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Abstract: The purpose of this paper is to estimate the parameters of Down-
ton’s bivariate exponential distribution using moving extreme ranked set sam-
pling (MERSS). The estimators obtained are compared via their biases and
mean square errors to their counterparts using simple random sampling (SRS).
Monte Carlo simulations are used whenever analytical comparisons are dif-
ficult. It is shown that these estimators based on MERSS with a concomi-
tant variable are more efficient than the corresponding ones using SRS. Also,
MERSS with a concomitant variable is easier to use in practice than RSS with
a concomitant variable. Furthermore, the best unbiased estimators among all
unbiased linear combinations of the MERSS elements are derived for some
parameters.

Zusammenfassung: Das Ziel dieser Arbeit ist es, die Parameter der Down-
ton bivariaten Exponentialverteilung mittels “moving extreme ranked set sam-
pling” (MERSS) zu schätzen. Die erhaltenen Schätzer werden bezüglich
Bias und mittleren quadratischen Fehler mit deren Gegenstücken basierend
auf einfache Zufallsstichproben (SRS) verglichen. Monte Carlo Simulatio-
nen werden verwendet, wenn analytische Vergleiche schwierig sind. Es wird
gezeigt, dass die Schätzer basierend auf MERSS mit einer begleitenden Vari-
ablen effizienter sind als die entsprechenden beruhend auf SRS. Auch ist
MERSS mit einer begleitenden Variablen einfacher in der Praxis zu ver-
wenden als RSS mit einer begleitenden Variablen. Außerdem werden die
besten Schätzer unter allen unverzerrten Linearkombinationen der MERSS
Elemente für einige Parameter hergeleitet.

Keywords: Simple Random Sampling, Moving Extreme Ranked Set Sam-
pling, Concomitant Variable.

1 Introduction
The most popular sampling method that is usually used in statistical studies is Simple
Random Sampling (SRS). A SRS of size n from a population is a subset of the popula-
tion consisting of n units selected in such a way that all subsets of size n are equally likely
to be selected; but for an infinite population (which we are interested in) each unit of the
sample is selected independently and comes from the same population (i.i.d.). Simple
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random sampling is the basic building block and point of reference for all other sampling
methods.

McIntyre (1952) suggested a sampling technique which was later called Ranked Set
Sampling (RSS). This technique of data collection was introduced for situations where
taking the actual measurements on sample observations is difficult (i.e., costly, time-
consuming) as compared to the judgment ranking of them. The ranked set sampling
technique can be executed as follows:
• Step 1: Randomly draw m simple random samples each of size m from the population
of interest.
• Step 2: Within each of the m sets, the sampled items are ranked from lowest to largest
according to the variable of interest based on the researcher’s judgment or by any negli-
gible cost method that does not require actual quantifications.
• Step 3: From the first set of m units, the unit ranked lowest is measured. From the
second set of m units, the unit ranked second lowest is measured. The process is continued
until the mth ranked unit is measured from the mth set. Note that m2 units are sampled
but only m of them are measured with respect to the variable of interest.

The above 3 steps describe one cycle of the RSS technique.
• Step 4: Repeat steps 1 to 3, if necessary, k independent times (cycles) to obtain a total
sample of size n = mk units.

In McIntyre’s RSS procedure, it is assumed that the researcher could order a set of
size m with respect to the characteristic of interest. Many authors recommended that m
should be 2, 3, or 4 to minimize the ranking error (see Takahasi and Wakimoto, 1968).

There are several variations of RSS. One of them is Moving Extreme Ranked Set
Sampling (MERSS). In this procedure only the maximum (or minimum) of sets of varied
size is identified (by judgment) for quantification. The MERSS, as described by Al-Odat
and Al-Saleh (2001) and Al-Saleh and Al-Hadrami (2003a, 2003b) can be executed as
follows:
• Step 1: Select m simple random samples of sizes 1, . . . ,m, respectively.
• Step 2: For each of these samples, measure accurately the maximum ordered observa-
tion from the first set identified by judgment, the maximum ordered observation from the
second set, etc.. The process continues in this way until the maximum ordered observation
from the last mth sample is measured.
• Step 3: Repeated steps 1 and 2, if necessary, r times to obtain a sample of size n = rm.

2 Main Results about RSS and its Variations
RSS was introduced by McIntyre (1952) in the context of estimating pasture yields. He
claimed, without providing a mathematical proof, that

1. µ̂RSS = 1
mk

k∑
r=1

m∑
i=1

X[i]r which is the mean of a sample of size mk obtained using

the RSS technique, is an unbiased estimator of the population mean µ. X[i]r is the
ith judgment order statistic in the rth cycle.

2. With perfect ranking, the efficiency of RSS w.r.t. SRS in estimation the population
mean is nearly (m+ 1)/2 for typical unimodal distributions.
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3. The efficiency of the estimators of higher population moments based on RSS are
only slightly better than those based on SRS.

