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Abstract: A new model for discrete-valued time series is proposed: Markov
chain of the order s with r partial connections MC(s, r). Statistical estimators
for the parameters of the MC(s, r)-model are constructed. The asymptotic
properties of these estimators are proved. Statistical tests on the parameters
of this model are proposed and their performance is analyzed. The theory is
illustrated on some real statistical data.
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1 Introduction
Mathematical modeling of complex systems and processes in genetics, meteorology, so-
cial sciences, medicine, economics usually leads to the problem of statistical analysis of
discrete-valued data (see Avery and Henderson, 1999). If we analyze the data in dynam-
ics, we come to the model of discrete-valued time series, i. e. a random process xt ∈ A
on the probability space (Ω, F,P) with discrete time t ∈ N = {1, 2, . . . } and a finite set
of N (2 ≤ N < ∞) states A = {0, 1, . . . , N − 1}. An universal model for long-memory
discrete time series is the high-order Markov chain (see Billingsley, 1961). Unfortunately,
the number of parameters for the s-order Markov chain D = N s(N − 1) increases expo-
nentially with respect to the order s, and to identify this model is a computationally hard
problem; in addition, we need to have data sets of huge size n > D. This situation gener-
ates topical problems of construction and statistical analysis of small-parametric models
for high-order Markov chains, i. e. for the models determined by small number of param-
eters of the transition matrix. Some of these models are known: the Jacobs-Lewis model
(see Jacobs and Lewis, 1978), the Mixture Transition Distribution model (see Raftery,
1985), the hidden Markov model (see Rabiner, 1989), the variable length Markov chain
(see Buhlmann and Wyner, 1999).

A new model called “Markov chain with partial connections” was proposed by Kharin
in 2004. In this paper, using the results from Kharin and Piatlitski (2007) we establish new
properties for this model, consider methods for estimating the model parameters, analyze
properties of the estimators, apply this model to real statistical data.

2 The MC(s, r)-Model and its Properties
Introduce the notation: Jk

i = (ji, ji+1, . . . , jk) ∈ Ak−i+1 is a subsequence of k− i+1 in-
dices, k ≥ i; {xt} is a homogeneous Markov chain of the s-th order with the state space A,
the one-step transition probabilities pJs+1

1
= P{xt+s = js+1|xt+s−1 = js, . . . , xt = j1},

and the initial probabilities πJs
1
= P{Xs

1 = Js
1}, Js+1

1 ∈ As+1.



76 Austrian Journal of Statistics, Vol. 40 (2011), No. 1 & 2, 75–84

Definition 1. The Markov chain xt is called the Markov chain of the s-th order with
r partial connections (see Kharin and Piatlitski, 2007) if

pJs+1
1

= pj1,...,js,js+1 = qj
m0

1
,...,j

m0
r
,js+1 , Js+1

1 ∈ As+1 , (1)

where r ∈ {1, 2, . . . , s} is the number of connections; M0
r = (m0

1,m
0
2, . . . ,m

0
r) ∈ M is

the integer-valued vector with r ordered components 1 = m0
1 < . . . < m0

r ≤ s, called the
pattern of connections, M is the set of all admissible patterns; Q = (qJr+1

1
)Jr+1

1 ∈Ar+1 is
the stochastic matrix, that is, qJr+1

1
≥ 0, Jr+1

1 ∈ Ar+1, and
∑

jr+1∈A qJr+1
1

= 1, Jr
1 ∈ Ar.

The equation (1) means that the transition probability to the state js+1 depends not on
all s preceding states j1, . . . , js but on r selected states jm0

1
, . . . , jm0

r
only. The transition

matrix for the MC(s, r) is completely determined by N r(N − 1) parameters, instead of
D parameters. If r = s, then the MC(s, r) is the Markov chain of the s-th order.

