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Abstract

The present work discusses robust multivariate methods specifically designed for high
dimensions. Their implementation in R is presented and their application is illustrated
on examples. The first group are algorithms for outlier detection, already introduced
elsewhere and implemented in other packages. The value added of the new package is
that all methods follow the same design pattern and thus can use the same graphical
and diagnostic tools. The next topic covered is sparse principal components including an
object oriented interface to the standard method proposed by Zou, Hastie, and Tibshirani
(2006) and the robust one proposed by Croux, Filzmoser, and Fritz (2013). Robust partial
least squares (see Hubert and Vanden Branden 2003) as well as partial least squares for
discriminant analysis conclude the scope of the new package.

Keywords: high dimensions, robustness, classification, PLS, PCA, outliers.

1. Introduction

High-dimensional data are typical in many contemporary applications in scientific areas like
genetics, spectral analysis, data mining, image processing, etc. and introduce new challenges
to the traditional analytical methods. First of all, the computational effort for the anyway
computationally intensive robust algorithms increases with increasing number of observations
n and number of variables p towards the limits of feasibility. Some of the robust multivariate
methods available in R (see Todorov and Filzmoser 2009) are known to deteriorate rapidly
when the dimensionality of data increases and others are not applicable at all when p is larger
than n.

The present work discusses robust multivariate methods specifically designed for high dimen-
sions. Their implementation in R is presented and their application is illustrated on examples.
A key feature of this extension of the framework is the object model which follows the one al-
ready introduced by rrcov and based on statistical design patterns. The first group of classes
are algorithms for outlier detection, already introduced elsewhere and implemented in other
packages. The value added of the new package is that all methods follow the same pattern
and thus can use the same graphical and diagnostic tools. The next topic covered is sparse
principal component analysis including an object oriented interface to the standard method
proposed by Zou et al. (2006) and the robust one proposed by Croux et al. (2013). These
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are presented and illustrated in Section 2. Robust partial least squares (Hubert and Vanden
Branden 2003; Sernels, Croux, Filzmoser, and van Espen 2005) as well as partial least squares
for discriminant analysis are presented in Section 3 and Section 4. Section 5 concludes.

2. Robust sparse principal component analysis

Principal component analysis (PCA) is a prominent technique for dimension reduction, and
the principle is to find a smaller number q of linear combinations of the originally observed p
variables while retaining most of the variability of the data. Dimension reduction by PCA is
mainly used for: (i) visualization of multivariate data by scatter plots (in a lower dimensional
space); (ii) transformation of highly correlated variables into a smaller set of uncorrelated
variables which can be used by other methods (e.g. multiple or multivariate regression, linear
or quadratic discriminant analysis); (iii) combination of several variables characterizing a
given process into a single or a few characteristic variables or indicators. In some cases–in
particular if the original variables have physical meaning–it is important to be able to interpret
these new variables. The interpretation of the principal components needs to be based on the
loadings matrix, which links the original variables with the principal components.

The standard approach to PCA identifies new directions which are linear combinations of the
original variables in such a way, that the data projected on these directions have maximal
variance. The different directions need to be orthogonal to each other, and the variance mea-
sure used for classical PCA is the empirical sample variance. Practically, the PCA directions
can be found by computing the eigenvectors of the sample covariance or correlation matrix.
The disadvantage of this approach is that outlying observations may even artificially increase
the variance measure, thus leading to essentially uninformative directions. In other words,
outliers may attract PCA directions, and the pattern of the data majority will not be covered
by the few extracted classical components.

