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Abstract: Brno and Graz, the second largest cities of their countries, observe
in each winter season PM10 concentrations of daily means which regularly
exceed the limit value of 50 µg/m3. This is mainly caused by unfavorable
dissemination conditions of the ambient air. Hence, partial regulation mea-
sures have to be taken in Brno and Graz where specific decisions for certain
regulations may be based on the average PM10 concentration of the next day
provided that reliable forecasts of these values are available. For several sites
in the two cities we establish forecasts of daily PM10 concentrations based on
multiple linear regression and generalized linear models utilizing both mea-
sured covariates of the present day and meteorological forecasts of the next
day. The comparisons, based on different quality measures demonstrate the
usefulness of both model approaches as they yield results of similar qual-
ity. Our prediction models may support future decisions concerning possible
traffic restrictions or other regulations.

Zusammenfassung: Brünn und Graz, die jeweils zweitgrößten Städte ihrer
Länder, weisen in jeder Wintersaison PM10-Konzentrationen von Tagesmit-
telwerten auf, die regelmäßig den Grenzwert von 50 µg/m3 überschreiten.
Dies ist vor allem begründet durch schlechte Durchlüftungsbedingungen der
Umgebungsluft. Daher sind partielle Steuerungsmechanismen in Brünn und
Graz notwendig, wo spezifische Maßnahmen getroffen werden sollen, die
den Tagesmittelwert der PM10-Konzentration des nächsten Tages verwen-
den könnten, falls zuverlässige Prognosen für diese Werte verfügbar sind.
Für verschiedene Messstationen der beiden Städte werden Prognosewerte
von täglichen PM10-Konzentrationen hergeleitet, die auf multipler Regres-
sion und verallgemeinerten linearen Modellen basieren, welche am laufenden
Tag gemessene Kovariable sowie meteorologische Vorhersagen des nächsten
Tages verwenden. Die Vergleiche, basierend auf unterschiedlichen Qualitäts-
maßen, demonstrieren die Brauchbarkeit beider Modellansätze, welche Re-
sultate ähnlicher Qualität liefern. Unsere Vorhersagemodelle könnten zukünf-
tige Entscheidungen bezüglich möglicher Verkehrsbeschränkungen oder an-
derer Maßnahmen unterstützen.

Keywords: Prediction, Forecast, PM10, Multiple Linear Regression, Gener-
alized Linear Model, Meteorology.
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1 Introduction

Particularly during the winter season, the basin area of Graz is exposed to weather condi-
tions such as stationary temperature inversions, low wind velocities and rare precipitation
events. These special weather conditions cause an extensive load of particulate matter
(PM) in ambient air. PM/fine dust has become a local and regional issue of agglomeration
centers, large cities with heavy traffic and industrial areas. The PM10 (particles with an
aerodynamic diameter < 10µm) concentration is measured in units of µg/m3. Accord-
ing to regulations established by the European Union (EU) in the EC Directive (2008),
the limit value for the daily PM10 average at the stations which show the highest concen-
tration of pollution is 50 µg/m3 and must not be exceeded on more than 35 days of the
calendar year (valid since January 1, 2005). Also since 2005, the annual PM10 average
must not exceed the limit of 40 µg/m3. The stricter rules in Austria allowed only 30
exceedances (2005 to 2009) and reduced this even to 25 exceedances (2010). However, at
the test point Graz-Mitte (near the pedestrian zone in the center of the city) we observed
merely in the eight cold periods (October to March) 2002/2003 – 2009/2010 between 36
(2008/2009) and 105 (2005/2006) exceedances of the daily PM10 limit and registered high
annual averages between 41 µg/m3 and 49 µg/m3.

Rules in the Czech Republic are in accordance with the EU regulations. The daily
PM10 average at the less exposed station Arboretum in Brno exceeded the limit value in
21 days in the cold period 2007/10 – 2008/03 and in 2 days in the cold period 2008/10
– 2009/03. In contrast, the stations Židenice and Zvonařka (both close to traffic spots)
exhibited a much higher number of exceedances from 55 days to 73 days in the cold
period 2007/11 – 2009/03. The annual PM10 average at the Brno stations varied from
27 µg/m3 to 45 µg/m3 in 2006, from 17 µg/m3 to 36 µg/m3 in 2007, from 19 µg/m3 to
44 µg/m3 in 2008 and from 18 µg/m3 to 41 µg/m3 in 2009.

It is well known that PM may cause adverse health effects which have been analyzed
in many epidemiological and toxicological studies. An extensive general review can be
found in Pope III and Dockery (2006). A specific Austrian study AUPHEP is described in
Hauck et al. (2004), while Schwarze et al. (2006) is a thorough review with 210 references
of studies from different regions throughout the world.