Theorem 1. Let d be the greatest common divisor of m0
2 − m0

1,m
0
3 − m0

2, . . . ,m
0
r −

m0
r−1, s+ 1−m0

r . If d > 1 and x1, x2, . . . , xs are independent, then the MC(s, r) can be
represented as the sequence of d independent processes:

x(t−1)d+1 = x
(1)
t , x(t−1)d+2 = x

(2)
t , . . . , x(t−1)d+d = x

(d)
t , t ∈ N ,

where {x(i)
t } is the MC(s/d, r) with the pattern M∗

r =
(
m0

1 + d−1(m0
i −m0

1)
)
1≤i≤r

and
the transition matrix Q, i = 1, 2, . . . , d.

Proof. Denote ki = (m0
i −m0

1)/d, where i = 1, . . . , r + 1, m0
r+1 = s+ 1. The transition

probability at the time t + kr+1d depends on the states at the times t + k1d, . . . , t + krd,
where t ∈ N, t − 1 = kd + l, 0 ≤ l ≤ d − 1, k = 0, 1, . . .. It is easy to see that the sets
{(k + ki)d+ l + 1 : 1 ≤ i ≤ r + 1, k ≥ 0} are mutually disjoint for different l.

Introduce the notation: δIk1 , Jk
1
=

∏k
l=1 δil, jl is the Kronecker symbol for Ik1 , J

k
1 ∈ Ak;

p∗Js
1 ,K

s
1
= δJs

2 ,K
s−1
1

qj
m0

1
,...,j

m0
r
,ks , Js

1 , K
s
1 ∈ As; p∗ (i)

Js
1 ,K

s
1

are the i-steps transition probabilities.

Definition 2. Let us call the MC(s, r) the ergodic Markov chain if there exists the limit
limi→∞ p

∗ (i)
Js
1 ,K

s
1
= π∗

Ks
1
, Ks

1 ∈ As, where π∗
Ks

1
> 0,

∑
Ks

1∈As π∗
Ks

1
= 1.

Theorem 2. The MC(s, r) is ergodic if and only if there exists i ∈ N such that

minJs
1 ,J

2s+i
s+i+1∈As

∑
Js+i
s+1∈Ai

∏s+i

k=1
qj

k+m0
1−1

,...,j
k+m0

r−1
,jk+s

> 0 .

Stationary probability distribution (π∗
Js
1
)Js

1∈As is the unique solution of the equations

π∗
Js+1
2

=
∑

j1∈A
π∗
Js
1
qj

m0
1
,...,j

m0
r
,js+1 , J

s+1
1 ∈ As .

Proof. The MC(s, r) can be reduced to the first order vector Markov chain, then using the
ergodic theorem from Kemeny and Snell (1960) we obtain the necessary statement.

Corollary 1. If minJr+1
1 ∈Ar+1 qJr+1

1
> 0, then the MC(s, r) is ergodic.
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Corollary 2. Let the MC(s, r) be an ergodic Markov chain. The stationary probability
distribution is uniform (π∗

Js
1
≡ N−s) if and only if the matrix Q is doubly stochastic:∑

j1∈A qJr+1
1

≡ 1,
∑

jr+1∈A qJr+1
1

≡ 1.

Corollary 3. Assume that the MC(s, r) is an ergodic Markov chain. The stationary prob-
ability distribution has the multiplicative form π∗

Js
1
=

∏s
i=1 π

∗
ji

, Js
1 ∈ As, if and only if

π∗
jr+1

=
∑

j1∈A π∗
j1
qJr+1

1
, Jr+1

2 ∈ Ar;
∑

j∈A π∗
j = 1.

Definition 3. The MC(s, r) is stationary if it is ergodic and its initial probabilities (πJs
1
)Js

1∈As

equal the stationary distribution (π∗
Js
1
)Js

1∈As .

Let the MC(s, r) is stationary, µJr+1
1

(Mr) = P{xt+m1−1 = j1, . . . , xt+mr−1 = jr,

xt+s = jr+1} =
∑

Ks
1∈As δkm1 ,j1

· . . . · δkmr ,jr π
∗
Ks

1
pKs

1 ,jr+1 , Jr+1
1 ∈ Ar+1, is the probability

distribution of the (r + 1)-tuple for some pattern Mr ∈ M; the point instead of any index
means summation on all possible values of this index: µJr

1 ·(Mr) =
∑

jr+1∈A µJr+1
1

(Mr).