Takahasi and Wakimoto (1968) obtained the following main theoretical results.
Under perfect ranking, the mean of a RSS is an unbiased estimator of the population

mean and its variance is always smaller than the variance of the mean of a SRS of equal
size. Also, they showed that

f(x) =
1

m

m∑
i=1

fi(x) , µ =
1

m

m∑
i=1

µi

and

σ2 =
1

m

m∑
i=1

σ2
i +

1

m

m∑
i=1

(µi − µ)2 ,

where f(x) denotes the probability density function (pdf) of a random variable X with
E(X) = µ and var(X) = σ2. Furthermore, fi(x) is the pdf of the ith order statistic X(i)

with E(X(i)) = µi and var(X(i)) = σ2
i .

The performance of the estimators is assessed using either the relative precision (RP)
or the relative saving (RS), which are defined as

RP = eff(µ̂RSS, µ̂SRS) =
var(µ̂SRS)

var(µ̂RSS)

RS =
var(µ̂SRS)− var(µ̂RSS)

var(µ̂SRS)
= 1− 1

RP
.

They also showed that

var(µ̂RSS) =
1

m

(
σ2 − 1

m

m∑
i=1

(µi − µ)2

)
and RS =

1

m

m∑
i=1

(
µi − µ

σ

)2

,

and thus
0 ≤ RS ≤ m− 1

m+ 1
1 ≤ eff(µ̂RSS, µ̂SRS) ≤

m+ 1

2
,

where

µ̂SRS =
1

m

m∑
i=1

Xi

is the mean of a sample of size m obtained using the SRS technique, and

µ̂RSS =
1

mk

k∑
r=1

m∑
i=1

X[i]r

is the mean of a sample of size mk obtained using the RSS technique.
Stokes (1977) studied RSS with concomitant variables. In this case, the variable of

interest is difficult to rank but it is related to some other variable that is easy to rank (con-
comitant variable). We use (X,Y ) in the sequel, where X is the variable of interest and



164 Austrian Journal of Statistics, Vol. 42 (2013), No. 3, 161–179

Y is the concomitant one. Samawi, Ahmed, and Abu-Dayyeh (1996) introduced the Ex-
treme Ranked Set Sampling (ERSS) procedure. It was shown that the ERSS estimator
of the mean is more efficient than the usual SRS mean and unbiased if the underlying
distribution is symmetric. In this ERSS, only the two extremes (minimum, maximum)
are identified by judgment for different sets. Al-Saleh and Al-Kadri (2000) considered
double RSS (DRSS) as a procedure that increases the efficiency of RSS estimator without
increasing the set size m. Al-Saleh and Al-Omari (2002) generalized DRSS to multistage
ranked set sampling. They showed that the efficiency is always between 1 and m2 for all
distributions and equals m2 for the uniform distribution when the number of stages goes
to infinity. Al-Saleh and Zheng (2002) proposed a new RSS for two characteristics and
called it a bivariate ranked set sampling.

MERSS is a useful modification of RSS. Unlike RSS, MERSS allows for an increase
of the set size without introducing too much ranking error. MERSS was introduced by
Al-Odat and Al-Saleh (2001) who also introduced the concept of varied set size RSS.
Al-Saleh and Al-Hadrami (2003a, 2003b) used varied set size of RSS (coined by them
MERSS) for estimating the mean of the normal and exponential distribution, and they
showed that this procedure could be more useful than SRS for estimating the mean of
any symmetric distribution. Al-Saleh and Samawi (2010) estimated the odds based on
MERSS. The suggested estimator based on MERSS is motivated by some of the theoret-
ical properties of the sum of geometric series.

RSS and some of its variation were used by many authors in parametric estimation
like bivariate normal, exponential, Downton’s bivariate exponential (see Downton, 1970),
etc..

Moran (1967) introduced a bivariate exponential distribution, which is one of the most
important bivariate distributions in reliability. There are various bivariate exponential dis-
tributions. In this research, we are interested in Downton’s bivariate exponential distribu-
tion with pdf

f(x, y)=
1

λ1λ2(1−ρ)
exp

[
−
(

x

λ1(1−ρ)
+

y

λ2(1−ρ)

)]
I0

[
2(ρxy)

1
2

(λ1λ2)
1
2 (1−ρ)

]
, (1)

where x, y, λ1, λ2 > 0, 0 ≤ ρ < 1 and

I0(z) =
∞∑
k=0

(z/2)2k

k!2

is the modified Bessel function of the first kind of order zero. If (X, Y ) is a bivariate
random variable that has Downton’s bivariate exponential distribution, then from (1) the
marginal distributions of X and Y are exponential with parameters λ1 and λ2, respec-
tively. Thus, in particular, E(X) = λ1 and E(Y ) = λ2. Downton (1970) further showed
that

E(Y |X = x) = (1− ρ)λ2 + ρ
λ2

λ1

x

var(Y |X = x) = (1− ρ)2λ2
2 + 2ρ(1− ρ)

λ2
2

λ1

x .
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The parameter ρ is the correlation coefficient between X and Y with independence
corresponding to ρ = 0 since I0(0) = 1. This distribution is a candidate distribution
for positively correlated bivariate exponential data, in which the conditional mean and
variance of one variable is increasing function of the other variable.

This distribution has real applications in several fields. Lefebvre (2004) considered
forecasting the flow values of the Mistassini river in Quebec (Canada). The relation be-
tween oil pollution of sea water and tar deposit near sea shore is another application
considered by Bain (1978). In this application, the oil pollution is hard and expensive
to measure while the tar deposit can be ranked visually. For more applications, see also
Balakrishna and Lai (2009, pp. 401-466).