In contrast, the goal of robust PCA is to retain as much of the information of the data ma-
jority (and not of single outliers) as possible with fewer directions–the robust PCs. Different
approaches to robust PCA are discussed in many review papers, see for example Todorov and
Filzmoser (2009) and Filzmoser and Todorov (2013), and examples are given how these robust
analyses can be carried out in R. Details about the methods and algorithms can be found in
the corresponding references. However, PCA usually tends to provide PCs which are linear
combinations of all the original variables, even if some of the loadings are small in absolute
size. This is a disadvantage for high-dimensional data analysis, since PC directions will then
in general be affected by all the variables, even if they are noise variables. It would be more
useful to have a method which completely suppresses the influence of potential noise variables
by assigning loadings of exactly zero to them. This is the goal of sparse PCA, and there are
several proposals available nowadays. A straightforward informal method is to set to zeros
those PC loadings which have absolute values below a given threshold (simple thresholding).
Jolliffe, Trendafilov, and Uddin (2003) proposed SCoTLASS which applies a lasso penalty
on the loadings in a PCA optimization problem, and recently Zou et al. (2006) reformulated
PCA as a regression problem and used the elastic net to obtain a sparse version - SPCA.

The above mentioned proposals for sparse PCA are not robust with respect to outlying obser-
vations. They suffer from the same problem as classical (non-sparse) PCA, namely that the
new directions will be attracted by outliers. To cope with the possible presence of outliers in
the data, recently Croux et al. (2013) proposed a method which is sparse and robust at the
same time. It utilizes the projection pursuit approach where the PCs are extracted from the
data by searching the directions that maximize a robust measure of variance of data projected
on it. An efficient computational algorithm was proposed by Croux, Filzmoser, and Oliveira
(2007).
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Example Sparse classical and robust PCA is illustrated here by the (low-dimensional) cars
data set (Consumer Reports 1990, pp. 235–288); (Chambers and Hastie 1992, pp. 46–
47), which is available in the package rrcovHD as the data frame cars. For n = 111 cars,
p = 11 characteristics were measured, including the length, width, and height of the car.
After looking at pairwise scatterplots of the variables, and computing pairwise Spearman
rank correlations ρ(Xi, Xj) we see that there are high correlations among the variables, for
example, ρ(X1, X2) = .83 and ρ(X3, X9) = .87. Thus, PCA will be useful for reducing the
dimensionality of the data set (see also Hubert, Rousseeuw, and Vanden Branden (2005)).
The first four classical PCs explain more than 96% of the total variance and the first four
robust PCs explain more than 95%, therefore we decide to retain four components in both
cases. Next we need to choose the degree of sparseness which is controlled by a regularization
parameter (λ). With sparse PCA we take a trade-off between sparseness of the loadings
matrix and maximization of the explained variability. The appropriate tuning parameter can
be chosen by computing sparse PCA for many different values of λ and plotting the percentage
of explained variance against λ. We choose λ = 0.78 for classical PCA and λ = 2.27 for robust
PCA, thus attaining 83 and 82 percent of explained variance, respectively, which is only an
acceptable reduction compared to the non-sparse PCA. Retaining k = 4 principal components
as above and using the selected parameters λ, we can construct the so called diagnostic plots
which are especially useful for identifying outlying observations. The diagnostic plot shows the
orthogonal distances versus the score distance, and indicates with a horizontal and vertical line
the cut-off values that allow to distinguish regular observations (those with small score and
small orthogonal distance) from the different types of outliers: bad leverage points with large
score and large orthogonal distance, good leverage points with large score and small orthogonal
distance and orthogonal outliers with small score and large orthogonal distance (for detailed
description see Hubert et al. (2005)). In Figure 1 the classical and robust diagnostic plot
as well as their sparse counterparts are presented. The diagnostic plot for classical PCA
reveals only several orthogonal outliers and identifies two observations as bad leverage points.
Three more observations are identified as bad leverage points by sparse classical PCA which
is already an improvement, but only the robust methods identify a large cluster of outliers.
These outliers are masked by the non-robust score and orthogonal distances and cannot be
identified by the classical methods. It is important to note that the sparsity feature added to
the robust PCA did not influence its ability to detect properly the outliers.

3. Robust linear regression in high dimensions

The toolbox of linear regression methods and their robust counterparts becomes limited when
the number of explanatory variables p exceeds the number of observations n. The matrix of
explanatory variables X is then said to be “flat”. In that case, partial least squares (PLS)
regression is known to work very well, in particular if the explanatory variables are highly
correlated. In this section we will focus on PLS regression and robust versions thereof, since
these are widely used tools in various areas.