3 Statistical Estimators for Parameters of the MC(s, r)

and Their Performance

3.1 Statistical Estimation of the Matrix Q

Introduce the notation: Xn
1 = (x1, x2, . . . , xn) ∈ An is the realization of the MC(s, r)

of the length n > s; F
(
J i+s−1
i ;Mr

)
= (ji+m1−1, ji+m2−1, . . . , ji+mr−1) is the selector-

function of the r-th order for some pattern Mr ∈ M, J i+s−1
i ∈ As, i ∈ N;

νJr+1
1

(Xn
1 ;Mr) =

∑n−s

t=1
δF(Xt+s−1

t ;Mr),Jr
1
δxt+s,jr+1 , J

r+1
1 ∈ Ar+1 , (2)

are the frequency statistics of the MC(s, r) for some pattern Mr ∈ M.

Theorem 3. Let the pattern of connections M0
r is known. The maximum likelihood esti-

mator (MLE) for the matrix Q is

Q̂ = (q̂Jr+1
1

)Jr+1
1 ∈Ar+1 , q̂Jr+1

1
=

{
µ̂Jr+1

1
(M0

r )/µ̂Jr
1 ·(M

0
r ), if µ̂Jr

1 ·(M
0
r ) > 0,

1/N, if µ̂Jr
1 ·(M

0
r ) = 0,

(3)

µ̂Jr+1
1

(Mr) = νJr+1
1

(Xn
1 ;Mr)/(n− s) (4)

is the frequency estimator for the probability µJr+1
1

(Mr), Jr+1
1 ∈ Ar+1, Mr ∈ M.

The proof can be found in Kharin and Piatlitski (2007).

Lemma 1. Assume that the MC(s, r) is a stationary Markov chain. Then the statistics
µ̂Jr+1

1
(Mr), Jr+1

1 ∈ Ar+1, defined by (4), are unbiased and consistent estimators with

covariances Cov{µ̂Jr+1
1

(Mr), µ̂Kr+1
1

(Mr)} = σµ̂

Jr+1
1 ,Kr+1

1

/(n− s) +O(1/n2), where

σµ̂

Jr+1
1 ,Kr+1

1

= µJr+1
1

(Mr)(δJr+1
1 ,Kr+1

1
− µKr+1

1
(Mr)) + βJr+1

1 ,Kr+1
1

(Mr) ,
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βJr+1
1 ,Kr+1

1
(Mr) =

∑
Is1 ,L

s
1∈As δF (Is1 ;Mr),Jr

1
δF (Ls

1;Mr),Kr
1
pIs1 , jr+1 pLs

1, kr+1

(
π∗
Is1
c(Is2 ,jr+1),Ls

1
+

+π∗
Ls
1
c(Ls

2,kr+1),Is1

)
, cIs1 ,Ls

1
=

∑∞
k=1(p

∗ (k)
Is1 ,L

s
1
− π∗

Ls
1
). Moreover, the probability distribu-

tion
(√

n− s(µ̂Jr+1
1

(Mr) − µJr+1
1

(Mr))
)
Jr+1
1 ∈Ar+1 at n → ∞ converges to the normal

distribution with zero mean and the covariance matrix Σµ̂ = (σµ̂

Jr+1
1 ,Kr+1

1

)Jr+1
1 ,Kr+1

1 ∈Ar+1 .

Proof. The frequency statistics of the MC(s, r) defined by (2) are linear functions of the
frequency statistics of the Markov chain of the s-th order (see Kharin and Piatlitski, 2007).
Using the relationship (4) and generalization of Lemma 3.2, Theorem 3.3 from Billingsley
(1961), we come to the necessary statement.