Iliopoulos (2003) showed that the joint sufficient statistic for the three parameters
based on the SRS (X1, Y1), . . . , (Xm, Ym) from this distribution is(

X1Y1, . . . , XmYm,

m∑
i=1

Xi,

m∑
i=1

Yi

)
.

Nagao and Kadoya (1971) showed that the maximum likelihood estimator of λ1 and λ2 is
X̄ and Ȳ , respectively.

Two classes of estimators of the parameter ρ based on the complete bivariate sample
were derived in Al-Saadi and Young (1980).

The method of moments estimator is based on the statistic

ρ̂ =

∑m
i=1XiYi

mX̄Ȳ
− 1 ,

where X̄ = 1
m

m∑
i=1

Xi and Ȳ = 1
m

m∑
i=1

Yi. Using the condition 0 ≤ ρ < 1, a modified

estimator for ρ is

ρ̂1 =


0 if ρ̂ < 0
ρ̂ if 0 ≤ ρ̂ ≤ 1
1 if ρ̂ > 1.

Another estimator is based on the sample correlation coefficient

r =

m∑
i=1

(Xi − X̄)(Yi − Ȳ )√
m∑
i=1

(Xi − X̄)2
m∑
i=1

(Yi − Ȳ )2
.

Because 0 ≤ ρ < 1, they finally suggested to use

ρ̂2 =

{
0 if −1 ≤ r < 0
r if r ≥ 0.

Note that the first estimator is a function of the sufficient statistic, whereas the second
estimator is not, so we will use the first estimator in what follows.

Al-Saleh and Diab (2009) estimated the parameters of Downton’s bivariate exponen-
tial distribution based on a RSS. He and Nagaraja (2011) estimated the correlation co-
efficient of Downton’s bivariate exponential distribution when all other parameters are
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unknown using incomplete samples. For more details about RSS and its variations see
Chen, Bai, and Sinha (2004). For more details about this work see Hanadeh (2011).

In this paper, we consider the estimation of the parameters of a DBED(λ1, λ2, ρ) dis-
tribution using MERSS. The suggested estimators are compared with the corresponding
ones using SRS. Estimation of λ1 and λ2 for the two cases of known and unknown corre-
lation coefficient ρ is considered. Furthermore, estimation of the correlation coefficient ρ
for the two cases of known and unknown λ1 and λ2 is also discussed.

3 Mean and Variance of X(k:k) and Y[k:k]

Let (X1, Y1), . . . , (Xm, Ym) be a random sample from Downton’s bivariate exponential
distribution, DBED(λ1, λ2, ρ), with common density given in (1). Let fX(x) and fY (y)
be the marginal densities of X and Y , respectively, and let FX(x) and FY (y) be the
corresponding cumulative distribution function (cdf) of X and Y , respectively.

Now, suppose that {(X(1:1), Y[1:1]), . . . , (X(k:k), Y[k:k])}, k = 1, . . . ,m, is a MERSS
sample from the DBED, X(i:m) is the ith order statistic of X1, . . . , Xm, and Y[i:m] is the Y -
variate paired with X(i:k), then Y[i:k] is called a concomitant order statistic. If the judgment
ranking on the X variate is perfect, then (X(k:k), Y[k:k]) has pdf

fX(k:k),Y[k:k]
(x, y) = fX(k:k)

(x)fY |X(y|x) , (2)

for k = 1, . . . ,m, where fX(k:k)
(x) is the pdf of the kth order statistic of a SRS of size

k from an exponential distribution, fY[k:k]
(x) is the pdf of the corresponding variable Y

(concomitant order statistic) and fY |X(y|x) is the conditional pdf of (Y |X = x) (cp.
Yang, 1977).

But,

fX(k:k)
(x) = k(FX(x))

k−1fX(x)

= k

(
1− exp

(
− x

λ1

))k−1

fX(x) . (3)

Also,

fX(k:k),Y[k:k]
(x, y) =

fX,Y (x, y)

fX(x)
k

(
1− exp

(
− x

λ1

))k−1

fX(x)

= k

(
1− exp

(
− x

λ1

))k−1

fX,Y (x, y) . (4)

It can be verified that if Z1, . . . , Zk are i.i.d. from an Exponential(λ1) distribution then

X(k:k) has the same distribution as
k∑

j=1

Zj

k−j+1
(see Yang, 1977). Thus, it follows that

E
(
X(k:k)

)
=

k∑
j=1

E(Zj)

k − j + 1
= λ1

k∑
j=1

1

k − j + 1
(5)

var
(
X(k:k)

)
=

k∑
j=1

var(Zj)

(k − j + 1)2
= λ2

1

k∑
j=1

1

(k − j + 1)2
. (6)
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Moreover, we have

E(Y[k:k]) = E(E(Y[k:k]|X(k:k)))

= (1− ρ)λ2 + ρ
λ2

λ1

E(X(k:k)) .

Using (5) we get

E(Y[k:k]) = (1− ρ)λ2 + ρλ2

k∑
j=1

1

k − j + 1
. (7)

Also,
var(Y[k:k]) = E(var(Y[k:k]|X(k:k))) + var(E(Y[k:k]|X(k:k))) .

