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Abstract: The Bayesian sequential test of composite hypotheses is consid-
ered. The situation of the simultaneously distorted prior probability distribu-
tion and likelihood is analyzed. The asymptotic expansions w.r.t. distortion
parameters are constructed for the error type I and II probabilities as well as
for the expected sample sizes.
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1 Introduction
In many applications, especially in medicine, engineering, finance, problems of statis-
tical testing of composite hypotheses are typical (Ghosh and Sen, 1991; Jennison and
Turnbull, 2000). Taking into consideration high costs of each observation, to solve these
problems the sequential approach (Wald, 1947; Lai, 2001) is used. In the framework of
this approach, the number of observations required to provide the prescribed performance
is not fixed a priori, but is a random variable that depends on observations. This scheme
of hypotheses testing needs a number of observations that is essentially less than what is
required by the approach based on fixed sample sizes (see Aivazian, 1959).

The hypothetical probability model used in the sequential approach is often distorted
in practice (Huber and Ronchetti, 2009; Kharin and Shlyk, 2009). There are two potential
sources of distortions: the prior probability distribution of parameters and the conditional
probability distribution of observations (the likelihood). Therefore, the problem of robust-
ness analysis for sequential tests of composite hypotheses under simultaneous distortions
seems to be an important one.

In Quang (1985) the robustness analysis is given for a special hypothetical model in
case of simple hypotheses. An empirical study of robustness is performed in Pandit and
Gudaganavar (2009) for the scale parameter of gamma and exponential distributions. In
Kharin (2002b) an approach for quantitative robustness analysis of sequential tests for
simple hypotheses is proposed. This approach is generalized in Kharin and Kishylau
(2005). In case of composite hypotheses the approach is developed (see Kharin, 2008)
under “contamination” (Huber and Ronchetti, 2009) of the likelihood. In (Kharin, 2010)
the similar problem is solved in the situation where the distortion of the hypothetical
model is caused by the distortion of the prior probability density function of parameters
vector.

In this paper we generalize the results presented in Kharin (2008, 2010), and discuss
the situation of simultaneous distortion of the hypothetical prior probability distribution
and the hypothetical likelihood.
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2 Mathematical Model
Let on a measurable space (Ω,F) a random sequence x1, x2, . . . ∈ R be observed that
corresponds to the n-dimensional conditional probability density function pn(x1, . . . , xn |
θ), n ∈ N, where θ ∈ Θ ⊆ Rk is an unknown value of the random parameters vector.
The probability density function p(θ) of this vector in the Bayesian setting is supposed to
be known. There are two composite hypotheses on the value of θ:

H0 : θ ∈ Θ0 , H1 : θ ∈ Θ1 ; Θ0 ∪Θ1 = Θ , Θ0 ∩Θ1 = ∅ . (1)

Introduce the notation:

1S(s) =

{
1, s ∈ S,
0, s ̸∈ S;

Wi =

∫
Θi

p(θ)dθ; wi(θ) =
1

Wi

· p(θ) · 1Θi
(θ), θ ∈ Θ , i = 0, 1.

Denote by

Λn = Λn(x1, . . . , xn) = log

∫
Θ
w1(θ)pn(x1, . . . , xn | θ)dθ∫

Θ
w0(θ)pn(x1, . . . , xn | θ)dθ

(2)

the logarithm of the generalized likelihood ratio statistic, that is calculated by n observa-
tions x1, . . . , xn.

To test the hypotheses (1), the following parametric family of Bayesian sequential
tests is used:

N = min{n ∈ N : Λn ̸∈ (C−, C+)} , (3)

d = 1[C+,+∞)(ΛN) , (4)

where N is the random number of the observation that determines the stopping time, after
that observation the decision d is made according to the decision rule (4). The decision
d = i means that the hypothesis Hi is accepted, i = 0, 1; C− < 0, C+ > 0 are parameters
of the test (3), (4):

C− = log(β0/(1− α0)) , C+ = log((1− β0)/α0) ,

where α0, β0 ∈ (0, 1
2
) are some values close to maximal admissible levels of error type

I and II probabilities (Wald, 1947). The actual values α, β of the error type I and II
probabilities may deviate from α0, β0 (Kharin, 2002a).