Remark 1. The matrix C = (cJs
1 ,I

s
1
)Js

1 ,I
s
1∈As can be expressed linearly in terms of the

fundamental matrix Z = (E−P ∗+Π∗)−1 of the Markov chain: C = Z−E, where E =
= (δJs

1 ,I
s
1
)Js

1 ,I
s
1∈As is the identity matrix, P ∗ = (δJs

2 ,I
s−1
1

pJs
1 ,is

)Js
1 ,I

s
1∈As , Π∗ = (π∗

Is1
)Js

1 ,I
s
1∈As .

The matrix Z can be efficiently calculated (see Kemeny and Snell, 1960).

Theorem 4. For the stationary MC(s, r) the statistics q̂Jr+1
1

, Jr+1
1 ∈ Ar+1, defined by (3),

at n → ∞ are asymptotically unbiased and consistent estimators with covariances
Cov{q̂Jr+1

1
, q̂Kr+1

1
} = σq̂

Jr+1
1 ,Kr+1

1

/(n− s) +O(1/n2), where

σq̂

Jr+1
1 ,Kr+1

1

= δJr
1 ,K

r
1
qJr+1

1
(δjr+1,kr+1 − qKr+1

1
)/µJr

1 ·(M
0
r ), J

r+1
1 , Kr+1

1 ∈ Ar+1.

Moreover, the probability distribution of the N r+1-dimensional random vector(√
n− s(q̂Jr+1

1
− qJr+1

1
)
)
Jr+1
1 ∈Ar+1 at n → ∞ converges to the normal distribution with

zero mean and the covariance matrix Σq̂ = (σq̂

Jr+1
1 ,Kr+1

1

)Jr+1
1 ,Kr+1

1 ∈Ar+1 .

Proof. Consistency of the estimators immediately follows from the equation (3), Lemma 1
and the theorem on functional transformations of random sequences (see Borovkov, 1999).

Since ∂q̂Jr+1
1

/∂µ̂Kr+1
1

(M0
r ) = δJr

1 ,K
r
1
(δjr+1,kr+1− q̂Jr+1

1
)/µ̂Jr

1 ·(M
0
r ), then using the con-

tinuity theorem for random sequences (see Borovkov, 1999) and Lemma 1, we have that
the probability distribution of the random vector

(√
n− s(q̂Jr+1

1
− qJr+1

1
)
)
Jr+1
1 ∈Ar+1 con-

verges to the normal distribution with zero mean and the covariances

σq̂

Jr+1
1 ,Kr+1

1

=
∑

ir+1,lr+1∈A

(δjr+1,ir+1 − qJr+1
1

)(δkr+1,lr+1 − qKr+1
1

)

µJr
1 ·(M

0
r )µKr

1 ·(M
0
r )

σµ̂
(Jr

1 ,ir+1),(Kr
1 ,lr+1)

.

Asymptotic unbiasedness and expressions for asymptotic covariances of the estima-
tors q̂Jr+1

1
, Jr+1

1 ∈ Ar+1, follow from the continuity theorem for moments (see Borovkov,
1999) and the boundedness of the estimators q̂Jr+1

1
∈ [0, 1], Jr+1

1 ∈ Ar+1.

Corollary 4. Under the assumptions of Theorem 4, the statistic Q̂ is the mean-square
consistent estimator. Moreover, the mean-squared error of Q̂ is

∆n(Q̂) = E{∥Q̂−Q∥2} = (n−s)−1
∑

Jr+1
1 ∈Ar+1

qJr+1
1

(1−qJr+1
1

)/µJr
1 ·(M

0
r )+O(1/n2) ,

where ∥ · ∥ is the Euclidean matrix norm.
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Consider the problem of statistical testing of two hypotheses: H0 = {Q = Q0}, where
Q0 = (q0

Jr+1
1

)Jr+1
1 ∈Ar+1 is some fixed stochastic matrix; H1 = H0 is the alternative.

The test statistic based on Theorem 4 is

ρ =
∑

Jr
1∈Ar

∑
jr+1∈A, q0

Jr+1
1

>0
νJr

1 ·(X
n
1 ;M

0
r )(q̂Jr+1

1
− q0

Jr+1
1

)2/q0
Jr+1
1

. (5)

The parametric family of decision rules for testing the hypotheses H0, H1 has the fol-
lowing form: to accept {H0, if ρ ≤ Λ; H1, if ρ > Λ}, where Λ > 0 is some parameter
(threshold value).