Due to adverse health effects caused by PM10 and in order to fulfill the EU regulations,
policy has to react (and take drastic measures) against the PM problem. For the authorities
it may be necessary to base singular decisions on reliable forecasting models for daily
PM10 concentrations. Our aim is to deliver reliable PM10 forecasting models for specific
sites and to demonstrate their practical applicability. Our models have been developed for
the cold season (October to March), being the period with particularly elevated PM10 con-
centrations at the observed sites. There are considerably lower PM10 concentrations during
the warm season and hence, there is no urgent need for action in that season of the year.
Models for Graz based on multiple linear regression were already presented in a previous
study (Stadlober, Hörmann, and Pfeiler, 2008). In contrast to many other studies it was
possible to show the performance of these models in operational mode based on a three-
year trial period. In Brno, generalized linear models have been used to analyze and predict
PM10 levels by means of meteorological and seasonal variables (Hrdličková, Michálek,
Kolář, and Veselý, 2008, Veselý, Tonner, Hrdličková, Michálek, and Kolář, 2009). Other
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typical approaches for PM prediction are neuronal networks (c.f. Pérez and Reyes, 2002,
Hooyberghs, Mensink, Dumont, Fierens, and Brasseur, 2005, Papanastasiou, Melas, and
Kioutsioukis, 2007), discriminant analysis (c.f. Silva, Pérez, and Trier, 2001), multi-gene
genetic programming (Pires, Alvim-Ferraz, Pereira, and Martins, 2010) or Kalman filter-
ing (c.f. van der Wal and Jansen, 1999). Hybrid ARIMA and artificial neural network
models have been applied to improve forecasting of extreme events (Dı́az-Robles et al.,
2008). Sfetsos and Vlachogiannis (2010) complements the three different approaches lin-
ear regression, nearest neighbors and artificial networks by adding hourly PM10 values of
the past 48 hours to the models.

In the next section, we describe the situation in Graz and Brno according to sites, data
bases and covariates (input parameters). The multiple regression methodology (LM) and
the generalized linear models (GLM) approach of our study are discussed in Section 3.
Results of model comparisons and of test runs in operational mode are analyzed in Section
4. In the final Section 5 we conclude our findings and reveal our recommendations.

2 Situation in Graz and in Brno

2.1 Sites and database in Graz
Our analysis in Graz is based on data from two monitoring stations, the site Graz-Mitte in
a traffic area near to the pedestrian zone in the city center and the site Graz-Süd near to a
commercial and industrial area in the south. In Graz-Mitte we collected data of eight cold
seasons (2002/2003 – 2009/2010, 1348 observations and 55 missing values), in Graz-Süd
we had access to data of seven cold seasons (2003/2004 – 2009/2010, 1094 observations
and 48 missing values). Graz is located in a basin area south of the main Alpine crest
leading to low precipitation and low wind velocities during the cold period. Additionally,
stationary temperature inversions frequently occur at that time of year due to the basin
location. Some core data characteristics, listed in Table 1, illustrate the situation at Graz-
Mitte. Similar results were obtained for Graz-Süd.

Graz, the capital of Styria, has approximately 263 k residents and is located in the
northern part of the Graz basin at 350 m above sea level. The tree-covered hills bordering
at the north are about 400 m higher. Our two measuring stations are part of a permanent
PM10 monitoring network in Graz with five test points three of which are located in traffic
areas and two in residential areas. Additionally to PM10, the test points provide other
pollution and meteorological data on the basis of half hour averages. From the test point
Kalkleiten which is situated close to Graz 710 m above sea level we obtained temperature
data to measure the effect of temperature inversion. Figure 1 shows the location of the
stations on the map of Graz.

Table 2 shows the number of crucial days at cold seasons, i.e. days where PM10 ex-
ceeds the EU-limit of 50 µg/m3. For the site Graz-Mitte we observed between 36 (20 %)
(2008/2009) and 105 (58 %) (2005/2006) exceedances per cold season. The correspond-
ing values at Graz-Süd ranged from 49 (27 %) (2008/2009) to 103 (57 %) (2005/2006).

Subsequently, we introduce the input variables suitable for our multiple regression
and generalized linear models. The focus is on forecasting daily averages of PM10 for day
t in the cold season, i.e. the period from October 1 to March 31:
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Table 2: Number of observations of PM10 above 50 and total number of observations per
month and season in brackets.

02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10

Graz-Mitte 100(178) 78(171) 86(182) 105(182) 60(182) 56(183) 36(182) 50(151)
Graz-Süd – 91(183) 89(182) 103(180) 66(175) 79(183) 49(182) 76(151)

 
 0  1    2 km 

    
 

Nord 

Mitte 

Süd 

 

Kalkleiten 

Figure 1: Map of stations in Graz.

• Apt: average of 48 1/2h-measurements of PM10 on day t (0:30 to 24:00).

Temperature inversion has the most significant impact on Apt, the PM10 concentration
in Graz (see also Hörmann, Pfeiler, and Stadlober, 2005). In order to measure temperature
inversion for Graz we define

• ∆Tt: average temperature difference to reference test point (Kalkleiten) on day t
(at Graz-Mitte for Graz-Süd).
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If the daily average ∆Tt is negative, we refer to this as an inversion day. In the cold period,
the daily average of ∆Tt is negative to a level of 13-47 % depending on specific tempera-
ture conditions in the winter season. Obviously, the emergence of wind and precipitation
leads to reduced PM10 concentrations. Thus, we include the two parameters

• Vt: average wind speed on day t (at Graz-Mitte for Graz-Süd),

• Prect: 1 = precipitation, 0 = no precipitation on day t (at Graz-Nord).