For calculation of α, β and conditional mathematical expectations of the random vari-
able N determined by (3), let us use a stochastic approximation of the statistic Λn, n ∈ N.
Let m ∈ N be a parameter of the approximation, h = (C+ − C−)/m. Let pΛn(u) be the
probability density function of the statistic (2); pΛn+1|Λn(u | y) be the conditional proba-
bility density function, n ∈ N; [x] be the integer part of x (the smallest integer number,
less or equal to x). Construct a discrete random sequence Zm

n , n = 0, 1, 2, . . ., with the
state space V = {0, 1, . . . ,m+ 1}:

Zm
n =


0, if Zm

n−1 = 0,
m+ 1, if Zm

n−1 = m+ 1,([
Λn−C−

h

]
+ 1

)
· 1(C−,C+)(Λn) + (m+ 1) · 1[C+,+∞)(Λn), otherwise,

(5)
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n ∈ N, Zm
0 = 0. For this random sequence let us consider the (m+ 2)× (m+ 2)-matrix

of the conditional transition probabilities

P (n)(θ) = (p
(n)
ij (θ)) = (P{Zm

n+1 = j | Zm
n = i}) , i, j ∈ V , n ∈ N .

Let us approximate the random sequence Zm
n by the Markov chain zmn ∈ V , n ∈ N,

with the same initial probability distribution (that corresponds to the observation number
n = 1) and with the matrices of transition probabilities P (n)(θ) at the stage n. After
renumeration of the states V := {{0}, {m + 1}, {1}, . . . , {m}} the matrix P (n)(θ) is
represented in the form:

P (n)(θ) =

 I2 02×m

R(n)(θ) Q(n)(θ)

 , θ ∈ Θ ,

where R(n)(θ) and Q(n)(θ) are the blocks of the sizes m × 2 and m × m, respectively,
Ik is the identity matrix of the size k, 0(2×m) is the matrix of the size (2 × m), with all
elements equal to 0. Let π(θ) = (πi(θ)) be the vector of initial probabilities of the states
1, . . . ,m for the random sequence (5); π0(θ), πm+1(θ) be the initial probabilities of the
absorbing states 0 and m+1; 1m be the vector of size m, with all components equal to 1.
Denote:

S(θ) = Im +
∞∑
i=1

i∏
j=1

Q(j)(θ) ;

B(θ) = R(1)(θ) +
∞∑
i=1

i∏
j=1

Q(j)(θ)R(i+1)(θ) .

Let B(j)(θ) be the column number j of the matrix B(θ), j = 1, 2; ti = E{N | θ ∈ Θi},
i = 0, 1; t = E{N}.

3 Simultaneous Distortions of Priors and Likelihoods
Let the hypothetical model described above be distorted, although the Bayesian sequential
test (3), (4) is used. The test is constructed on the basis of the hypothetical probability
density functions p(θ), pn(x1, . . . , xn | θ), but these probability density functions are
simultaneously distorted. Actually, the parameters vector θ has the distorted probability
density function

p̄(θ) = (1− εθ) · p(θ) + εθ · p̃(θ) , θ ∈ Θ , (6)

where εθ ∈ [0, 1
2
) is the probability of “contamination” w.r.t. the probability density of

θ, and p̃(θ) is a “contaminating” probability density function that differs from p(θ). The
distorted conditional probability density function of observations is also a mixture of the
hypothetical pn(· | ·) and the “contaminating” p̃n(· | ·) probability density functions:

p̄n(x1, . . . , xn | θ) = (1− εx) · pn(x1, . . . , xn | θ) + εx · p̃n(x1, . . . , xn | θ) , (7)
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θ ∈ Θ, x1, . . . , xn ∈ R , n ∈ N ,

where εx ∈ [0, 1
2
) can be interpreted as the probability of an “outlier” presence (see Huber

and Ronchetti, 2009) w.r.t. the observations x1, x2, . . ..
Let π̃(θ), π̃0(θ), π̃m+1(θ), Q̃(n)(θ), R̃(n)(θ) be the elements calculated analogously to

π(θ), π0(θ), πm+1(θ), Q(n)(θ), R(n)(θ) by replacing the hypothetical p.d.f. pn(x1, . . . , xn |
θ) with the “contaminating” p.d.f. p̃n(x1, . . . , xn | θ) in the probability distribution of the
random sequence (5); ∆π0(θ) = π̃0(θ) − π0(θ), ∆π1(θ) = π̃m+1(θ) − πm+1(θ); t̄(θ)
and γ̄Hi

(θ), i = 0, 1, be the conditional mathematical expectation of the sample size and
the conditional probability of acceptance of the hypothesis Hi respectively, provided the
parameters vecor value is θ, for the distorted model (6), (7).