PLS regression Wold (1975) can be used for the case of a univariate response (PLS1) as well
as for a matrix of response variables (PLS2), here denoted by the n × q matrix Y . In the
latter case, the regression problem is

Y = XB +E, (1)

with the regression coefficient matrix B and the errors E. The basic idea is to decompose X
and Y as follows,

X = TP> +EX (2)

Y = UQ> +EY , (3)
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Figure 1: Distance-distance plots for standard and sparse PCA and their robust versions for
the cars data.

with the scores matrices T andU , and the loadings matrices P andQ, each havingK columns,
and the error matrices EX and EY . The number of components K for the factorization is
limited with K ≤ min{n, p, q}. The inner relationship connecting the scores is given by

U = TD +H, (4)

with the diagonal matrix D and a residual matrix H.

The key idea in PLS regression is to find a direction w in the x-space and a direction c in
the y-space such that

cov(Xw,Y c) −→ max with ‖t‖ = ‖Xw‖ = 1 and ‖u‖ = ‖Y c‖ = 1, (5)

where “cov” is an estimator for the covariance. The resulting t and u then form a column in
the matrix T and U , respectively.

The above procedure is carried out in a sequential manner. This means that the score vectors
are computed one after the other, until K vectors are extracted, hereby imposing appropriate
constraints (e.g. uncorrelatedness). There are different proposals to solve problem (5), like
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the NIPALS algorithm, the kernel algorithm, or the SIMPLS algorithm. For details we refer
to Varmuza and Filzmoser (2009).

Hubert and Vanden Branden (2003) suggested a robust version of the SIMPLS algorithm.
Since this algorithm is based on estimates of the covariance matrix of the x-variables, and
of the joint covariance matrix between the x- and the y-variables, a first step is to robustify
these estimates by employing robust PCA. In a second step, a multivariate robust regression
method is used.

In case of PLS1, Sernels et al. (2005) proposed a robust version that is called partial robust M
(PRM) regression. The main idea is to perform robust regression using an M-estimator of the
response y on latent variables which are summarizing the explanatory variables. These latent
variables, representing only partial information of the x-variables, are found in the same spirit
as shown in criterion (5),

cov(y,Xa) −→ max, (6)

with appropriate constraints on the loadings vector a, and a robust estimator for “cov” using
a certain weighting scheme for outlying observations. The loadings and scores are extracted
sequentially, again with appropriate side constraints (see also Filzmoser and Todorov 2011).

Example To illustrate robust PLS regression we use a real data example, known from
other studies on robust methods. The data set originates from 180 glass vessels Janssens,
Deraedt, Freddy, and Veeckman (1998) and was analyzed also in Sernels et al. (2005); Hubert,
Rousseeuw, and van Aelst (2008); Filzmoser, Maronna, and Werner (2008). In total, 1920
characteristics are available for each vessel, coming from an analysis by an electron-probe X-
ray micro-analysis. The data set includes four different materials comprising the vessels, and
we focus on the material forming the larger group of 145 observations. It is known from other
studies on this data set that these 145 observations should form two groups, because during
the measurement process the detector efficiency has been changed. In the original analysis,
univariate PLS calibration was performed for all of the main constituents of the glass but
here we will consider only the prediction of the sodium oxide concentration and will carry out
classical (SIMPLS) and robust (RSIMPLS) PLS with K = 8 components. Since the response
variable is univariate, regression diagnostic plots for both classical and robust PLS can be
created, as shown in Figure 2. The vertical axis represents the standardized residuals ri/σ̂
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Figure 2: Regression diagnostic plots for the glass data set with (left) SIMPLS and (right)
RSIMPLS.

with ri = yi − β̂xi while on the horizontal axis the Mahalanobis distances of the data points
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in the score space (therefore called score distances) are displayed. Outliers in the t-space
are identified as data points with score distances exceeding the cutoff value of

√
χ2

K,0.975.