Hence,

var(Y[k:k]) = λ2
2

{
(1− ρ)2 + 2ρ(1− ρ)

k∑
j=1

1

k − j + 1
+ ρ2

k∑
j=1

1

(k − j + 1)2

}
. (8)

4 Unbiased Estimation of λ1, λ2 with Known ρ

We now consider the estimation of λ1 and λ2 when ρ is known using both MERSS and
SRS. Then the performance of the suggested estimators is investigated.

Denote the unbiased estimator of λ1 and λ2 based on SRS by λ̂1SRS and λ̂2SRS , re-
spectively, and those based on MERSS by λ̂1MERSS and λ̂2MERSS , respectively, with

λ̂1SRS =
1

m

m∑
i=1

Xi and λ̂1MERSS =
1

Sm

m∑
k=1

X(k:k) (9)

where

Sm =
m∑
k=1

m+ 1− k

k
.

Now
var(λ̂1MERSS) =

Cm

S2
m

λ2
1 (10)

where

Cm =
m∑
k=1

(m+ 1)− k

k2
.

Hence,

eff(λ̂1MERSS, λ̂1SRS) =
var(λ̂1SRS)

var(λ̂1MERSS)

=
S2
m

mCm

=
m∑
k=1

(m+ 1)− k

mk

m∑
k=1

(m+1)−k
k

m∑
k=1

(m+1)−k
k2

, (11)
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which is clearly larger than 1 and increasing in m.
Also,

λ̂2SRS =
1

m

m∑
i=1

Yi and λ̂2MERSS =
1

m(1− ρ) + ρSm

m∑
k=1

Y[k:k] . (12)

It follows that

var(λ̂2MERSS) =
1

(m(1− ρ) + ρSm)2

m∑
k=1

{
(1− ρ)λ2

2

(
(1− ρ) + 2ρ

k∑
j=1

1

k − j + 1

)

+ρ2λ2
2

k∑
j=1

1

(k − j + 1)2

}
,

which can be simplified to

var(λ̂2MERSS) =
λ2
2

(m(1− ρ) + ρSm)2
(
m(1− ρ)2 + 2ρ(1− ρ)Sm + ρ2Cm

)
. (13)

Hence, using (12) and (13) we get

eff(λ̂2MERSS, λ̂2SRS) =
var(λ̂2SRS)

var(λ̂2MERSS)

=
(m(1− ρ) + ρSm)

2

m (m(1− ρ)2 + 2ρ(1− ρ)Sm + ρ2Cm)
, (14)

which is also clearly larger than 1, since

eff(λ̂2MERSS, λ̂2SRS) =
m2(1− ρ)2 + 2mρ(1− ρ)Sm + ρ2S2

m

m2(1− ρ)2 + 2mρ(1− ρ)Sm +mρ2Cm

≥ 1 ⇔ S2
m

mCm

≥ 1 .

Table 1 contains efficiencies of λ̂1MERSS and λ̂2MERSS with respect to the respective
estimators using SRS. Based on Table 1 we conclude that

• eff(λ̂1MERSS, λ̂1SRS) and eff(λ̂2MERSS, λ̂2SRS) are always greater than 1.

• eff(λ̂1MERSS, λ̂1SRS) is fixed in ρ and increasing in m.

• eff(λ̂2MERSS, λ̂2SRS) increases in m for fixed ρ and increases in ρ for fixed m.

• eff(λ̂2MERSS, λ̂2SRS) → eff(λ̂1MERSS, λ̂1SRS) for any m as ρ → 1.
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Table 1: eff(λ̂1MERSS, λ̂1SRS) (eff(λ̂2MERSS, λ̂2SRS))

m
ρ 2 3 4 5

0.1 1.389 (1.004) 1.733 (1.008) 2.044 (1.012) 2.330 (1.015)
0.2 1.389 (1.016) 1.733 (1.031) 2.044 (1.044) 2.330 (1.055)
0.3 1.389 (1.035) 1.733 (1.066) 2.044 (1.093) 2.330 (1.116)
0.4 1.389 (1.061) 1.733 (1.113) 2.044 (1.158) 2.330 (1.197)
0.5 1.389 (1.095) 1.733 (1.173) 2.044 (1.241) 2.330 (1.299)
0.6 1.389 (1.135) 1.733 (1.247) 2.044 (1.342) 2.330 (1.425)
0.7 1.389 (1.184) 1.733 (1.336) 2.044 (1.467) 2.330 (1.581)
0.8 1.389 (1.241) 1.733 (1.444) 2.044 (1.619) 2.330 (1.774)
0.9 1.389 (1.309) 1.733 (1.574) 2.044 (1.808) 2.330 (2.017)

5 Optimal Estimator of λ1, λ2 Based on MERSS Ele-
ments

If τ = {θ̂1, . . . , θ̂N} is a set of N unbiased estimators of the parameter θ with var(θ̂i) = δ2i

and cov(θ̂i, θ̂j) = 0 for all i ̸= j, then among all unbiased linear combinations
N∑
i=1

biθ̂i,

where bi is a constant,

θ̂∗ =

N∑
i=1

θ̂i/δ
2
i

N∑
i=1

1/δ2i

has the smallest variance
var(θ̂∗) =

1
N∑
i=1

1/δ2i

(see e.g. Casella and Berger, 2002, p. 363). Using this result, we can find the best unbiased
estimators for λ1 and λ2 among all unbiased linear combinations of the MERSS elements.

