A Bayesian Analysis of FemaleWage Dynamics Using Markov Chain Clustering

Authors

  • Christoph Pamminger Vienna University of Economics and Business, Austria
  • Regina Tüchler Wirtschaftskammer Österreich, Vienna, Austria

DOI:

https://doi.org/10.17713/ajs.v40i4.217

Abstract

In this work, we analyze wage careers of women in Austria. We identify groups of female employees with similar patterns in their earnings development. Covariates such as e.g. the age of entry, the number of children or maternity leave help to detect these groups. We find three different types of female employees: (1) “high-wage mums”, women with high income and one or two children, (2) “low-wage mums”, women with low income and
‘many’ children and (3) “childless careers”, women who climb up the career
ladder and do not have children.


We use a Markov chain clustering approach to find groups in the discretevalued
time series of income states. Additional covariates are included when modeling group membership via a multinomial logit model.

References

Böheim, R., Himpele, K., Mahringer, H., and Zulehner, C. (2011). The gender pay gap in Austria: Tamensi movetur! WIFO Working Papers, 394/2011, 194–209.

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. New York: Springer.

Frühwirth-Schnatter, S., and Frühwirth, R. (2010). Data augmentation and MCMC for binary and multinomial logit models. In T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures – Festschrift in Honour of Ludwig Fahrmeir (pp. 111–132). Heidelberg: Physica-Verlag. (Also available at http://www.ifas.jku.at/e2550/e2756/index−ger.html, IFAS Research Paper Series 2010-48)

Frühwirth-Schnatter, S., and Kaufmann, S. (2008). Model-based clustering of multiple time series. Journal of Business & Economic Statistics, 26, 78–89.

Frühwirth-Schnatter, S., Pamminger, C., Weber, A., and Winter-Ebmer, R. (2011). Labor market entry and earnings dynamics: Bayesian inference using mixtures-of-experts Markov chain clustering. Journal of Applied Econometrics, forthcoming. Available

from http://dx.doi.org/10.1002/jae.1249

Geisberger, T. (2007). Geschlechtsspezifische Lohn- und Gehaltsunterschiede. Statistische Nachrichten, 7, 633–642.

Grünberger, K., and Zulehner, C. (2009). Geschlechtsspezifische Lohnunterschiede in Österreich. Wifo Monatsberichte, 2, 139–150.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In P. Zarembka (Ed.), Frontiers of Econometrics (pp. 105–142). New York: Academic.

Pamminger, C., and Frühwirth-Schnatter, S. (2010). Model-based clustering of categorical time series. Bayesian Analysis, 5(2), 345–368. Available from http://ba.stat.cmu.edu/journal/2010/vol05/issue02/pamminger.pdf

Peng, F., Jacobs, R. A., and Tanner, M. A. (1996). Bayesian inference in mixtures-ofexperts and hierarchical mixtures-of-experts models with an application to speech recognition. Journal of the American Statistical Association, 91, 953–960.

R Development Core Team. (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/ (ISBN 3-900051-07-0)

Statistik Austria. (2009a). Verdienststrukturerhebung 2006 – Struktur und Verteilung der Verdienste in Österreich. Wien.

Statistik Austria. (2009b). Zeitverwendung 2008/09 – Ein Überblick über geschlechtsspezifische Unterschiede. Wien.

Statistik Austria. (2011). Arbeitskräfteerhebung 2010, Ergebnisse des Mikrozensus. Wien.

Weber, A. (2001). State dependence and wage dynamics: A heterogeneous Markov chain model for wage mobility in Austria (Research report). Vienna: Institute for Advanced Studies.

Zweimüller, J., Winter-Ebmer, R., Lalive, R., Kuhn, A., Wuellrich, J.-P., Ruf, O., et al. (2009). The Austrian Social Security Database (ASSD) (Working Paper No. 0903). Linz, Austria: NRN: The Austrian Center for Labor Economics and the Analysis of the Welfare State.

Published

2016-02-24

How to Cite

Pamminger, C., & Tüchler, R. (2016). A Bayesian Analysis of FemaleWage Dynamics Using Markov Chain Clustering. Austrian Journal of Statistics, 40(4), 281–296. https://doi.org/10.17713/ajs.v40i4.217

Issue

Section

Articles