Theorem 5. Let the MC(s, r) is stationary. Then the asymptotic probability distribution
of the statistic ρ defined by (5) under H0 at n → ∞ is the standard χ2 distribution with
U =

∑
Jr
1∈Ar(|DJr

1
| − 1) degrees of freedom, where DJr

1
= {jr+1 ∈ A : qJr+1

1
> 0}.

Corollary 5. Assume that the conditions of Theorem 5 be satisfied. If Λ = G−1
U (1− ε) is

the (1 − ε)-quantile for the standard χ2 distribution with U degrees of freedom, then the
probability of the type I error (the significance level of the test) tends to ε at n → ∞.

Thus, the statistical test for the hypotheses H0, H1 based on Theorem 5, Corollary 5
consists of the following four steps.

1. Computation of the statistics νJr+1
1

(Xn
1 ;M

0
r ), J

r+1
1 ∈ Ar+1, by (2).

2. Computation of the statistic ρ by (5).
3. Computation of the P-value: P = 1−GU(ρ), where GU(·) is the probability distri-

bution function of the standard χ2 distribution with U degrees of freedom.
4. The decision rule (at the significance level ε): If the P-value ≥ ε, then to conclude

that the hypothesis H0 is true. Otherwise, to conclude that the alternative H1 is true.

Corollary 6. If the conditions of Theorem 5 hold and H1 = {Q = Q1} is true, where

Q1 = (q1
Jr+1
1

)Jr+1
1 ∈Ar+1 , q

1
Jr+1
1

= q0
Jr+1
1

(1 + dJr+1
1

/
√
n− s ) , (6)∑

jr+1∈A dJr+1
1

q0
Jr+1
1

= 0,
∑

Jr+1
1 ∈Ar+1 |dJr+1

1
| > 0, then at n → ∞ the power of the

developed test w → 1−GU, a

(
G−1

U (1− ε)
)
, where GU, a(·) is the probability distribution

function of the noncentral χ2 distribution with U degrees of freedom and the noncentrality
parameter a =

∑
Jr+1
1 ∈Ar+1 µJr+1

1
(M0

r ) d2
Jr+1
1

.

Remark 2. The equation (6) means the contiguity property of the alternative H1: the
increase of the length n implies approaching of H1 to H0 with the rate O(1/

√
n ).

3.2 Statistical Estimation of the Pattern M0
r

Introduce the notation:

H(Mr) = −
∑

Jr+1
1 ∈Ar+1

µJr+1
1

(Mr) log
(
µJr+1

1
(Mr)/µJr

1 ·(Mr)
)
≥ 0 (7)

is the conditional entropy of the future symbol xt+s ∈ A relative to the past set by the
selector F

(
X t+s−1

t ; Mr

)
∈ Ar, Mr ∈ M; Ĥ(Mr) is the “plug-in” estimator of the con-

ditional entropy that is generated by substitution of true probabilities µJr+1
1

(Mr) in (7) by
their estimators µ̂Jr+1

1
(Mr), Jr+1

1 ∈ Ar+1.
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Theorem 6. If the order s and the number of connections r are known, then the maximum
likelihood estimator for the pattern of connections M0

r is

M̂r = argminMr∈M Ĥ(Mr) . (8)

Theorem 7. If the MC(s, r) is a stationary Markov chain, then the estimator M̂r defined
by (8) at n → ∞ is consistent: M̂r

P−→ M0
r .

Proof. Using equations (1), Lemma 1 and the theorem on functional transformations of
random sequences (see Borovkov, 1999), we have

−
∑

Ks+1
1 ∈As+1

πKs
1
pKs+1

1
log pKs+1

1
= H(M0

r ), Ĥ(M0
r )

P−→ H(M0
r ) .