Values of the three meteorological variables for day t have to be delivered at day t−1, the
day of the prediction. Hence, in operational mode they are only available as meteorolog-
ical forecasts. Below, in Subsection 4.2 we show the reliability of our PM10 predictions
based on these meteorological forecasts for test data from the cold season 2009/2010.

Of course, further crucial variables for our models are the so-called lag values of PM10
and the categorized temperature:

• Aplag: average of 1/2h-measurements of PM10 from 12.30 day t − 2 to 12.00 day
t− 1,

• Tlag: categorized average of 1/2h temperature measurements at 12.30 on day t − 2
to 12.00 on day t−1 (= 0 if temp>0, = 1 if temp≤0) (at Graz-Mitte for Graz-Süd).

Domestic fuel is one of the human impact factors. Naturally, during frosty periods
more heating is necessary, i.e. the effect of domestic heating may be estimated partially
by measures of air temperature. Because of the high correlation between temperatures on
proximate days, it may be feasible to include the lag value Tlag. In operational mode, the
predictions for day t has to be published in the afternoon (in Graz at 14.00) of day t− 1,
so the observed values Alag and Tlag are available on time.

An additional human impact is reflected to some extent by weekday/weekend differ-
ences of PM10. It is very likely that in Graz this effect arises from the reduced traffic
load (see Hörmann et al., 2005, Stadlober et al., 2008). Additionally, we observed that
the characteristics of PM10 changes during the winter season (higher levels than expected
in February and March than expected by meteorological conditions). To model these ef-
fects we include four dummy variables indicating Saturday, Sun-/Holiday, February and
March.

• saturday: 1 = Saturday, 0 = no Saturday on day t,

• sunday: 1 = Sunday/Holiday, 0 = no Sunday/Holiday on day t,

• febr: 1 = February, 0 = no February on day t,

• march: 1 = March, 0 = no March on day t.

Note that all models are fitted on a training data set containing seven cold seasons
2002/2003 – 2008/2009 at Graz-Mitte (six cold seasons 2003/2004 – 2008/2009 at Graz-
Süd) utilizing observed values of the covariates as in Stadlober et al. (2008). These models
were employed for predictions of the test data set (days ranging from November 3, 2009
to March 31, 2010).
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2.2 Sites and database in Brno
Brno, the second largest city of the Czech Republic with about 430 k residents is an
economical, cultural and political center. The city is located in a basin at 190 m to 425 m
above sea level. The basin is open only in the south and it is surrounded by arboreous
hills in the other three cardinal directions. There are two rivers going through Brno and
confluenting in the south of the center. The local air quality is significantly affected by
the concentration of industry and motor traffic, as it lies on a road junction of highways
D1 and D2.

It can be claimed that the air pollution by dust aerosol is connected especially with
the winter season, when disproportionately higher emissions of the local heating plants
appear. Moreover, the temperature inversions as well as adverse dispersion conditions are
more frequent. On the other hand, snowfalls absorb the dust aerosol better than rainfalls.
In the summer season the days with extreme values of PM10 appear during the periods of
higher temperatures and lower air humidity.

In the metropolitan area of Brno we investigated the three monitoring stations Ar-
boretum, Židenice and Zvonařka (see the map of stations in Brno, Figure 2). The site
Arboretum is located in the botanical garden of the Mendel University of Agriculture and
Forestry (part of the inner city area). Here we had access to data from three cold sea-
sons (2006/11 – 2007/3, 2007/10 – 2008/03, 2008/10 – 2009/03, 483 observations and
26 missing values). The site Židenice is situated near a heavy-traffic street surrounded by
warehouses, manufacturing plants and a railway line. Zvonařka station is a traffic spot
within an industrial area. For the last two stations data from two cold seasons were avail-
able (2007/11 – 2008/03, 2008/10 – 2009/03, 313 observations and 4 missing values).

Meteorogical data together with their predictions (based on 6h-measurements) are
provided by the Brno Regional Office of the Czech Hydrometeorological Institute. Note
that these data are valid for the whole Brno agglomeration and therefore are not station
specific.

The future development of the pollution of dust aerosol in Brno will be apparently
fixed with constant year fluctuation and with maxima at the end of winter. A gradual
increase of monthly PM10 averages caused by more frequent extreme traffic situations in
combination with adverse dispersion conditions is possible.

Similarly to Section 2.1, Table 3 and 4 provide some core data characteristics at Ar-
boretum and Židenice respectively. Results for the station Zvonařka are analogous to
those for the site Židenice.

The number of crucial days at cold seasons, i.e. days where PM10 exceeds the EU-
limit of 50 µg/m3, at the Brno stations is provided in Table 5. For the site Arboretum we
observed between 2 (1 %) (2008/2009) and 29 (23 %) (2006/2007) exceedances per cold
season. The corresponding values at Židenice and Zvonařka were remarkably higher.

The following covariates turned out to be important in forecasting daily averages Apt
of PM10 for day t in the period from October 1 to March 31:

• Apt: average of 24 1h-measurements of PM10 on day t (1:00 to 24:00).

The progression of the pollution at stations is significantly influenced by the wind
direction. The wind speed affects the pollution differently – higher emissions come up
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Table 5: Number of observations of PM10 above 50 and total number of observations per
month and season in brackets.

