are tested on the sepe data. The nearest neighbour imputation function POEM() is
suitable with all detection algorithms since it combines local and global features. Neverthe-
less, it is not part of the present analysis, but POEM() has been extensively applied and tested
in Charlton (2003).

4.1. BEM() – BACON-EEM

Outlier detection by BEM()

The BACON-EEM algorithm, developed in Béguin and Hulliger (2008), is implemented in
the function BEM(). The BACON-EEM algorithm starts with a relatively small subset of
good observations, i.e. observations which are not outliers. The mean and the covariance
matrix of the good observations are estimated with the EM-algorithm. The estimates in the
EM-algorithm must take into account the sample design, which gives reason for the name
BACON-EEM. Then the Mahalonobis distance (MD) of all data points is calculated and
the observations which are below the cutpoint defined through a χ2-quantile are the new
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good subset. The algorithm iterates further until convergence. The most important control
parameters in BEM() are the size of the initial good subset as a multiple c0 of the dimension
of the data, and the probability alpha to determine the quantile of the χ2-distribution for the
cutpoint. Running BEM() on sepe with its default values for the starting subset fails, since
the covariance-matrix used to calculate the MD is singular. The reason is that the starting
subset for the algorithm is too small and contains too many missing values.

> BEM(data, sepe$weight)

Warning: missing observations 193 244 301 374 375 546 559

564 618 619 661 removed from the data

Error in qr.default(EM.var.good) :

NA/NaN/Inf in foreign function call (arg 1)

A remedy is to set the zeros in the data set to missing values:

> sepenozero <- recode(sepe, "0=NA")

> datanozero <- log(sepenozero[, sepevar8] + 1)

However, BEM() returns the identical error as before even though it removes all data with
completely missing observations. When increasing the initial subset size by setting c0=5, the
algorithm works.

> BEM(datanozero, sepe$weight, c0 = 5)

Warning: missing observations 2 4 11 12 41 57 ...

... 655 656 657 659 661 662 665 666 removed from the data

BEM has detected 385 outlier(s) in 1.92 seconds.

The function BEM() returns a list whose first component output contains the summary infor-
mation. Only 517 out of the 675 observations of sepe can be used. Hence, 158 observations
were dropped due to complete missingness. The initial subset size contains 40 observations
(c0 * ncol(data)). The algorithm used 1.92 seconds for the computation1. The cutpoint
of 21.16 is the minimum (squared) MD of the observations which are considered outliers. In
general, the cutpoint is the (squared) MD which is above cNpr · χ2

p,1−α, where the constant
cNpr is approximately 1 and α is a small proportion 0 < α < 0.5 with default alpha=0.01

(Béguin and Hulliger 2008, p. 94). All observations with a (squared) MD larger or equal
than the cutpoint are declared outliers. Before discussing this parameter more specifically,
a reflection on the plausibility of the detected outliers is appropriate. Almost 75% of the
observations (namely 385 out of 517) have been declared as outlying. The reliability of this
result is highly questionable. This reveals an issue with large data sets: the choice of the
tuning parameter alpha.

Alpha

The tuning parameter α (argument alpha of the function BEM()) represents a probability,
indicating the level 1 − α of the cut-off quantile based on a χ2

p distribution for good obser-
vations. If the analysis does return unreasonable amounts of outliers, one should decrease
α. A rule of thumb is to divide a conventional value of α like the default α = 0.01 by the
number of observations (alpha=0.01/nrow(data)) for sample sizes above 100 observations.
This strategy returns plausible results: Among the 517 observations which are usable for the
analysis, 89 outliers have been detected in 1.37 seconds.

1All computations have been executed on a 2.90GHz Intel Core i7 CPU with 8.00 GB RAM.
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> BEM.r <- BEM(datanozero, sepe$weight, c0 = 5, alpha = 0.01/nrow(datanozero))

> PlotMD(BEM.r$dist, ncol(datanozero), alpha = 0.95)
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Figure 2: BEM() – QQ-plot of the Mahalanobis distances.