For simplicity, let

ak =
k∑

j=1

1

k − j + 1
and bk =

k∑
j=1

1

(k − j + 1)2
.

We know from (5) and (6) that

E(X(k:k)) = akλ1 and var(X(k:k)) = bkλ
2
1 .

Thus, the best unbiased estimator for λ1 among all unbiased linear combinations of X(k:k)

is

T ∗ =

m∑
k=1

X(k:k)

ak

a2k
λ2
1bk

m∑
k=1

a2k
λ2
1bk

=

m∑
k=1

akX(k:k)

bk
m∑
k=1

a2k
bk

. (15)
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It follows that

var(T ∗) =
λ2
1

m∑
k=1

a2k
bk

. (16)

Hence, using (16) we get

eff(T ∗, λ̂1SRS) =
var(λ̂1SRS)

var(T ∗)
=

λ2
1

m

1

λ2
1

m∑
k=1

a2k
bk

=
1

m

m∑
k=1


(

k∑
j=1

1
(k−j+1)

)2

(
k∑

j=1

1
(k−j+1)2

)
 (17)

Table 2 gives values of the efficiencies eff(T ∗, λ̂1SRS) and eff(λ̂1MERSS, λ̂1SRS). Based
on these results, we conclude that eff(T ∗, λ̂1SRS) is always larger than 1. It is larger than
eff(λ̂1MERSS, λ̂1SRS) for all values of m, i.e. T ∗ is more efficient than λ̂1MERSS and hence
than λ̂1RSS and λ̂1SRS . Note that the best linear unbiased estimator and the traditional one,
though different, are relatively close to each other.

Table 2: Efficiencies eff(T ∗, λ̂1SRS) and eff(λ̂1MERSS, λ̂1SRS)

m eff(T ∗, λ̂1SRS) eff(λ̂1MERSS , λ̂1SRS)

2 1.400 1.389
3 1.756 1.733
4 2.080 2.044
5 2.376 2.330

Similarly, the best unbiased estimator of λ2 among all unbiased linear combinations
of Y[k:k] is

ω∗ =

m∑
k=1

(1− ρ+ ρak)Y[k:k]

λ2
1[(1− ρ)2 + 2ρ(1− ρ)ak + ρ2bk]

m∑
k=1

(1− ρ+ ρak)
2

λ2
1[(1− ρ)2 + 2ρ(1− ρ)ak + ρ2bk]

. (18)

It follows that

var(ω∗) =

λ2
2

m∑
k=1

(1− ρ+ ρak)
2

(1− ρ)2 + 2ρ(1− ρ)ak + ρ2bk(
m∑
k=1

(1− ρ+ ρak)
2

(1− ρ)2 + 2ρ(1− ρ)ak + ρ2bk

)2 . (19)
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Hence, using (19) we get

eff(ω∗, λ̂2SRS) =
var(λ̂2SRS)

var(ω∗)

=

(
m∑
k=1

(1− ρ+ ρak)
2

(1− ρ)2 + 2ρ(1− ρ)ak + ρ2bk

)2

m
m∑
k=1

(1− ρ+ ρak)
2

(1− ρ)2 + 2ρ(1− ρ)ak + ρ2bk

(20)

Table 3 includes the efficiencies of ω∗ compared to λ̂2SRS (λ̂2MERSS compared to λ̂2SRS).
Based on Table 3 we conclude that eff(ω∗, λ̂2SRS) is always larger than 1. It is increas-
ing in m for fixed ρ and also increasing in ρ for fixed m. eff(ω∗, λ̂2SRS) is larger than
eff(λ̂2MERSS, λ̂2SRS) for any size m and ρ, i.e., ω∗ is more efficient than λ̂2MERSS and
hence than λ̂2RSS and λ̂2SRS .

Table 3: eff(ω∗, λ̂2SRS) (eff(λ̂2MERSS, λ̂2SRS))

m
ρ 2 3 4 5

0.1 1.005 (1.004) 1.009 (1.008) 1.013 (1.012) 1.016 (1.015)
0.2 1.017 (1.016) 1.032 (1.031) 1.046 (1.044) 1.057 (1.055)
0.3 1.037 (1.035) 1.068 (1.066) 1.095 (1.093) 1.119 (1.116)
0.4 1.063 (1.061) 1.115 (1.113) 1.160 (1.158) 1.199 (1.197)
0.5 1.095 (1.095) 1.174 (1.173) 1.241 (1.241) 1.300 (1.299)
0.6 1.135 (1.135) 1.247 (1.247) 1.342 (1.342) 1.425 (1.425)
0.7 1.184 (1.184) 1.337 (1.336) 1.467 (1.467) 1.582 (1.581)
0.8 1.242 (1.241) 1.446 (1.444) 1.623 (1.619) 1.780 (1.774)
0.9 1.313 (1.309) 1.583 (1.574) 1.821 (1.808) 2.035 (2.017)

6 Estimation of ρ with Known λ1, λ2

Now we consider the estimation of ρ when λ1 and λ2 are known using MERSS and SRS.
Diab (2006) (see also Al-Saleh and Diab, 2009) derived the following formula for the
variance of ρ̂ based on SRS:

var(ρ̂1SRS) =
3ρ2 + 14ρ+ 3

m
,

where

ρ̂1SRS =
1

mλ1λ2

m∑
i=1

XiYi − 1 . (21)
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Now, suppose that λ1 and λ2 are known, then

E(X(k:k)Y[k:k]) = E[E(X(k:k)Y[k:k]|X(k:k))] = E[X(k:k)E(Y[k:k]|X(k:k))]

= E
[
X(k:k)

(
(1− ρ)λ2 + ρ

λ2

λ1

X(k:k)

)]
= (1− ρ)λ2λ1

k∑
j=1

1

k − j + 1
+ ρ

λ2

λ1

E
(
X2

(k:k)

)
.

