Bayesian Analysis of Randomly Censored Generalized Exponential Distribution

  • Muhammad Yameen Danish Allama Iqbal Open University, Islamabad, Pakistan
  • Muhammad Aslam Quaid-i-Azam University, Islamabad, Pakistan

Abstract

This paper deals with Bayesian analysis of two-parameter generalized exponential distribution in proportional hazards model of random censorship. It is well known for two-parameter lifetime distributions that continuous conjugate priors for the parameters do not exist; we assume independent gamma priors for the scale and shape parameter. It is seen that the closed-form expressions for the Bayes estimators cannot be obtained; we suggest Tierney-Kadane’s approximation to obtain the Bayes estimates. However with this method, it is not possible to construct the HPD credible intervals, we propose Gibbs sampling procedure to approximate the Bayes estimates and also to construct the HPD credible intervals. Monte Carlo simulation
is carried out to observe the behavior of the proposed methods and to compare with maximum likelihood method. One real data analysis is performed for illustration.

References

Berger, J. O., and Sun, D. (1993). Bayesian analysis for the Poly-Weibull distribution. Journal of American Statistical Association, 88, 1412-1418.

Breslow, N., and Crowley, J. (1974). A large sample study of the life table and product limit estimates under random censorship. Annals of Statistics, 2, 437-453.

Cheng, P., and Lin, G. (1987). Maximum likelihood estimation of a survival function under the Koziol-Green proportional hazards model. Statistics and Probability Letters, 5, 75-80.

Chib, S., and Greenberg, E. (1995). Understanding the Metropolis-Hasting algorithm. The American Statistician, 49, 327-335.

Cox, D. (1972). Regression models and life tables. Journal of the Royal Statistical Society, Series B, 34, 187-200.

Csörgő, S. (1988). Testing for the proportional hazards model of random censorship. In Proceedings of the 4th prague symposium on asymptotic statistics, prague (Vol. 1, p. 87-92).

Csörgő, S., and Faraway, J. (1998). The paradoxical nature of the proportional hazards model. Statistics, 31, 61-78.

Csörgő, S., and Horváth, L. (1983). On the Koziol-Green model for random censorship II. , 18, 195-203.

De Santis, F., Mortera, J., and Nardi, A. (2001). Jeffreys priors for survival models with censored data. Journal of Statistical Planning and Inference, 193-209.

Devroye, L. (1984). A simple algorithm for generating random variates with a logconcave density. Computing, 33, 247-257.

Efron, B. (1967). The two-sample problem with censored data. In Proceedings of the 5th Berkeley Symposium (Vol. 4, p. 831-853).

Fleming, T. R., and Harrington, D. P. (1991). Counting Processes and Survival Analysis. New York: Wiley.

Friesl, M., and Hurt, J. (20070). On Bayesian estimation in an exponential distribution under random censorship. Kybernetika, 43, 45-60.

Geman, S., and Geman, A. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-740.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1995). Markov Chain Monte Carlo in Practice. London: Chapman & Hall.

Gupta, R. D., and Kundu, D. (1999). Generalized exponential distribution. Australian & New Zealand Journal of Statistics, 41, 173-188.

Gupta, R. D., and Kundu, D. (2001). Exponentiated exponential distribution: An alternative to gamma and Weibull distributions. Biometrical Journal, 43, 117-130.

Gupta, R. D., and Kundu, D. (2009). Introduction of shape/skewness parameter(s) in a probability distribution. Journal of Probability and Statistical Science, 7, 153-171.

Herbst, T. (1992). Test of fit with the Koziol-Green model for random censorship. Statistics and Decisions, 10, 163-171.

Hollander, M., and Pe˜na, E. (1989). Families of confidence bands for the survival function under the general random censorship model and the Koziol-Green model. Canadian Journal of Statistics, 17, 59-74.

Kaplan, E. L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457-481.

Koziol, J. A., and Green, S. B. (1976). A Cramer-von Mises statistic for random censored data. Biometrika, 63, 465-474.

Kundu, D. (2008). Bayesian inference and life testing plan for Weibull distribution in presence of progressive censoring. Technometrics, 50, 144-154.

Kundu, D., and Gupta, R. D. (2008). Generalized exponential distribution: Bayesian estimation. Computation Statistics and Data Analysis, 52, 1873-1883.

Kundu, D., and Pradhan, B. (2009). Bayesian inference and life testing plans for GE distribution. Science in China, Series A: Mathematics, 52, 1373-1388.

Liang, T. (2004). Empirical Bayes estimation with random right censoring. International Journal of Information and Management Sciences, 15, 1-12.

Lindley, D. V. (1980). Approximate Bayes methods. Trabajos de Estadistica, 31, 223-237.

Pakyari, P. (2010). Discriminating between generalized exponential, geometric extreme exponential and Weibull distributions. Journal of Statistical Computation and Simulation, 80, 1403-1412.

Tierney, T., and Kadane, B. (1986). Accurate approximations for posterior moments marginal densities. Journal of the American Statistical Association, 81, 82-86.

Wahed, A. S. (2006). Bayesian inference using Burr model under asymmetric loss function: An application to carcinoma survival data. Journal of Statistical Research, 40, 45-47.
Published
2016-02-24
How to Cite
Danish, M. Y., & Aslam, M. (2016). Bayesian Analysis of Randomly Censored Generalized Exponential Distribution. Austrian Journal of Statistics, 42(1), 47–62. https://doi.org/https://doi.org/10.17713/ajs.v42i1.165
Section
Articles