Cutpoint

The corresponding QQ-Plot in Figure 2 created by PlotMD() compares the (squared) MD
with the F-distribution as proposed in (Little and Smith 1987). The Figure is practically
the same (including the values) for the χ2 distribution which can be chosen by setting the
argument chisquare=TRUE. The default cutpoint is the minimal (squared) MD of the outliers.
The value 37.14 of the default cutpoint is not appropriate and a higher value would fit the
data better. There are two alternatives to set a more appropriate cutpoint. One can a) try to
identify a substantial change in the distribution plot of the MD, or b) define a certain fraction
of the data to be outlying. A good cutpoint in Figure 2 seems to be around 70 because there
is a distinct upwards bend at that point. Implementing this cutpoint leads to a reduction of
the number of outliers from 89 to 31.

> outind <- (ifelse(BEM.r$dist > 70, 1, 0))

> outind <- as.logical(recode(outind, "NA=0"))

> sum(outind)

[1] 31

Choosing option b), the default cutpoint is replaced by declaring a specific fraction of the ob-
servations with highest Mahalanobis distance as outliers. To preserve comparability between
different algorithms, 5% of the total number of observations are declared outliers. Assuming
that the fraction of outliers is identical in missing and non-missing data, the 5% is a fraction
of the total number of usable observations. For BEM(), the number of usable observations is
517 and thus 26 observations are declared outliers. The cutpoint is 82.53.

> (cutpoint5 <- quantile(BEM.r$dist, 0.95, na.rm = TRUE))

95%

82.52671
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> outind5 <- (BEM.r$dist > cutpoint5)

> outind5 <- as.logical(recode(outind5, "NA=0"))

> sum(outind5)

[1] 26

To get an idea of how the algorithm selected the outliers and what effect a different cutpoint
might have, Figure 3 shows total expenditure against total investment. Note that all zeros
have been set to missing values during the detection step, but now have been re-inserted for
the plot. In Figure 3, the good items are marked as black circles and the 89 outliers detected
while using the default values with red crosses. The blue rectangles represent the 31 outliers
determined by the visual inspection of the QQ-Plot (cutpoint = 70). The 5% most extreme
points are a further subset of the blue rectangles. Naturally, this two-dimensional plot is not
fully adequate for multivariate analysis. This becomes apparent in Figure 3, where increasing
the cutpoint does declare points to the upper-right as good points which would rather be
outliers in the two-dimensional plot.
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Figure 3: BEM() – Plot of total expenditures and investments. Outliers are marked as × (de-
fault cutpoint=37.14) and as � (visually chosen cutpoint=70); good observations are marked
as ◦.

Imputation by Winsimp()

For imputation the visually determined cutpoint of 70 is applied. The next issue to be solved
is at what stage the initial zeros should be re-inserted, as described in Section 3. There are
two possibilities: re-insertion of the zeros before or after the imputation. There are arguments
for both options. Re-inserting zeros before imputation yields imputations which are overall
more coherent with multivariate normality since the multivariate normal relation among the
variables is maintained also for those observations with 0 values. Re-insertion of zeros after
imputation takes into account that the zeros did not contribute to the multivariate normal
model implicitly used for the detection. However, the multivariate normal relation between
the variables is broken. Both options are tested here. The imputed data sets are saved in
the output object Winsimp.r$imputed.data. Unfortunately, the imputation gives negative
values in expenditure and investment data. Since we assume those to be strictly positive, we
censor the negative values to zero.
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> # re-inserting zeros before imputation

> Winsimp.r <- Winsimp(data, BEM.r$output$center,

+ BEM.r$output$scatter, outind)

> Winsimp.r$imputed.data <- ifelse(Winsimp.r$imputed.data < 0, 0,

+ Winsimp.r$imputed.data)

> zeros_before <- Winsimp.r$imputed.data

> # re-inserting zeros after imputation

> Winsimp.r <- Winsimp(datanozero, BEM.r$output$center,

+ BEM.r$output$scatter, outind)

> zeros_after <- Winsimp.r$imputed.data

> zeros <- (ifelse(sepe[, sepevar8] == 0, 1, 0))

> zeros <- recode(zeros, "NA=0")

> zeros_after <- ifelse(zeros == 1, 0, zeros_after)