Since the matrix P = (pKs+1
1

)Ks+1
1 ∈As+1 uniquely determines the pair (Q, M0

r ) for the

MC(s, r), we obtain the consistency of the estimator M̂r.

Theorem 8. If the conditions of Theorem 7 hold, then the probability distribution of the
random vector

(√
n− s(Ĥ(Mr) − H(Mr))

)
Mr∈M

at n → ∞ converges to the normal

distribution with zero mean and the covariance matrix ΣĤ =
(
σĤ
M ′

r, M
′′
r

)
M

′
r, M

′′
r ∈M:

σĤ
M

′
r, M

′′
r
=

∑
Is+1
1 ∈As+1

π∗
Is1
pIs+1

1
log

µF (Is1 ;M
′
r), is+1

(M
′
r)

µF (Is1 ;M
′
r)·(M

′
r)

log
µF (Is1 ;M

′′
r ), is+1

(M
′′
r )

µF (Is1 ;M
′′
r )·(M

′′
r )

−

−H(M
′

r)H(M
′′

r ) +
∑

Is+1
1 , Ls+1

1 ∈As+1
pIs+1

1
pLs+1

1

(
π∗
Is1
cIs+1

2 ,Ls
1
+ π∗

Ls
1
cLs+1

2 ,Is1

)
×

× log
(
µF (Is1 ;M

′
r), is+1

(M
′

r)/µF (Is1 ;M
′
r)·(M

′

r)
)
log

(
µF (Ls

1;M
′′
r ), ls+1

(M
′′

r )/µF (Ls
1;M

′′
r )·(M

′′

r )
)
.

Proof. Since Ĥ(Mr) is the continuously differentiable functional transformation, then

Ĥ(Mr) =
∑

Jr+1
1 ∈Ar+1

µ̂Jr+1
1

(Mr) log
µ̂Jr

1 ·(Mr)

µ̂Jr+1
1

(Mr)
,

∂Ĥ(Mr)

∂µ̂Kr+1
1

(Mr)
= log

µ̂Jr
1 ·(Mr)

µ̂Jr+1
1

(Mr)
. (9)

Then the statement of this theorem follows from the equation (9), the generalization of
Lemma 1 and the continuity theorem for random sequences (see Borovkov, 1999).

Theorem 8 can be used for estimation of the error probability P{M̂r ̸= M0
r }.

3.3 Statistical Estimation of r and s

Let s ∈ [s−, s+] , r ∈ [r−, r+], 1 ≤ s− < s+ < ∞, 1 ≤ r− < r+ < s+. For estimation
of r and s let us use the Bayesian information criterion (see Csiszar and Shields, 2000),
which in our case has the form: BIC(s, r) = 2(n − s)Ĥ(M̂r) + U log(n − s), where
U =

∑
Jr
1∈Ar

(
|DJr

1
| − 1 + δµ̂Jr

1 ·(M̂r),0

)
, DJr

1
= {jr+1 ∈ A : µ̂Jr+1

1
(M̂r) > 0}.

Statistical estimators for r and s are defined by the minimization:

BIC(s, r) → mins−≤ s≤s+, r−≤ r≤r+ . (10)

where the first s+ elements of the sequence Xn
1 are initial

(
for the MC(s, r) the first

(s+ − s) elements does not take part in the computation of the BIC(s, r)
)
.
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Theorem 9. If the MC(s, r) is stationary, then r̂, ŝ defined by (10) are consistent.

Proof. For some s∗, r∗ introduce the variable α = Ĥ(M̂r)+
∑

Jr∗+1
1 ∈Ar∗+1 µ̂Jr∗+1

1
(M̂∗

r∗)×
× log

(
µ̂Jr∗+1

1
(M̂∗

r∗)/µ̂Jr∗
1 ·(M̂

∗
r∗)