But,

E
(
X2

(k:k)

)
= var(X(k:k)) +

[
E(X(k:k))

]2
= λ2

1

k∑
j=1

1

(k − j + 1)2
+ λ2

1

[
k∑

j=1

1

k − j + 1

]2
.

Thus,

E(X(k:k)Y[k:k]) = (1− ρ)λ2λ1

k∑
j=1

1

k − j + 1

+ρ
λ2

λ1

λ2
1

k∑
j=1

1

(k − j + 1)2
+ λ2

1

[
k∑

j=1

1

k − j + 1

]2
= λ1λ2

(
k∑

j=1

1

k − j + 1

+ρ

 k∑
j=1

1

(k − j + 1)2
−

k∑
j=1

1

k − j + 1
+

[
k∑

j=1

1

k − j + 1

]2
Hence,

E

(
m∑
k=1

X(k:k)Y[k:k]

)
= ρλ1λ2

Cm − Sm +
m∑
k=1

[
k∑

j=1

1

k − j + 1

]2+ λ1λ2Sm .

Thus,

ρ =

E

(
m∑
k=1

X(k:k)Y[k:k]

)
− λ1λ2Sm

λ1λ2

Cm − Sm +
m∑
k=1

[
k∑

j=1

1

k − j + 1

]2
Hence,

ρ̂1MERSS =

1

λ1λ2

m∑
k=1

X(k:k)Y[k:k] − Sm

Cm − Sm +
m∑
k=1

[
k∑

j=1

1

k − j + 1

]2 =

1

λ1λ2

m∑
k=1

X(k:k)Y[k:k] − Sm

Cm − Sm +
m∑
k=1

a2k

(22)
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is an unbiased estimator of ρ. It follows that

var(ρ̂1MERSS) =

m∑
k=1

var(X(k:k)Y[k:k])

λ2
1λ

2
2

(
Cm − Sm +

m∑
k=1

a2k

)2 . (23)

Thus,

var(ρ̂1MERSS)=

(
Cm−Sm+

m∑
k=1

a2k

)−2{
2(1−ρ)2

m∑
k=1

(bk+a2k)

+24(1−ρ)ρ

(
m∑
k=1

k
k−1∑
j=0

(
k−1

j

)
(−1)j

(1+j)4

)
(24)

+ρ2

(
24

m∑
k=1

k
k−1∑
j=0

(
k−1

j

)
(−1)j

(1+j)5

)
−

m∑
k=1

[
(1−ρ)ak+ρ(bk+a2k)

]2}
.

Hence, we finally get

eff(ρ̂1MERSS, ρ̂1SRS) =
(3ρ2 + 14ρ+ 3)/m

var(ρ̂1MERSS)
. (25)

Table 4 contains the efficiencies of ρ̂1MERSS w.r.t. ρ̂1SRS . We conclude that the ef-
ficiency of ρ̂1MERSS w.r.t. ρ̂1SRS is always larger than 1 and it is increasing in m for
fixed ρ.

Table 4: eff(ρ̂1MERSS, ρ̂1SRS)

m
ρ 2 3 4 5

0.1 1.700 2.404 3.091 3.752
0.2 1.681 2.359 3.014 3.644
0.3 1.670 2.335 2.977 3.591
0.4 1.664 2.322 2.958 3.565
0.5 1.661 2.316 2.948 3.555
0.6 1.659 2.312 2.945 3.553
0.7 1.658 2.312 2.946 3.556
0.8 1.658 2.313 2.950 3.564
0.9 1.658 2.315 2.955 3.573
0.99 1.659 2.317 2.961 3.583
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7 Estimation of ρ with Unknown λ1, λ2

Suppose that λ1 and λ2 are unknown, then we can replace them in ρ̂1SRS by λ̂1SRS and
λ̂2SRS to get

ρ̂2SRS =
1

mλ̂1SRSλ̂2SRS

m∑
i=1

XiYi − 1 . (26)

Since 0 ≤ ρ < 1, we modify this estimator by

ρ̂∗2SRS =


0 if ρ̂2SRS < 0
ρ̂2SRS if 0 ≤ ρ̂2SRS ≤ 1
1 if ρ̂2SRS > 1.

Similarly,

ρ̂2MERSS =

m∑
k=1

X(k:k)Y[k:k]

λ̂1MERSSλ̂∗
2MERSS

− Sm

Cm − Sm +
m∑
k=1

a2k

, (27)

where λ̂∗
2MERSS = 1

m

m∑
k=1

Y[k:k] since λ̂2MERSS depends on ρ. Since 0 ≤ ρ < 1 we modify

this estimator by

ρ̂∗2MERSS =


0 if ρ̂2MERSS < 0
ρ̂2MERSS if 0 ≤ ρ̂2MERSS ≤ 1
1 if ρ̂2MERSS > 1.