06/07 07/08 08/09

Arboretum 29(127) 21(183) 2(173)
Židenice – 72(134) 73(179)
Zvonařka – 66(134) 55(179)

Figure 2: Map of stations in Brno.

during stronger circulation (pollutant is brought from distant sources) as well as weaker
circulation (the air is ventilated worse and polluting aerosol is accumulated). Unlike in
Hrdličková et al. (2008) and Veselý et al. (2009), here the predicted wind direction Dt

and wind speed Vt were considered in the model. Note that wind direction is measured as
an oriented angle between the vector pointing north of the station and the observed wind
direction vector pointing to the station. Nevertheless, the same projections

• Vt sinDt(pr): average of 4 predictions of projections of the wind vector at 0.00,
6.00, 12.00, 18.00 on day t,

• Vt cosDt(pr): average of 4 predictions of projections of the wind vector at 0.00,
6.00, 12.00, 18.00 on day t

were included as in Hrdličková et al. (2008). Note that this reparametrization provides
an estimate of the angle S [◦] between the vector pointing north of the station and the
vector pointing from the direction of maximum pollutant concentration to the station S.
After estimating the parameters of the model, the corresponding component of the linear
predictor can be reparametrized by the sum formula to βSVt cos(Dt − S). Note that be-
cause of this reparametrization after the parameter estimation, the variables Vt sinDt(pr),
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Vt cosDt(pr) were either both included or both excluded when searching for sufficient
models in Sections 3.1 and 3.2.

Furthermore, the following lag variables of PM10 and temperature were included:

• Aplag: average of 1h-measurements of PM10 from 13.00 day t−2 to 12.00 day t−1,

• Tlag: average of 4 measurements of temperature at 18.00 on day t − 2 and at 0.00,
6.00, 12.00 on day t− 1.

In contrast to the stations in Graz, here the average temperature on day t was also
considered:

• Tt(pr): average of 4 predictions of temperature at 0.00, 6.00, 12.00, 18.00 on day t.

Note that data on precipitation were not available for Brno stations. Therefore, we
used the predicted variable:

• Ct(pr): average of 4 predictions of cloud cover at 0.00, 6.00, 12.00, 18.00 on day t.

Cloud cover is a degree of coverage of the sky by clouds and indirectly provides an in-
formation on the length of the sun shine. It ranges from 0 for completely clear sky to 10
completely overcast sky.

The effect of domestic heating was represented by the following variable:

• HSt : activity of heating plants on day t, days in same month have the same values
(Oct: 0.08, Nov: 0.14, Dec: 0.17, Jan: 0.19, Feb: 0.16, Mar: 0.14).

For the same reasons as in Section 2.1, the following dummy variables indicating
Weekend, Sun-/Holiday, February and March were included:

• weekend: 1 = Weekend, 0 = Working day t,

• sunday: 1 = Sunday/Holiday, 0 = no Sunday/Holiday on day t,

• febr: 1 = February, 0 = no February on day t,

• march: 1 = March, 0 = no March on day t.

Note that considering the variableweekend instead of saturday (in models for Graz data)
allows us to test the hypothesis, that there is no difference between the level of PM10 on
Saturday and Sun-/Holiday. When testing a model without weekend to be sufficient, the
variable sunday was also excluded.

Models for Arboretum are fitted on data from both two cold seasons (2006/10 –
2008/03, 310 observations and 15 missing values). For Židenice and Zvonařka the data
from the season 2007/11 – 2008/03 (132 observations) were available. All models on the
training data sets had access to predicted covariates (provided by the Czech Hydrometeo-
rological Institute) which is different to the modeling of Graz data where observed values
of covariates were used. These models were applied for predictions of the test data set
including days of the period 2008/10 – 2009/03.
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3 Methodology

3.1 Multiple linear regression

The regression models are designed for the dependent variable
√
Apt. To assure a constant

error variance and to avoid a violation of the model assumptions we found the square root
transformation to be a suitable choice.
Model assumption: Let x(i)t (i = 1, 2, . . . ,m) be a pool of metric input variables and
d
(j)
t (j = 1, . . . , p) be a pool of dummy (0/1) input variables at day t. Then we assume

that the following linear model for
√
Apt holds:

√
Apt = β0 +

m∑
i=1

βix
(i)
t +

p∑
j=1

βm+jd
(j)
t + εt , εt

iid∼ N(0, σ2) . (1)

For each site the parameter estimates β̂k, k = 0, . . . ,m + p are chosen via a stepwise re-
gression procedure from the candidate set of input variables (Graz, Subsection 2.1, Brno,
Subsection 2.2). One remarkable feature of this simple linear model approach is that the
parameters and results can still be interpreted conveniently. In contrast to other rather
complex models with numerous input parameters and/or functional relationships gener-
ated by a black box mechanism, linear models of this type are still transparent for the user
(see Hörmann et al., 2005, Stadlober et al., 2008).

In Graz-Mitte and Graz-Süd all variables of the specified pool were found to be sig-
nificant. The corresponding results are given in Table 6 below where the covariates are
ordered according to their level of significance expressed by the t-value at Graz-Mitte.
Accordingly, temperature inversion ∆Tt and the lag value Aplag of PM10 are the most im-
portant ones, followed by three covariates of similar importance: average wind speed Vt,
the lag value of temperature Tlag and the sunday effect.