Note that function Winsimp() does not recalculate the center and scatter of the data but uses
the results of BEM(). The resulting weighted means of the eight variables and the correspond-
ing determinant of the covariance-matrix are shown in Table 3. Means and covariance-matrices
are all weighted by the sampling design. For calculations with the original (raw) data, missing
values are left out list-wise (column ‘Original’ in Table 3). Calculations with the non-robust
EM-algorithm are also shown (column ‘Normal’). At which stage the zeros are re-inserted
seems to play a significant role for the final data set, see the last two columns of the table.
Re-insertion after imputation yields 63 negative values compared to 105 when re-insertion is
before imputation. Negative values are replaced by zero. It is difficult to judge the shift of the
means towards higher values after outlier detection and imputation (see Table 3). Also the
change of the determinant of the covariance matrix does not allow a neat conclusion. It seems
that re-insertion before imputation yields a very compact covariance matrix. Re-insertion
of the zeros after imputation does inflate the scatter more, but still less than with the non-
robust EM-imputation with package norm (Novo and Schafer 2013). The small determinant
for re-inserted zeros before imputation shows evidence that extreme observations have been
declared as outliers. The fact that the determinant for re-insertion after imputation is smaller
than with norm shows that the robust imputation still yields a more compact determinant,
which is less influenced by outliers.

Table 3: BEM() – Means and determinant of covariance matrix for original, normally imputed
and robustly imputed data after re-insertion of zeros in different steps.

Original Normal Before After

totinvwp 0.71 0.73 0.78 0.87
totinvwm 0.47 0.56 0.72 0.69
totinvap 0.88 1.00 1.04 1.12
totinvto 1.51 1.81 1.69 1.88
totexpwp 0.99 1.05 1.04 1.11
totexpwm 1.53 1.62 1.48 1.61
totexpap 0.48 0.47 0.45 0.51
totexpto 2.01 2.12 1.96 2.19

Determinant 4.86 16.01 4.22 10.75

Notes: ’Original’ refers to the original logarithmized data. For the calculations missing values

are removed list-wise. ’Normal’ refers to data imputed with the (non-robust) EM-algorithm.

’Before’ and ’After’ refers to re-insertion of zeros before or after imputation with the robust

method Winsimp(). Means and determinants of the covariance-matrix are calculated with

the package survey (Lumley 2004, 2014) and are hence weighted for the sample design.



12 Treatment of Multivariate Outliers

4.2. TRC() – Transformed Rank Correlation

Outlier detection by TRC()

The algorithm of the transformed rank correlation (TRC), which is described in detail in
Béguin and Hulliger (2004), is implemented in the function TRC(). The initial covariance
matrix is calculated with Spearman-correlations which are standardised to be consistent at the
multivariate normal distribution. The TRC algorithm uses an orthogonal transformation of
the data into the space of eigenvectors, where the center and scatter is recalculated with robust
univariate estimators (medians and median absolute deviations). For this transformation,
complete data is needed and the TRC algorithm uses a provisional imputation of missing
values based on the best simple robust regression available in the data. This provisional
imputation is discarded later on, when the Mahalanobis distances are calculated. Nevertheless
it is a critical step because contrary to the EM-algorithm, TRC uses just one—in principal the
best—predictor for each variable. Thus important control parameters for the function TRC()

are the minimal proportion gamma of the observations needed to determine an imputation
model, and the minimal correlation mincorr needed to use a regressor in the provisional
imputation. The first trial with TRC() uses the original data set (log-scale) and the default
values. The algorithm returns the following warning:

> TRC.r <- TRC(data, sepe$weight)

Warning: missing observations 193 244 301 374 375

546 559 564 618 619 661 removed from the data

Number of missing items: 589 , percentage of missing items: 0.110881

Some mads are 0. Using 0.75 quantile absolute deviations!

The following variable(s) have 0.75 quantile absolute deviations equal to 0 :

1 2 7

Error in TRC(data, sepe$weight) :

Remove these variables or increase the quantile probability

To run the algorithm with all variables, either the probability quantile must be set to at
least 0.81 or the zeros must be set to missing values. The second option is preferable, since
increasing the quantile would not solve the problem that TRC is based on the assumption of
multivariate normal data, which is not the case when the zeros are left in the data. A run of
the algorithm with its default values and monitor=TRUE shows all computational steps:

> TRC(data = datanozero, weight = sepe$weight, monitor = TRUE)

Warning: missing observations 2 4 11 12 ...