We compare the bias and the mean squared error (MSE) of the two estimators ρ̂∗2MERSS

and ρ̂∗2SRS by simulation using 10000 repetitions. To simulate a pair (X, Y ) from the
DBED(λ1, λ2, ρ), Iliopoulos (2003) rewrote the pdf of the DBED (1) as an infinite mix-
ture of independent gamma distributions with geometric mixing weights (see also Diab,
2006; Al-Saleh and Diab, 2009)

f(x, y) =
∞∑
k=0

π(k; ρ)Γ(k+1)(x;λ1(1− ρ))Γ(k+1)(y;λ2(1− ρ)) ,

where Γα(·; β) is the pdf of the Gamma(α, β) distribution and π(k; ρ) = (1 − ρ)ρk,
k = 0, 1, . . . is the geometric probability function. Let K be a random variable with this
geometric pdf. Then, X and Y are conditionally (given K = k) independent gamma
random variables with α = k + 1 and β1 = λ1(1 − ρ), β2 = λ2(1 − ρ), respectively.
Also, the unconditional distribution of (X, Y ) is a DBED(λ1, λ2, ρ). The algorithm of
simulating observations form the DBED consists of the following steps:

1. Given λ1, λ2 and ρ, simulate m random numbers Ki from the geometric distribution
with p = (1− ρ).
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2. Given Ki = ki, simulate two independent random variable Xi and Yi, where Xi is
from Gamma(ki + 1;λ1(1− ρ)) and Yi is from Gamma(ki + 1;λ2(1− ρ)).

3. Use the pairs (Xi, Yi) just generated to compute the values of ρ̂∗SRS and ρ̂∗2MERSS .

4. Repeat steps 1 to 3 a 10000 times to get 10000 values of ρ̂∗2SRS and ρ̂∗2MERSS .

Bias and MSE of each of the estimators ρ̂∗2SRS and ρ̂∗2MERSS are given in Tables 5 and 6,
respectively, and the efficiency of ρ̂∗2MERSS w.r.t. ρ̂∗2SRS is given in Table 7.

Based on Tables 5, 6, and 7 we conclude that the efficiency of ρ̂∗2MERSS w.r.t. ρ̂∗2SRS

is larger than 1 for ρ ≤ 0.4. If ρ > 0.4 then ρ̂∗2MERSS is not recommended.

8 Estimation of λ1, λ2 with Unknown ρ

We noticed that the formula of λ̂1MERSS = 1
Sm

m∑
k=1

X(k:k) does not depend on ρ, while

λ̂2MERSS does. Suppose that ρ is unknown, then we can replace it by ρ̂∗2MERSS in the
formula of λ̂2MERSS to get

λ̂∗
2MERSS =

1

m(1− ρ̂∗2MERSS) + ρ̂∗2MERSSSm

m∑
k=1

Y[k:k] . (28)

Bias and MSE of the estimators λ̂2SRS and λ̂∗
2MERSS are given in Tables 8 and 9, respec-

tively, and the efficiency values of λ̂∗
2MERSS w.r.t. λ̂2SRS are contained in Table 10. Based

on Tables 8, 9, and 10 we conclude that

1. The bias of λ̂∗
2MERSS is larger than that of λ̂2SRS as ρ is getting large.

2. The MSE of λ̂∗
2MERSS behaves similarly; it is larger than that of λ̂2SRS for most of

the cases that we considered.

3. The Estimators based on SRS are more efficient than those based on MERSS for
ρ ≥ 0.20. The suggested estimator is not recommended if some prior informa-
tion suggests that the unknown ρ is not very small. The reason could be that the
estimator of ρ is not a suitable one.

9 Conclusions
Moving extreme ranked set sampling is a useful variation of ranked set sampling and
more applicable since it allows for an increase of set size without introducing extra rank-
ing errors. In this procedure, only the two extreme values (maximum or minimum) of sets
of varied sizes were identified (by judgment) for quantification. In this paper, the main
goal was to estimate the parameters of Downton’s bivariate exponential distribution using
MERSS with concomitant variable. It was assumed that X can be ranked visually while
Y was highly correlated with X . It was shown that the use of MERSS with concomi-
tant variable gives more efficient estimators for the parameters of Downton’s bivariate
exponential distribution than the corresponding ones using Simple Random Sample.