However, at the sites in Brno only 4 to 8 variables of the predefined pool are important
(see Table 7). The most significant ones for the less exposed test point Arboretum seem to
be the lag value Aplag of PM10 and the projections of the wind vector. On the other hand,
at the test points Židenice and Zvonařka, which are near heavy-traffic streets, the projec-
tions of the wind vector, the lag value Tlag of temperature, the cloud cover Ct(pr) and
the weekend effect exhibited their significant influence. We observed that the covariate
sunday had no relevance at all. Hence it does not appear in Table 7.

Note that, unlike to Graz-Mitte and Graz-Süd, a negative march effect is observed.
In Brno, the heating season ends in March. In this month, the temperature inversions are
shorter and less frequent, and therefore the thermic stratification, which used to be more
stable during winter, is labilized. The atmosphere is not ventilated under the temperature
inversion, which implies a cumulation of pollutants and an increase of their concentration.
The conditions are improved after a change of the conditions, when the circulation is
intensified, which is demonstrated by a sufficient spread of the pollutants or their wash
off by the precipitation among others.
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Table 6: Parameter estimates β̂ of the linear model for
√
Apt with their standard errors and

t statistics for Graz stations. The table is completed by the coefficient of determination
R2, the standard deviation se of the model and number of observations n.

Variables Graz-Mitte Graz-Süd
x or d β̂ sd(β̂) t β̂ sd(β̂) t

const 7.412 0.120 61.5 8.317 0.143 58.0
∆Tt −0.301 0.018 −16.6 −0.367 0.023 −16.1
Aplag 0.019 0.001 15.1 0.015 0.001 11.9
Vt −1.591 0.132 −12.0 −2.251 0.165 −13.7
Tlag 0.954 0.084 11.4 1.185 0.106 11.2
sunday −0.968 0.085 −11.4 −0.617 0.104 −5.9
march 0.752 0.095 7.9 0.690 0.115 6.0
saturday −0.688 0.094 −7.3 −0.704 0.115 −6.1
Prect −0.507 0.071 −7.1 −0.853 0.087 −9.8
febr 0.344 0.090 3.8 0.287 0.111 2.6

R2 se n R2 se n
0.629 1.104 1199 0.647 1.261 1046

Table 7: Parameter estimates β̂ of the sufficient model for
√
Apt with their standard errors

and t statistics for Brno stations. The table is completed by identified angle of highest air
pollution S and corresponding regression coefficient β̂S . Then the coefficient of determi-
nation R2, the standard deviation se of the model and number of observations n follow.

Variables Arboretum Židenice Zvonařka
x or d β̂ sd(β̂) t β̂ sd(β̂) t β̂ sd(β̂) t

const 4.305 0.242 17.8 7.602 0.473 16.1 8.784 0.543 16.2
Aplag 0.027 0.003 7.9 0.014 0.005 2.7 0.011 0.005 2.2
Tlag −0.098 0.033 −3.0 −0.186 0.058 3.2
Vt sinDt(pr) 0.153 0.020 7.6 0.268 0.054 4.9 0.356 0.059 6.0
Vt cosDt(pr) −0.006 0.021 −0.3 −0.089 0.052 −1.7 −0.083 0.056 −1.5
Tt(pr) 0.168 0.062 2.7
Ct(pr) −0.109 0.049 −2.2 −0.255 0.052 −5.0
HSt 5.587 1.462 3.8
weekend −0.701 0.238 −2.9 −0.630 0.242 −2.6
febr 0.843 0.281 3.0
march −1.041 0.313 −3.3

β̂S 0.153 0.282 0.366
S 92◦ 108◦ 103◦

R2 se n R2 se n R2 se n
0.381 0.720 305 0.481 1.226 132 0.537 1.240 132
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3.2 Generalized linear models with gamma distributions
Another possibility to model the response Apt is to assume that the measurements of
Apt are gamma distributed. Then one can apply the generalized linear model approach
with log-link function (see e.g. Fahrmeir and Tutz, 1994) as used in our previous study
(Hrdličková et al., 2008).
Model assumption: Let x(i)t (i = 1, 2, . . . ,m) be a pool of metric input variables and d(j)t

(j = 1, . . . , p) be a pool of dummy (0/1) input variables at day t. Then we assume that
Apt has a Gamma(µt, 1/φ) distribution and log(µt) = log (E(Apt|Xt)) can be described
as linear model of the form

log(µt) = β0 +
m∑
i=1

βix
(i)
t +

p∑
j=1

βm+jd
(j)
t , (2)

where φ is the dispersion parameter and E(Apt|Xt) denotes the conditional expectation
of Apt for the given set Xt of variables on the right-hand side of model (2). The disper-
sion parameter φ can be estimated by the generalized Pearson statistic and the parameter
estimates βk, k = 0, . . . , p + m, are obtained by the maximum likelihood method both
implemented in the procedure glmfit which is part of the Statistics Toolbox of the MAT-
LAB package. We selected the best model by stepwise backward selection using the Wald
statistic as selection criterion, see Fahrmeir and Tutz (1994). Of course, standard residual
analyses and goodness-of-fit tests were used to check the adequacy of these models.