638 644 646 648 655 656 657 659 661 662 665 666 removed from the data

Number of missing items: 2008 , percentage of missing items: 0.4854932

End of preprocessing in 0 seconds

Computing Spearman Rank Correlations :

...

Spearman Rank Correlations (truncated and standardized):

[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.133597112 0.633970052 0.8621370

...

[8,] 0.8640993 0.8396824 0.8141143 1.0000000

End of Spearman rank correlations estimations in 0.14 seconds

Regressors correlations

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.110223e-16 0

...

0 0 0 0 0 0 0 0 0 0 0.8396824 0 -1.110223e-16

Variable 1 :

68 obs imputed using regressor 2 (cor= 0.1335971 slope= 0 intercept= 3.258097 )

80 obs imputed using regressor 3 (cor= 0.6339701 slope= 0 intercept= 3.258097 )
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...

Variable 8 :

48 obs imputed using regressor 6 (cor= 0.8396824 slope= 0.812663 intercept= 1.173297 )

...

3 obs imputed using regressor 7 (cor= 0.8141143 slope= 0 intercept= 3.044522 )

End of imputation in 0.03 seconds

TRC has detected 147 outlier(s) in 0.19 seconds.

Gamma

The monitored values of the Spearman rank correlations (cor) seem reasonable, but the
simple robust regressions for the imputation of missing values to construct a positive semi-
definite covariance-matrix have a slope of 0 (slope=0). This is a consequence of the large
number of missing values and the default requirement that at least half of the observations
must determine the correlation in order to be used for imputation (gamma=0.5). To lower this
requirement the tuning parameter gamma may be set to a lower value, e.g. assuming that a
sufficient number to run the regression is 30 observations.

> TRC.r <- TRC(data = datanozero, weight = sepe$weight,

+ monitor = TRUE, gamma = 30/TRC.r$output$sample.size)

> PlotMD(TRC.r$dist, ncol(datanozero))
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Figure 4: TRC() – QQ-plot of the Mahalanobis distances.

Now the imputation regression runs smoothly with non-zero slopes and the outlier detection
works without a warning. TRC() drops 158 observations due to complete missingness. Out of
the remaining 517 observations, 146 are declared as outliers. 48.5% of the items are missing
values. The computation time is 0.18 seconds. The default cutpoint is

median(MD) · F−1(1 − α, p, n− p)/F−1(0.5, p, n− p), (1)

where F−1 is the quantile function of the F-distribution. In this case, the default cutpoint
is 54.52. The QQ-plot in Figure 4 created by PlotMD() shows the (squared) MD at the
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corresponding F-distribution. It is easily seen that the proposed cutpoint of 54.52 is not
appropriate and a higher value would fit the data better.

Cutpoint

An appropriate cutpoint is determined by inspection of Figure 4. The first upward-jump
visible in the QQ-plot is at about 210. Setting all observations with an MD above 210 to
outliers returns 14 outliers compared to 146 by default. Defining 5% of the data to be outlying
returns the same number of outliers (26) as BACON-EEM. However, even if the same number
of outliers is identified, the individual outliers may be different (see Table 7).

Imputation by Winsimp()

For the imputation of the TRC-detected outliers, function Winsimp() is used. As already
discussed in section 4.1.4, an issue is at what stage we re-insert the zeros. Imputed negative
values are censored to zero. Re-insertion after imputation yields 44 and re-insertion before
imputation 123 negative values. The resulting means and determinants of the original and
imputed data are shown in Table 4. Means differ between the re-insertion methods and tend
to be higher in the imputed data compared to the original. The deviation is statistically not
significant. Since the determinant of the covariance-matrix is smaller than for the original data
with re-insertion of the zeros before imputation, it seems that that outliers have successfully
been detected and imputed to a more appropriate value. However, the determinant is inflated
considerably if the zeros are re-inserted after imputation. Therefore, re-insertion of zeros
before imputation is preferable.

Table 4: TRC() – Means and determinant of covariance matrix for original and imputed data
after re-insertion of zeros in different steps.