176 Austrian Journal of Statistics, Vol. 42 (2013), No. 3, 161–179

Table 5: Bias of ρ̂∗2SRS (ρ̂∗2MERSS)
m

ρ 2 3 4 5
0.1 0.037 ( 0.010) 0.058 ( 0.001) 0.059 (-0.012) 0.055 (-0.020)
0.2 -0.052 (-0.079) -0.023 (-0.080) -0.018 (-0.092) -0.005 (-0.104)
0.3 -0.136 (-0.172) -0.098 (-0.164) -0.084 (-0.176) -0.075 (-0.187)
0.4 -0.225 (-0.257) -0.177 (-0.247) -0.150 (-0.257) -0.127 (-0.267)
0.5 -0.310 (-0.342) -0.239 (-0.329) -0.206 (-0.336) -0.186 (-0.349)
0.6 -0.390 (-0.430) -0.313 (-0.413) -0.270 (-0.419) -0.240 (-0.432)
0.7 -0.469 (-0.514) -0.378 (-0.492) -0.330 (-0.502) -0.290 (-0.513)
0.8 -0.539 (-0.590) -0.440 (-0.571) -0.375 (-0.581) -0.331 (-0.595)
0.9 -0.611 (-0.672) -0.493 (-0.645) -0.416 (-0.662) -0.374 (-0.680)

Table 6: MSE of ρ̂∗2SRS (ρ̂∗2MERSS)
m

ρ 2 3 4 5
0.1 0.044 (0.029) 0.060 (0.024) 0.058 (0.018) 0.056 (0.014)
0.2 0.049 (0.037) 0.064 (0.035) 0.065 (0.030) 0.067 (0.026)
0.3 0.071 (0.062) 0.081 (0.060) 0.081 (0.055) 0.080 (0.053)
0.4 0.106 (0.102) 0.107 (0.096) 0.106 (0.093) 0.102 (0.093)
0.5 0.155 (0.157) 0.143 (0.148) 0.132 (0.143) 0.127 (0.144)
0.6 0.215 (0.227) 0.188 (0.211) 0.167 (0.206) 0.154 (0.209)
0.7 0.289 (0.308) 0.235 (0.285) 0.205 (0.284) 0.180 (0.287)
0.8 0.365 (0.398) 0.289 (0.372) 0.238 (0.371) 0.204 (0.379)
0.9 0.454 (0.504) 0.341 (0.464) 0.269 (0.472) 0.230 (0.485)

Table 7: Efficiency of ρ̂∗2SRS w.r.t. ρ̂∗2MERSS

m
ρ 2 3 4 5

0.1 1.510 2.525 3.177 3.951
0.2 1.323 1.830 2.159 2.438
0.3 1.144 1.352 1.461 1.513
0.4 1.031 1.110 1.135 1.105
0.5 0.985 0.965 0.927 0.881
0.6 0.945 0.892 0.814 0.737
0.7 0.937 0.826 0.721 0.627
0.8 0.918 0.778 0.642 0.539
0.9 0.900 0.735 0.570 0.475
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Table 8: Bias of λ̂2SRS (λ̂∗
2MERSS)

m
ρ 2 3 4 5

0.1 -0.003 (-0.002) -0.002 (-0.001) -0.005 (0.008) -0.004 (0.019)
0.2 0.000 ( 0.016) -0.001 ( 0.036) 0.003 (0.056) 0.000 (0.081)
0.3 0.000 ( 0.037) -0.001 ( 0.069) 0.004 (0.095) 0.001 (0.131)
0.4 0.005 ( 0.060) -0.002 ( 0.103) 0.009 (0.138) -0.004 (0.193)
0.5 0.000 ( 0.081) 0.001 ( 0.141) 0.008 (0.193) -0.004 (0.239)
0.6 -0.002 ( 0.103) 0.001 ( 0.170) 0.006 (0.228) 0.004 (0.289)
0.7 -0.004 ( 0.120) -0.001 ( 0.203) 0.008 (0.276) -0.007 (0.341)
0.8 -0.001 ( 0.142) -0.003 ( 0.236) 0.001 (0.315) -0.003 (0.396)
0.9 -0.006 ( 0.170) -0.004 ( 0.267) 0.000 (0.355) -0.002 (0.453)

Table 9: MSE of λ̂2SRS (λ̂∗
2MERSS)

m
ρ 2 3 4 5

0.1 0.500 (0.491) 0.333 (0.332) 0.250 (0.249) 0.199 (0.210)
0.2 0.500 (0.505) 0.334 (0.349) 0.257 (0.272) 0.200 (0.228)
0.3 0.501 (0.515) 0.330 (0.363) 0.254 (0.285) 0.200 (0.245)
0.4 0.507 (0.528) 0.337 (0.378) 0.253 (0.302) 0.201 (0.273)
0.5 0.500 (0.540) 0.333 (0.387) 0.258 (0.319) 0.196 (0.301)
0.6 0.498 (0.544) 0.334 (0.398) 0.252 (0.334) 0.208 (0.331)
0.7 0.501 (0.545) 0.332 (0.403) 0.259 (0.351) 0.200 (0.351)
0.8 0.499 (0.548) 0.331 (0.416) 0.253 (0.375) 0.203 (0.385)
0.9 0.496 (0.548) 0.329 (0.424) 0.242 (0.385) 0.197 (0.427)

Table 10: Efficiency of λ̂∗
2MERSS w.r.t. λ̂∗

2SRS

m
ρ 2 3 4 5

0.1 1.017 1.005 1.005 0.945
0.2 0.990 0.956 0.946 0.876
0.3 0.973 0.908 0.889 0.819
0.4 0.960 0.892 0.838 0.739
0.5 0.927 0.861 0.808 0.650
0.6 0.917 0.839 0.754 0.628
0.7 0.913 0.822 0.739 0.569
0.8 0.911 0.797 0.675 0.526
0.9 0.904 0.776 0.629 0.462
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