)
. Let s∗ ∈ [s−, s), r∗ ∈ [r−, r+], then using Theo-

rems 4, 7 we have α
P−−−→

n→∞

∑
Js+1
1 ∈As+1 πJs+1

1
log

(
q∗F (Js

s−s∗+1
;M∗

r∗ ), js+1
/qF (Js

1 ;M
0
r ), js+1

)
=

−ε, where q∗F (Js
s−s∗+1

;M∗
r∗ ), js+1

= µF (Js
s−s∗+1

;M∗
r∗ ), js+1(M

∗
r∗)/µF (Js

s−s∗+1
;M∗

r∗ )·(M
∗
r∗). Ap-

plying equation (1) and the Jensen’s inequality (see Borovkov, 1999) we obtain that ε > 0.
Thus, P

{
BIC(s∗, r∗)−BIC(s, r) ≥ 2(n− s+)ε+ (U∗ − U) log(n− s+)

}
→ 1.

Similarly, as in the proof of the previous case, we conduct the proof for s∗ ∈ [s, s+],
r∗ ∈ [r−, r). For s∗ ∈ [s, s+], r∗ ∈ [r, r+] and n → ∞, we have P{α ≤ u} → 1, where
u =

∑
Jr∗+1
1 ∈Ar∗+1(νJr∗+1

1
(Xn

1 ; M̂
∗
r∗)−νJr∗

1 ·(X
n
1 ; M̂

∗
r∗)qF ∗(Jr∗

1 ;M0
r ),jr∗+1

)2/νJr∗+1
1

(Xn
1 ; M̂

∗
r∗),

F ∗ (Jr∗
1 ; M0

r

)
= (jl1 , jl2 , . . . , jlr), lk ∈ {1, 2, . . . , r∗}, m∗

lk
= s∗−s+mk, k = 1, 2, . . . , r.

Using the proof of Theorem 1 from Dorea and Lopes (2006), we obtain the consistency
property of r̂, ŝ.

4 Applications of the MC(s, r) to Real Data
In this section, we analyze several sets of real statistical data illustrating three fields of
applications of the MC(s, r). Performance of the fitted models was evaluated in the com-
puter experiments by the BIC as in Berchtold (2002), Raftery and Tavare (1994).

4.1 Wind Modeling
Consider the time-series of the daily average wind speed yt at Malin Head (North of
Ireland) during the period 1961-1978 (see Raftery and Tavare, 1994), n = 6574. We
want to model two extreme situations (see Berchtold, 2002): days with exceptional low
and high wind speed. Accordingly, we classified the data into three categories (the wind
speed is given in knots, 1 knot = 0.5148 m/s):

xt =


0, if the wind speed is low, i. e. yt < 5;
1, if the wind speed is normal, i. e. yt ∈ [5, 20];
2, if the wind speed is high, i. e. yt > 20.

The data x1, x2, . . . , xn were fitted by the MC(s, r)-model
(
1 ≤ s ≤ 7, 1 ≤ r ≤ s

)
using the algorithms defined in Section 3. Table 1 presents the computer results. As it is
seen from Table 1 the best fitted model is the Markov chain of the order ŝ = 3 with r̂ = 2
partial connections, M̂r = (1, 3), 0.267 0.081 0 0.219 0.038 0 0.211 0.017 0

0.733 0.861 0.625 0.775 0.819 0.525 0.790 0.720 0.432
0 0.058 0.375 0.006 0.143 0.475 0 0.263 0.568

T

.

It means that the speed at the day t + 3 depends mainly on the speed at the days
t + 2, t. If the speed at the days t, t + 2 was normal, then the probability to stay in the
state “normal” at the day t+ 3 is high (0.819).
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Table 1: Different modelings of the wind speed data

Model BIC Model BIC Model BIC Model BIC
MC(1,1) 8127.52 MC(4,2) 8139.12 MC(5,5) 8621.97 MC(7,1) 9041.43
MC(2,1) 8777.63 MC(4,3) 8164.79 MC(6,1) 9016.23 MC(7,2) 8163.07
MC(2,2) 8096.08 MC(4,4) 8332.77 MC(6,2) 8148.48 MC(7,3) 8197.91
MC(3,1) 8849.90 MC(5,1) 8984.10 MC(6,3) 8190.78 MC(7,4) 8323.19
MC(3,2) 8079.81 MC(5,2) 8129.83 MC(6,4) 8350.82 MC(7,5) 8599.09
MC(3,3) 8143.13 MC(5,3) 8177.92 MC(6,5) 8576.92 MC(7,6) 8973.15
MC(4,1) 8956.11 MC(5,4) 8349.62 MC(6,6) 8969.54 MC(7,7) 9575.64