Original Normal Before After

totinvwp 0.71 0.73 0.78 0.87
totinvwm 0.47 0.56 0.72 0.69
totinvap 0.88 1.00 1.04 1.12
totinvto 1.51 1.81 1.69 1.88
totexpwp 0.99 1.05 1.04 1.11
totexpwm 1.53 1.62 1.48 1.61
totexpap 0.48 0.47 0.45 0.51
totexpto 2.01 2.12 1.96 2.19

Determinant 4.86 16.01 6.33 12.73

Notes: See Table 3.

4.3. GIMCD() – Gaussian Imputation and Minimum Covariance Determinant

Outlier detection by GIMCD()

The GIMCD algorithm (Béguin and Hulliger 2008) is implemented in function GIMCD(). The
GIMCD algorithm first uses a non-robust Gaussian imputation, followed by a highly robust
minimum covariance determinant (MCD) algorithm to detect outliers. The only control
parameter is the probability α to determine the quantile for the cutpoint. Compared to the
other discussed algorithms, weights cannot be used with GIMCD since at the moment there is
no implementation of MCD available which takes weights into account. At the first attempt
with the sepe data, the algorithm fails to finish. Again the problem is the large number of
zeros which result in a singular covariance matrix.
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> GIMCD(data, seedem = 234567819, seedmcd = 4097)

Error in solve.default(cov, ...) :

Lapack routine dgesv: system is exactly singular: U[2,2] = 0

Recoding the zeros to missing values enables the algorithm to compute all needed parameters.
The parameter alpha determines a threshold value for the cut-off for the outlier Mahalanobis
distances. This cutpoint is the same as (1). The larger the value of alpha, the more outliers
will be detected. The default value alpha=0.05 seems reasonable for the sepe data. The
parameter seedem sets a starting value for the random number generator used in the first
step for the Gaussian imputation with the EM-algorithm, which is executed by the norm
package (Novo and Schafer 2013). The default is seedem=234567819. Since in the second
step the MCD again uses a random number generator, the seed of MCD can be set separately
with seedmcd. The default value for MCD is taken from the system and varies for each run
if not set explicitly.

> GIMCD.r <- GIMCD(datanozero, seedem = 234567819, seedmcd = 4097)

GIMCD has detected 57 outliers in 1.46 seconds.

> PlotMD(GIMCD.r$dist, ncol(datanozero))
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Figure 5: GIMCD() – QQ-plot of the Mahalanobis distances.

Cutpoint

The default cutpoint is defined according to (1) and evaluates to 16.4 for the sepe data.
Visual inspection of the QQ-plot in Figure 5 favours a slightly different cutpoint, namely at
24. With this new cutpoint, only 13 outliers are detected. Cutting out 5% outliers yields
34 outlying data points. Note that GIMCD() also imputes values for the completely missing
observations, unlike BEM() and TRC().

Imputation by Winsimp()

For the imputation the visually identified cutpoint of 24 is used. The imputation can be
computed without any problems with function Winsimp(). Re-insertion before imputation
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yields 49 negative values and re-insertion after yields 97 negative values, which are recoded
to 0. A comparison of the results with re-insertion of the zeros before and after the imputation
is given in Table 5. When re-inserting the zeros after imputation, the determinant is inflated
more than when using the non-robust normal imputation. The means are shifted towards
higher values than for the other methods. Here the lack of weighting may have had its
impact.

Table 5: GIMCD() – Means and determinant of covariance matrix for original and imputed
data after re-insertion of zeros in different steps.

Original Normal Before After

totinvwp 0.71 0.73 0.83 0.91
totinvwm 0.47 0.56 0.72 0.71
totinvap 0.88 1.00 1.08 1.15
totinvto 1.51 1.81 1.77 1.94
totexpwp 0.99 1.05 1.04 1.18
totexpwm 1.53 1.62 1.60 1.72
totexpap 0.48 0.47 0.47 0.55
totexpto 2.01 2.12 2.04 2.31

Determinant 4.86 16.01 6.47 20.81

Notes: See Table 3.