Data points which have an absolute standardized residual exceeding
√
χ2

1,0.975 are flagged as
regression outliers. The SIMPLS regression diagnostic plot identifies only three observations
as regression outliers and several more as outlying according to the score distances while the
robust plot identifies most of the outliers know from other studies. A detailed definition of
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Figure 3: Results of 10-fold cross-validation for robust PLS for the glass data set. A model
with 5 components is optimal.

this plot as well as its version for multivariate response variable, can be found in Hubert and
Vanden Branden (2003).

For choosing an optimal number of PLS components, 10-fold cross-validation (CV) is used
for a maximum of e.g. 20 components and the result is presented graphically in Figure 3.
As a performance measure the standard error of prediction (SEP) value is used, and its 20%
trimmed version.

SEP =

√√√√ 1
n− 1

n∑
i=1

K∑
j=1

(yij − ŷij − bias)2 with bias =
1
n

n∑
i=1

q∑
j=1

(yij − ŷij). (7)

Here, {ŷij} = Ŷ = XB̂ are the predicted values of the response variable, using the estimated
regression parameters B̂ (see Varmuza and Filzmoser 2009). Note that the performance mea-
sure in (7) is not robust against outliers, because each observation gets the same contribution
in the formulas. The influence of outliers to the performance measure can be reduced by
trimming for example the 20% of the largest contributions. The dashed line presents the
mean of SEP values from CV and the solid part presents the mean and standard deviation of
20% trimmed SEP values from CV. The vertical and horizontal lines correspond to the opti-
mal number of components (after standard-error-rule) and the corresponding 20% trimmed
SEP mean, respectively. The optimal number of components is selected as the lowest number
whose prediction error mean is below the minimal prediction error mean plus one standard
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error, see Varmuza and Filzmoser (2009). Here, 5 components are selected, leading to a
prediction error of 0.95.
A more detailed model selection can be done with repeated double cross-validation (rdCV)
(see Filzmoser, Liebmann, and Varmuza (2009); Liebmann, Filzmoser, and Varmuza (2010)
for details). However, the procedure is rather time consuming. Within an “inner loop”, k-
fold CV is used to determine an optimal number of components, which then is applied to a
“test set” resulting from an “outer loop”. The procedure is repeated a number of times. The
frequencies of the optimal numbers of components are shown in Figure 4. There is a clear
peak at 5 components, meaning that a model with 5 components has been optimal in most of
the experiments within rdCV. Note that here we obtain the same result as for single CV. In
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Figure 4: Results of rdCV of RSIMPLS. The optimal number of components is indicated by
the vertical dashed line.

a next plot, Figure 5, the prediction performance measure, the 20% trimmed SEP, is shown.
The gray lines correspond to the results of the 20 repetitions of the double CV scheme, while
the black line represents the single CV result. Obviously, single CV is much more optimistic
than rdCV. The estimated prediction error for 5 components is 0.85. Using the optimal
number of 5 components, predictions and residuals can be computed. However, for rdCV
there are predictions and residuals available for each replication (we used 20 replications).
The diagnostic plot shown in 6 presents the predicted versus measured response values. The
left panel is the prediction from a single CV, while in the right panel the resulting predictions
from rdCV are shown. The latter plot gives a clearer picture of the prediction uncertainty. A
similar plot can be generated for predicted values versus residuals (not shown here).

4. Robust classification in high dimensions

The prediction of group membership and/or describing group separation on the basis of a data
set with known group labels (training data set) is a common task in many applications and
linear discriminant analysis (LDA) has often been shown to perform best in such classification
problems. However, very often the data are characterized by far more variables than objects
and/or the variables are highly correlated which renders LDA (and the other similar standard
methods) unusable due to their numerical limitations. Let us assume that Y is univariate
and categorical, i.e. ∀i, 1 ≤ i ≤ n : yi ∈ {1, . . . , G} where G is the number of groups.
For high dimensional data sets, classical linear discriminant analysis cannot be performed
due to the singularity of the estimated covariance matrix Σ̂, as it requires the inverse of
Σ̂. To overcome the high dimensionality problem in classification context one can reduce
the dimensionality by either selecting a subset of “interesting” variables (variable selection)
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Figure 5: Results of rdCV for RSIMPLS. The gray lines result from repeated double CV, the
black line from single CV.

or construct K new components, K � p which represent the original data with minimal
loss of information (feature extraction, dimension reduction). Many methods for dimension
reduction were considered in the literature but the two most popular are principal component
analysis (PCA) and partial least squares (PLS). It is intuitively clear that a supervised method
(which uses the group information while constructing the new components) like PLS should
be preferred to unsupervised methods like PCA.