4.2 Song of the Bird “Wood Pewee”
Consider one of the records of the morning twilight song with three possible values cor-
responding to the three distinct phrases of the “Wood Pewee” song: N = 3, n = 1327.
These data were analyzed in Raftery and Tavare (1994) and Berchtold (2002) by differ-
ent models indicated in Table 2: HMM 2 (1) is the two states first-order hidden Markov
model (see Rabiner, 1989); “Pattern” is the best model found by Raftery and Tavare
(1994); MTDg l is the order l MTDg model (see Raftery, 1985); DCMM K (l;h) is the
K states double chain Markov model, where l is the order of the hidden Markov chain, h
is the order of the observed Markov chain (see Berchtold, 2002). We applied the MC(s, r)
to the same data.

Table 2: Different modelings of the “Wood Pewee” song

Model BIC Model BIC Model BIC
MC(1,1) 1424.2 MC(4,2) 975.2 DCMM 2 (2;MTD 2) 832.2
MC(2,1) 1179.1 MC(4,3) 765.9 DCMM 3 (1;2) 795.8
MC(2,2) 801.9 MC(4,4) 768.3 DCMM 3 (2;2) 774.5
MC(3,1) 1930.7 “Pattern” 827.0 DCMM 2 (1;2) 857.2
MC(3,2) 1171.1 HMM 2 (1) 2223.2 DCMM 2 (1;MTD 2) 818.4
MC(3,3) 808.6 MTDg 2 1037.4 DCMM 2 (1;MTDg 2) 843.2
MC(4,1) 1541.4 MTDg 3 1032.7 DCMM 2 (2;2) 733.0

As it is seen from Table 2 the best fitted models are the DCMM 2 (2;2) and the
MC(4,3) with M̂r = (1, 3, 4). The matrix Q̂ is represented in Figure 1, where dark-grey
color is the transition probability to the state “0”, light-grey color — to “1”, white color —
to “2”. One can see that the fitted model MC(4,3) reveals significant dependencies in the
observed time series.

4.3 DNA Analysis
DNA sequences use the alphabet of 4 bases {A,C,G, T}. Here, we study a binary
representation of this alphabet, the purine-pyrimidine alphabet (see Berchtold, 2002).
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Figure 1: Illustration of the matrix Q̂ for the “Wood Pewee” song

Each base is recoded as either purine
(
{A,G}

)
or pyrimidine

(
{C, T}

)
. We consid-

ered methanococcus maripaludis C5 genomic DNA sequence from DNA Data Bank of
Japan (www.ddbj.nig.ac.jp), its length is n = 217. We analyzed these data using the
MC(s, r)-model

(
1 ≤ s ≤ 32, 1 ≤ r ≤ min{s, 8}

)
.

The best fitted model is the Markov chain of the order ŝ = 27 with r̂ = 5 partial
connections, the pattern M̂r = (1, 7, 16, 19, 27) and the matrix Q̂ (represented in Figure 2,
where dark-grey color is the transition probability to the state “0”, light-grey color —
to “1”). As it is seen from Figure 2 the MC(27,5) provides a good fitting of the examined
DNA sequence.
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Figure 2: Illustration of the matrix Q̂ for the DNA sequence



84 Austrian Journal of Statistics, Vol. 40 (2011), No. 1 & 2, 75–84

5 Conclusion
In this paper, we considered a new model for discrete-valued time series — Markov chain
with partial connections MC(s, r). The properties of the MC(s, r)-model were analyzed.
Consistent estimators of the parameters were constructed. A statistical test for the value
of the matrix Q is proposed, its power is evaluated. The proposed model is illustrated in
fitting of real statistical data.
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