4.4. EA – Epidemic Algorithm

Outlier detection with EAdet()

The Epidemic Algorithm (EA) is implemented for detection in function EAdet() and for
imputation in function EAimp(). Compared to the previous methods, the Epidemic Algorithm
has no underlying distributional assumption. It is based on distance measures, which are
described in detail in Béguin and Hulliger (2004). The basic idea of the Epidemic Algorithm
is to simulate an epidemic which starts at a central point, actually a spatial median, and
then infects points in the neighbourhood of the infected ones in a stepwise manner. The last
infected points are nominated outliers. The exact dependence of the infection probability
from the distance is determined by several functional forms with different tuning parameters.
The default cutpoint is set at time t = median(t, w) + 3 · MAD(t, w), where the median and
the median absolute deviation (MAD) are both weighted. The cutpoint may be adjusted after
the calculation of the infection times by EAdet(). The detection function EAdet() can cope
with the original data set in spite of the 48% items with value zero. The algorithm gives a
warning because the median absolute deviation is replaced by the 90% quantile of absolute
deviations, but the results can be calculated nonetheless. All points are infected within 0.38
seconds. For the sepe data the cutpoint results in only 7 outliers. However, there is a further
set of 11 points which have never been infected. This may happen because they have too
many missing values or because they are too far outlying. The function value outind is a
logical vector with TRUE for the outliers (late infected), FALSE for the good observations (early
infected) and NA for the never infected observations. In the present case the 11 never infected
observations consist entirely of missing values.

> EAdet.r <- EAdet(data, sepe$weight)

Some mads are 0. Standardizing with 0.9 quantile absolute deviations!

EA detection has finished with 664 infected points in 0.38 seconds.



Austrian Journal of Statistics 17

2 4 6 8 10 12 14

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

infection time

(w
ei

gh
te

d)
 c

df
 o

f i
nf

ec
tio

n 
tim

e

Figure 6: EA – Infection times and default cutpoint.

By default, the (weighted) cumulative distribution function of the infection times is plotted,
see Figure 6. EAdet() detects less outliers than the other algorithms with the default cutpoint.
Some tuning might be necessary even if the algorithm works with default parameters. Setting
the parameter monitor=TRUE shows the exact number of infected observations at every step.
Starting from the spatial median, which for sepe is a point with zero investments and only
missing values in expenditures, the algorithm infects more than one third of the points in the
first step. In the second step, already over 90% of the points are infected. Closer inspection
shows that the Epidemic Algorithm suffers from the many zeros and missing values because
the inter-point distances are calculated on the basis of the jointly observed values only. As
a result, the infection probabilities do not discriminate enough between observations to be
infected next, and the epidemic stops after 12 steps, i.e. at infection time 12. Also the
transformation of the data has its influence on the duration of the epidemic. Points which
should not be declared outliers might catch the epidemic when the transformation over-
corrects the skewness of the data. It is of course possible to discard completely missing
observations (you may set the parameter rm.missing=TRUE) and it is also possible to set
zeros to missing before running EAdet(). Since the algorithm worked nevertheless we may
use it as is and judge later on about the result.

Cutpoint

Also with EAdet() setting a good cutpoint needs some care. The default outlier rule declares
observations which are larger or equal to 8 as outliers. Looking at the (weighted) cumulative
distribution function of the infection times in Figure 6, it seems more reasonable to set the
cutpoint to 5:

> outind <- EAdet.r$infection.time >= 5

> sum(outind, na.rm = TRUE)

[1] 20

> sum(is.na(outind))

[1] 11
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Figure 7: EA – Outliers with default cutpoint (red crosses) and visually set cutpoint (blue
rectangles).

Using the cutpoint 5 yields 20 outliers. The corresponding plot in Figure 7 shows a differ-
ent picture than we know from the other algorithms. First of all, there are substantially
less outliers. Second, no points on the axes are outlying, and third, the point with largest
totinvto—which the other algorithms declared an outlier—is not an outlier. EAdet() seems
to be able to handle the multivariate outlier problem, because most outliers are not clearly
outlying in one dimension. However, EAdet() has problems with outliers that contain many
zeros.