SIMCA: Instead of applying the dimension reduction method (e.g. PCA) to the full set
of observations, one could fit a model to each of the groups (possibly with different number
of components) and use these models to classify new observations. This method, called
Soft Independent Modeling of Class Analogies (SIMCA), was introduced by Wold (1976) and
nowadays is widely used as a discriminant technique in chemometrics, where typically p is
large relative to n. Since in SIMCA PCA is performed on each group, it provides additional
information on the different groups, including the relevance of the different variables for groups
separation, i.e. their discrimination power. In the original SIMCA method new observations
are classified based on their deviation from the different PCA models. These deviations
are the Euclidean distances of the observations to the PCA subspace, and thus they are
called orthogonal distances. Vanden Branden and Hubert (2005) propose a slightly modified
classification rule which better exploits the benefit of applying PCA to each group. This
rule includes additionally the score distances, i.e. the Mahalanobis distances measured in the
PCA (score) subspace. Furthermore, as a guard against outliers in the data, they propose to
replace the classical PCA by a robust alternative. Both the classical and the robust version
of the SIMCA method are available in the R package rrcovHD.

Robust PLS-DA: PLS was not originally designed to be used in the context of statistical
discrimination but nevertheless was routinely applied with evident success by practitioners for
this purpose. Taking into account the grouping variable(s) when decomposing the data one
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Figure 6: Predicted versus measured response values for RSIMPLS. The left panel shows the
results from single CV, the right panel visualizes the results from repeated double CV.

would intuitively expect an improved performance for group separation. Since the response
variable in case of a classification problem is a categorical variable, none of the robust PLS
methods proposed above can be used. Therefore, in order to obtain a robust PLS-DA we
proposed to apply any of the outlier detection methods described in Filzmoser and Todorov
(2013), which are implemented in package rrcovHD, and then use classical PLS on the already
cleaned data set. Hubert and Van Driessen (2004) used a data set containing the spectra of
three different cultivars of the same fruit. The three cultivars (groups) are named D, M and
HA, and their sample sizes are 490, 106 and 500 observations, respectively. The spectra are
measured at 256 wavelengths. The fruit data is thus a high-dimensional data set which was
used to illustrate a new approach for robust linear discriminant analysis, and it was studied
again by Vanden Branden and Hubert (2005). From these studies it is known that the first
two cultivars D and M are relatively homogenous and do not contain atypical observations,
but the third group HA contains a subgroup of 180 observations which were obtained with a
different illumination system. In Figure 7 are shown the prediction histograms for class D for
the fruit data using classical and robust PLS-DA.

5. Summary and conclusions

An object oriented framework for robust multivariate analysis developed in the S4 class system
of the programming environment R already exists implemented in the package rrcov and is
described in Todorov and Filzmoser (2009). The main goal of this framework is to support the
usage, experimentation, development and testing of robust multivariate methods as well as
simplifying comparisons with related methods. In this article we investigated several robust
multivariate methods specifically designed for high dimensions. The focus was on PCA and
its sparse version, PLS, PLS for discrimination, and SIMCA. All considered methods and
data sets are available in the R package rrcovHD. A key feature of this extension of the
framework is that the object model follows the one already introduced by rrcov which is
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Figure 7: Prediction histograms for class D for the fruit data using classical and robust
PLS-DA.

based on statistical design patterns. This makes it easy for the user to apply the methods,
since they are following the same structure. A further advantage is that summaries, results,
as well as diagnostic plots follow the same structure.

Finally, the strict design pattern used in the package rrcovHD is an advantage for extending
the package with other methods developed for high-dimensional data–and for sure their robust
versions will follow.
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