In Graz-Mitte and Graz-Süd all variables of the specified pool were found to be sig-
nificant. The corresponding results are given in Table 8 below where the covariates are
ordered according their level of significance at Graz-Mitte. Note that we obtain essentially
the same order as in the multiple linear regression models of Table 6 in Subsection 3.1.

For the sites in Brno a specific combination of covariates appears. The model for Ar-
boretum contains only 6 covariates, but the two traffic spots Židenice and Zvonařka need
8 identical covariates for modeling PM10 (see Table 9). The two projections Vt sinDt(pr)
and Vt cosDt(pr) of the wind vector and the dummy variable march are used in all three
models, whereas the lag variable Aplag is chosen for modeling PM10 at Arboretum, and
the lag variable Tlag is required in models of PM10 at Židenice and Zvonařka. Here,
the predicted temperature Tt(pr) and cloud cover Ct(pr) together with the weekend and
february effect also exhibited their influence. On the other hand, we observed once more
that the covariate sunday had no relevance at all. Hence, it does not appear in Table 9.
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Table 8: Parameter estimates β̂ of the sufficient GLM with log-link for E(Apt|Xt) with
their standard errors for Graz stations. Then goodness-of-fit statistics D and χ2

ans with
their degrees of freedom f and number of observations n follow.

Variables Graz-Mitte Graz-Süd
x or d β̂ sd(β̂) β̂ sd(β̂)

const 3.123 0.081 3.534 0.087
∆Tt −0.078 0.005 −0.091 0.007
log(Aplag) 0.310 0.020 0.261 0.020
Vt −0.498 0.038 −0.745 0.047
Tlag 0.272 0.024 0.319 0.030
sunday −0.286 0.024 −0.174 0.030
march 0.224 0.027 0.230 0.033
saturday −0.210 0.027 −0.215 0.033
Prect −0.149 0.021 −0.245 0.025
febr 0.094 0.026 0.095 0.032
D 115.815 129.393
χ2
ans 115.079 128.281
f 1189 1036
n 1199 1046

Table 9: Parameter estimates β̂ of the sufficient GLM model with log-link for E(Apt|Xt)
and their standard errors for Brno stations. The table is completed by identified angle of
highest air pollution S for each station and corresponding regression coefficient β̂S . Then
the goodness-of-fit statistics χ2

ans and Wald statistics W together with their degrees of
freedom f , number of observations n and corresponding χ2

0.95 quantile follow.

Variables Arboretum Židenice Zvonařka
x or d β̂ sd(β̂) β̂ sd(β̂) β̂ sd(β̂)
const 2.131 0.166 4.444 0.126 4.528 0.136
log(Aplag) 0.360 0.043
Tlag −0.061 0.014 −0.067 0.015
Vt sinDt(pr) 0.049 0.006 0.092 0.016 0.124 0.017
Vt cosDt(pr) −0.004 0.007 −0.019 0.015 −0.023 0.016
Tt(pr) 0.044 0.016 0.056 0.017
Ct(pr) −0.047 0.015 −0.070 0.016
HSt 1.617 0.474
weekend −0.203 0.064 −0.173 0.069
febr 0.194 0.083 0.183 0.090
march −0.080 0.034 −0.235 0.089 −0.337 0.096
S 94◦ 102◦ 101◦

χ2
ans 15.152 15.452 17.981

W 5.917 3.593 3.302
χ2
0.95 12.592 7.815 7.815
f 299 125 125
n 305 134 134
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4 Comparison of Different Forecasting Models

4.1 Quality of forecasting

The multiple linear regression models and the generalized linear models introduced in
Section 3 are used as a basis for forecasting daily means of PM10 in Graz (November 3,
2009 to March 31, 2010) and in Brno (October 1, 2008 to March 31, 2009). As a first
step, we used a historical training data set to compute the estimates β̂k, k = 0, . . . ,m+ p,
for the corresponding models listed in Tables 6, 7, 8, and 9 which yield predictions

√̂
Apt

and ̂log(Apt), respectively. To obtain the estimates Âpt one has to take the square of the

predicted
√̂
Apt or the exp of the predicted ̂log(Apt). The resulting biases are negligible

for our purposes (and thus will not be considered). See Cordeiro and McCullagh (1991)
for discussion on the bias correction in GLM.

Clearly, in operational mode the covariates constituting values of the prediction day
t are available as meteorological forecasts only. In Graz, this concerns the measure for
temperature inversion ∆Tt, the average wind speed Vt and the precipitation as (0/1) cat-
egorized variable Prect. The models for the stations in Brno need more sophisticated
meteorological forecasts: average of 4 predictions of (i) the wind speed Vt(pr), of (ii) the
wind direction Dt(pr), of (iii) the temperature Tt(pr) and of (iv) the cloud cover Ct(pr).

The quality of the PM10 forecasts is measured and compared by a quality function
introduced in Stadlober et al. (2008), which is tailored to the particular needs given by the
EU-limit value of 50 µg/m3.