Imputation by EAimp()

For imputation after detection with EAdet() and with the visually chosen cutpoint, the func-
tion EAimp() is used. Since the zeros were not set to missing, the re-insertion is not an issue
now. EAimp() uses the distances calculated in EAdet() and starts an epidemic at each obser-
vation to be imputed until donors for the missing values are infected. Then a donor is selected
randomly. The imputation uses the visually chosen cutpoint 5 and takes 2.76 seconds. Table 6
contains a comparison between the original, normally imputed and EA-imputed center and
scatter measures. Most of the means of EA-imputed data are between the original and the
normally-imputed means. Using the visually chosen cutpoint, the determinant of the imputed
data is inflated but far from the determinant of the normally imputed data.

> EAimp.r <- EAimp(data, weights = sepe$weight, outind = EAdet.r$outind,

+ duration = EAdet.r$output$duration)

Missing values in outlier indicator set to FALSE.

Dimensions (n,p): 675 8

Number of complete records 449

Number of records with maximum p/2 variables missing 633

Number of imputands is 230

Reach for imputation is max
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Number of remaining missing values is 0

Table 6: EA – Means and determinant of covariance-matrix for original and imputed data.

Original Normal EA

totinvwp 0.71 0.73 0.73
totinvwm 0.47 0.56 0.55
totinvap 0.88 1.00 0.97
totinvto 1.51 1.81 1.78
totexpwp 0.99 1.05 1.03
totexpwm 1.53 1.62 1.49
totexpap 0.48 0.47 0.42
totexpto 2.01 2.12 2.00

Determinant 4.86 16.01 10.69

Notes: See Table 3.

5. Conclusion

Multivariate outlier detection starts before running outlier detection algorithms such as the
ones implemented in the modi package. Every data set has its unique issues which need to
be solved before detection. Balance rules, missing value patterns as well as distributions have
to be checked. E.g. the sepe data set has a zero inflated distribution and hence needs to be
prepared to satisfy the distributional assumptions of the parametric algorithms. When the
assumptions are satisfied, the parameters of the outlier detection function need to be chosen.
Even though the algorithms in package modi have a high power in detecting multivariate
outliers, user-intervention to choose the cutpoint is necessary. Checking of the imputed data
is also necessary, e.g. to censor imputed data to positive values.

Choosing an appropriate method is difficult since all presented methods have advantages
and disadvantages. Table 7 shows an individual comparison of the detected outliers. The
number of outliers is approximately 5% (26, 26, 34, 49 for BACON-EEM, TRC, GIMCD,
EA respectively). Only 5 points are selected by all four methods. The parametric methods
(BACON-EEM, TRC, GICMD) have further 9 outliers in common. In terms of the Jaccard-
distances between the outlier sets, BACON-EEM and TRC are closest, GIMCD somewhat
detached from BACON-EEM and TRC, and EA has a large distance to all three parametric
methods.

Table 8 summarizes the results of the four algorithms illustrated in the paper. The number
of outliers detected by default varies strongly between the methods. However, if the cutpoint
is chosen by the user, the different algorithms yield more similar numbers of outliers. Still
we have to keep in mind that even though the absolute number of outliers is similar, the
effectively detected points are not (see Table 7).

When applying the functions in modi to bigger data sets, computation time becomes a more
and more crucial criteria. The fastest algorithm is TRC with only 0.28 seconds for detection
and imputation in this example. EA is the slowest, since the imputation uses an epidemic for
each outlier, which slows down the computational speed.

Looking at the determinants of the covariance-matrices lets us favour to re-insert the zeros be-
fore we run the imputation algorithms for the parametric methods. Determinants are smaller
when zeros are re-inserted before imputation compared to the re-insertion after imputation.
In any case, all four methods (except GIMCD with re-insertion after imputation) have a
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Table 7: Outliers according to the four methods.

ID BACON-EEM TRC GIMCD EA C ID BACON-EEM TRC GIMCD EA C

3 0 0 1 0 1 330 1 1 1 1 4
6 1 0 0 0 1 333 0 0 0 1 1

13 0 1 0 0 1 340 1 1 1 0 3
14 0 1 0 0 1 341 0 0 0 1 1
18 0 0 0 1 1 344 0 0 0 1 1
21 1 1 0 0 2 380 0 0 0 1 1
25 0 0 0 1 1 381 0 0 0 1 1
31 1 1 1 0 3 382 0 1 0 0 1
38 0 0 1 0 1 383 0 0 0 1 1
59 0 1 0 0 1 391 1 1 1 0 3
68 0 0 1 0 1 396 0 0 0 1 1
78 0 0 1 0 1 406 0 0 0 1 1
91 0 0 0 1 1 408 0 0 0 1 1
93 0 0 0 1 1 414 0 0 0 1 1