The quality functionQ(x, y) assigns a value between 0 and 1 to each pair (x=observa-
tion, y=forecast). Values close to 1 signify very good forecasts, whereas small values near
to zero indicate bad forecasts. Based on the value of Q(x, y) we define a scoring system:
Q(x, y) ≥ 0.8

∧
= 1: excellent, Q(x, y) ∈ [0.6, 0.8)

∧
= 2: good, Q(x, y) ∈ [0.4, 0.6)

∧
=

3: satisfactory, Q(x, y) ∈ [0.2, 0.4)
∧
= 4: bad, Q(x, y) ∈ [0, 0.2)

∧
= 5: very bad. The

function Q is given by the relation

Q(x, y) = 1−min

{
|x− y|

10d
, 1

}
with (3)

d = 1 + 1
2

√
|x− 50|+ |y − 50|+ 100 (IA + 10IB) ,

whereA = {x ≤ 50, y ≤ 50},B = {x ≥ 100, y ≥ 100}, and IE is the indicator function:
IE = 1 if condition E is valid, and IE = 0 otherwise.

The function Q(x, y, has jumps near the threshold points (x = 50, y = 50), (x =
100, y = 100); it penalizes combinations Q(x > 50, y < 50) (Q(x > 100, y < 100)),
in cases if the forecast y is below 50 µg/m3 (below 100 µg/m3), but the observation x
is above 50 µg/m3 (above 100 µg/m3) or vice versa. Therefore, a situation in which the
observation is above a threshold and forecast is below the threshold is assessed equally to a
situation in which the observation is below a threshold and forecast is above it, though the
second situation might not be as crucial in reality as the first one. However, the proposed
Q function has been tested for six winter seasons (2004/2005 – 2009/10) in Graz and has
proven to be a suitable measure for the intended application (Stadlober et al., 2008).
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4.2 Practical performance and comparison
In this Subsection, we compare the results of the two modelling approaches with respect
to the quality function Q(x, y, in (3). We start with the linear models and generalized
linear models of Graz-Mitte and Graz-Süd fitted on training data of seven cold seasons
(2002/10 to 2009/03, Graz-Mitte, Table 6) and six cold seasons (2003/10 to 2009/03,
Graz-Süd, Table 8). They deliver daily forecasts Âpt for test data from November 3, 2009
to March 31, 2010.

Tables 10 and 11 show a good coincidence of the quality of GLM and LM forecasts
for both sites of Graz. A high correlation of the forecasts is exhibited in Figures 3 and
4 (top right panel). In Graz-Mitte it turns out that there are 70.5 % (69.1 %) very good
or good forecasts. In Graz-Süd this quality is reached by both models in 66.4 % of the
cases. At least satisfactory forecasts for both models can be expected with a probability
of 85.2 % (Graz-Mitte) or 83.9 % (Graz-Süd).

Splitting the observations in two classes PM10(low): PM10≤ 50 and PM10(high): PM10
> 50, we get for PM10(low) at least 89 % and for PM10(high) at least 76 % satisfactory
forecasts at Graz-Mitte and Graz-Süd. In Brno, the LM and GLM models are fitted to
training data (October 1, 2008 to March 31, 2009, Tables 7 and 9) and they yield daily
forecasts Âpt for test data from October 1, 2008 to March 31, 2009. Table 12 for station
Arboretum presents successful predictions of both GLM and LM models, probably caused
by the low number of PM10 observations above 50 µg/m3 as can be seen in Figure 5.

Table 13 (station Židenice) shows that both models reached a similar percentage of
acceptable forecasts (GLM: 73.4 %, LM: 72.9 %), though the individual qualities of the
predictions are quite different as can be observed in Figure 6, bottom left panel. The top
right panel of Figure 6 reveals the fact that the GLM model tends to predict higher values
than the LM model.

On the one hand, Table 14 for station Zvonařka reveals a high percentage of very good
forecasts (GLM: 40.7 %, LM: 40.1 %), on the other hand a high fraction of bad and very
bad forecasts (GLM: 28.8 %, LM: 27.1 %). GLM and LM forecasts agree for PM10(low)
(70.8 % (GLM) and 74.0 % (LM) are at least satisfactory forecasts). However, they rather
disagree for PM10(high) (76.7% (GLM) and 71.2% (LM) are at least satisfactory) with
higher values obtained by the GLM model (see Figure 7, top right panel).
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Table 10: Contingency table for Graz-Mitte: Quality of prediction GLM (rows) versus
LM (columns), number and percentage of categories of quality 1 to 5.

GLM/LM 1 2 3 4 5 sum GLM % cum %
1 63 5 0 0 0 68 45.6 45.6
2 4 27 5 0 1 37 24.8 70.5
3 1 3 16 2 0 22 14.8 85.2
4 0 0 3 10 1 14 9.4 94.6
5 0 0 0 1 7 8 5.4 100.0

sum LM 68 35 24 13 9 149
% 45.6 23.5 16.1 8.7 6.0 100.0

cum % 45.6 69.1 85.2 94.0 100.0
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Figure 3: Graz-Mitte: scatterplot of forecasts of LM versus observations scored byQ (top
left), forecasts Âpt of GLM versus LM (top right), Q of GLM versus LM (bottom left),
scatterplot of forecasts of GLM versus observations scored by Q (bottom right).
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Table 11: Contingency table for Graz-Süd: Quality of prediction GLM (rows) versus LM
(columns), number and percentage of categories of quality 1 to 5.

GLM/LM 1 2 3 4 5 sum GLM % cum %
1 43 9 0 0 0 52 34.9 34.9
2 8 32 7 0 1 47 31.5 66.4
3 0 6 18 2 0 26 17.5 83.9
4 0 1 1 8 3 13 8.7 92.6
5 0 0 0 1 10 11 7.4 100.0

sum LM 51 48 26 11 13 149
% 34.2 32.2 17.5 7.4 8.7 100.0

cum % 34.2 66.4 83.9 91.3 100.0
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Figure 4: Graz-Süd: scatterplot of forecasts of LM versus observations scored by Q (top
left), forecasts Âpt of GLM versus LM (top right), Q of GLM versus LM (bottom left),
scatterplot of forecasts of GLM versus observations scored by Q (bottom right).
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Table 12: Contingency table for Arboretum: Quality of prediction GLM (rows) versus
LM (columns), number and percentage of categories of quality 1 to 5.

GLM/LM 1 2 3 4 5 sum GLM % cum %
1 138 0 0 0 0 138 81.2 81.2
2 2 24 0 0 0 26 15.3 96.5
3 0 1 3 0 0 4 2.4 98.8
4 0 2 0 0 0 2 1.2 100.0
5 0 0 0 0 0 0 0.0 100.0

sum LM 140 27 3 0 0 170
% 82.4 15.9 1.8 0.0 0.0 100.0

cum % 82.4 98.2 100.0 100.0 100.0
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Figure 5: Arboretum: scatterplot of forecasts of LM versus observations scored by Q (top
left), forecasts Âpt of GLM versus LM (top right), Q of GLM versus LM (bottom left),
scatterplot of forecasts of GLM versus observations scored by Q (bottom right).
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Table 13: Contingency table for Židenice: Quality of prediction GLM (rows) versus LM
(columns), number and percentage of categories of quality 1 to 5.

GLM/LM 1 2 3 4 5 sum GLM % cum %
1 54 7 4 1 0 66 37.3 37.3
2 10 18 7 3 0 38 21.5 58.8
3 6 3 7 8 2 26 14.7 73.4
4 2 0 6 10 3 21 11.9 85.3
5 0 0 5 8 13 26 14.7 100.0

sum LM 72 28 29 30 18 177
% 40.7 15.8 16.4 16.9 10.2 100.0

cum % 40.7 56.5 72.9 89.8 100.0
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Figure 6: Židenice: scatterplot of forecasts of LM versus observations scored by Q (top
left), forecasts Âpt of GLM versus LM (top right), Q of GLM versus LM (bottom left),
scatterplot of forecasts of GLM versus observations scored by Q (bottom right).
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Table 14: Contingency table for Zvonařka: Quality of prediction GLM (rows) versus LM
(columns), number and percentage of categories of quality 1 to 5.

GLM/LM 1 2 3 4 5 sum GLM % cum %
1 61 11 0 0 0 72 40.7 40.7
2 7 20 6 1 0 34 19.2 59.9
3 2 3 12 1 2 20 11.3 71.2
4 1 1 2 14 2 20 11.3 82.5
5 0 2 1 9 19 31 17.5 100.0

sum LM 71 37 21 25 23 177
% 40.1 20.9 11.9 14.1 13.0 100.0

cum % 40.1 61.0 72.9 87.0 100.0
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Figure 7: Zvonařka: scatterplot of forecasts of LM versus observations scored by Q (top
left), forecasts Âpt of GLM versus LM (top right), Q of GLM versus LM (bottom left),
scatterplot of forecasts of GLM versus observations scored by Q (bottom right).
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5 Conclusion and Recommendations
In the present paper, we have shown that PM10 forecasting models for Brno and Graz
based on (i) multiple linear regression with square root transformation and (ii) general-
ized linear modelling with gamma distribution and log-link are suitable choices for the
intended goal. They yield similar and comparable results with respect to our quality mea-
sure. Due to the simple and explicit description of the model parameters we are confident
that intransparent black box approaches are not preferable in this case. The covariates are
selected in order to represent the meteorological and anthropogenic situation of the loca-
tions. In general, we attach importance on the practical performance and the convenient
handling of the models. For an every-day-application in the field it is necessary that both
the measured covariates and the covariates obtained as meteorological forecast values are
available at a certain time of the previous day t − 1. Both implementation and servicing
for users has to be convenient.

With respect to our quality function 71 % (traffic spots Židenice and Zvonařka in
Brno), 85 % (Graz-Mitte: near to traffic spot, Graz-Süd: near to industrial area) and
98 % (Arboretum: botanical garden) of the forecasts are assigned to categories excellent,
good or satisfactory. This performance is very promising, but the models are open for
further adaptations. In general, a clever choice of additional covariates may improve the
reliability of the models. On the one hand, our models may serve as regular monitoring
tools, on the other they may also be established as feasible and objective base for decision
making in regards to traffic regulation measures.
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Institute of Mathematics, Department of Statistics and Optimization
Brno University of Technology
Technická 2896/2
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