101 0 0 0 1 1 421 0 0 0 1 1
102 0 0 0 1 1 424 0 0 0 1 1
128 0 0 0 1 1 425 1 0 1 0 2
133 1 1 1 0 3 431 1 0 0 1 2
134 0 1 1 1 3 437 0 0 1 0 1
137 0 0 1 0 1 439 0 0 1 0 1
154 0 0 0 1 1 441 1 0 0 1 2
156 0 0 0 1 1 448 1 1 1 0 3
157 0 0 0 1 1 449 0 0 1 1 2
165 1 1 1 1 4 456 0 0 0 1 1
173 1 1 0 0 2 459 0 0 0 1 1
178 0 0 1 0 1 460 0 0 0 1 1
186 1 1 1 1 4 461 1 1 1 1 4
192 0 1 0 1 2 468 0 1 1 0 2
194 1 1 1 1 4 471 0 0 1 0 1
200 0 0 0 1 1 475 0 0 0 1 1
206 0 0 0 1 1 480 1 0 0 0 1
238 0 0 1 0 1 484 0 0 0 1 1
241 0 0 0 1 1 485 0 0 0 1 1
257 0 0 0 1 1 489 1 0 0 0 1
265 0 0 1 0 1 491 0 0 0 1 1
267 0 0 1 0 1 517 1 0 0 0 1
273 1 1 1 0 3 555 0 1 0 0 1
282 1 1 1 0 3 561 0 0 0 1 1
288 0 0 0 1 1 587 0 0 0 1 1
291 0 0 1 0 1 624 0 0 1 0 1
307 1 1 0 0 2 626 1 0 0 0 1
309 1 1 1 1 4 641 0 0 0 1 1
324 1 1 1 0 3 648 0 0 1 0 1
328 0 0 0 1 1 654 1 1 1 0 3

Notes: ID is the observation number. An entry 1 in the columns BACON-EEM to EA
indicates that the corresponding method nominates the observation as an outlier. C is the
number of coinciding methods.

Table 8: Summary of results for all functions.

Algorithm No. Outliers Time Determinant
Default Visual Det. Imp. 0’s Before 0’s After

BEM() – Winsimp() 89 31 1.4 0.07 4.22 10.75
TRC() - Winsimp() 146 14 0.23 0.05 6.33 12.73
GIMCD() - Winsimp() 57 20 1.48 0.05 6.47 20.81
EAdet() - EAimp() 7 20 0.36 2.54 10.69
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smaller determinant of the covariance matrix than when imputing in a non-robust way with
the EM-algorithm. This is desirable since the outlying data points are normally far away of
the center and blow up the determinant.

The distribution of the sepe data set is far from multivariate normal. Nevertheless, methods
with an underlying assumption on multivariate normality may return usable results when
the distribution is uni-modal apart from the zero-inflation, which must be treated explicitly.
BACON-EEM and TRC extract sufficient information from the data to detect relevant outliers
(they identify 14 identical outliers out of 26). GIMCD seems to be able to cope with the
structure of the data in spite of not taking into account the survey weights. However the
zeros must be re-inserted before imputation to preserve robustness. EA does not rely on the
global structure of the data and does not need special treatment of the zero values. However,
it needs careful tuning in order to differentiate outliers sufficiently well from good points.

Multivariate outliers are difficult to detect. If in addition missing values and zero-inflation
occur, there are few algorithms that cope with such data. The presented algorithms are
capable of doing this. However, their use is not straightforward and careful evaluation of the
results is needed.

The package modi is currently available in Version 1.6 on R -Forge and will be submitted to
CRAN (the Comprehensive R Archive Network, http://CRAN.R-project.org). The use of a
deterministic MCD algorithm (function covMcd() in package robustbase (Rousseeuw, Croux,
Todorov, Ruckstuhl, Salibian-Barrera, Verbeke, Koller, and Maechler 2014)) and a better
tuning of the progression of the Epidemic Algorithm will be evaluated for the next version of
the package.
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