4 Asymptotic Analysis of Robustness
Introduce the notation:

W̃i =

∫
Θi

p̃(θ)dθ ;

A(θ) =
(
(π̃(θ)− π(θ))′S(θ)+

(π(θ))′ ·
∞∑
i=1

i∑
j=1

j−1∏
k=1

Q(k)(θ)(Q̃(j)(θ)−Q(j)(θ))
i∏

k=j+1

Q(k)(θ)
)
· 1m ;

Fi(θ) = ∆πi(θ) + (π̃(θ)− π(θ))′B(i+1)(θ) + R̃(1)(θ)−R(1)(θ)+

∞∑
l=1

( l∑
j=1

j−1∏
k=1

Q(k)(Q̃(j)(θ)−Q(j)(θ))
l∏

k=j+1

Q(k)(θ)R(l+1)(θ)+

l∏
j=1

Q(j)(θ)(R̃(l+1)(θ)−R(l+1)(θ))
)
, i = 0, 1 .

Theorem 1 Let the random sequence (2) satisfies the Markov property, ∀θ ∈ Θ, the
probability density functions pΛ1(u), pΛn+1|Λn(u | y) be differentiable functions w.r.t. the
variable u ∈ [C−, C+], and ∃C ∈ (0,+∞):∣∣∣∣dpΛ1(u)

du

∣∣∣∣ ≤ C ,

∣∣∣∣dpΛn+1|Λn(u | y)
du

∣∣∣∣ ≤ C , u, y ∈ [C−, C+] , n ∈ N .

Then under simultaneous distortions (6), (7) the following asymptotic expansions hold for
the error type I and II probabilities ᾱ, β̄ at εθ → 0, εx → 0, h → 0:

ᾱ = α+ εx ·
1

W0

·
∫
Θ0

F1(θ)p(θ)dθ+

εθ

( 1

W 2
0

·
∫
Θ0

(p̃(θ)−p(θ))dθ ·
∫
Θ0

γH1(θ)p(θ)dθ+
1

W0

·
∫
Θ0

γH1(θ)(p̃(θ)−p(θ))dθ
)
+ (8)
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O(ε2x) +O(ε2θ) +O(h) ;

β̄ = β + εx ·
1

W1

·
∫
Θ1

F0(θ)p(θ)dθ+

εθ

( 1

W 2
1

·
∫
Θ1

(p̃(θ)−p(θ))dθ ·
∫
Θ1

γH0(θ)p(θ)dθ+
1

W1

·
∫
Θ1

γH0(θ)(p̃(θ)−p(θ))dθ
)
+ (9)

O(ε2x) +O(ε2θ) +O(h) .

Proof. Using the results presented in Kharin (2008), if the conditions of Theorem 1 are
satisfied, we get for the probability of acceptance of the hypothesis Hi under the distortion
(6), (7):

γ̄Hi
(θ) = γHi

(θ) + εx · Fi(θ) +O(ε2x) +O(h) , θ ∈ Θ .

For the error type I probability, under the distortion we have

ᾱ =

∫
Θ0

γ̄H1(θ) ·
1

W̄0

· p̄(θ)dθ ,

where W̄0 =
∫
Θ0

p̄(θ)dθ. Under the distortion (6) we have

W̄0 = (1− εθ) ·W0 + εθ ·
∫
Θ0

p̃(θ)dθ = W0 + εθ ·
∫
Θ0

(p̃(θ)− p(θ))dθ .

Therefore,
1

W̄0

=
1

W0

·
(
1 +

εθ
W0

·
∫
Θ0

(p(θ)− p̃(θ))dθ +O(ε2θ)

)
. (10)

From here we obtain

ᾱ =

∫
Θ0

(γH1(θ) + εx · F1(θ)) ·
1

W0

·
(
1 +

εθ
W0

·
∫
Θ0

(p̃(u)− p(u))du

)
×

(p(θ) + εx · (p̃(θ)− p(θ))) dθ +O(ε2θ) +O(ε2x) +O(h) .

By performing equivalent transformations we come to

ᾱ = α+ εx ·
1

W0

·
∫
Θ0

F1(θ)p(θ)dθ+

εθ

( 1

W 2
0

·
∫
Θ0

(p̃(θ)− p(θ))dθ ·
∫
Θ0

γH1(θ)p(θ)dθ +
1

W0

·
∫
Θ0

γH1(θ)(p̃(θ)− p(θ))dθ
)
+

εxεθ ·
( 1

W 2
0

·
∫
Θ0

(p̃(θ)− p(θ))dθ ·
∫
Θ0

F1(θ)p(θ)dθ+
1

W0

·
∫
Θ0

F1(θ)(p̃(θ)− p(θ))dθ
)
+

O(ε2x) +O(ε2θ) +O(h) ,

and, finally, get (8).
The result (9) for the error type II probability under distortions (6), (7) is obtained in

a similar way.

The asymptotic expansions with the main terms of up to the second order w.r.t. εx, εθ
can be constructed analogously. The mixed reminder term of the first orders is presented
in the proof.
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Corollary 1 If the following equality holds under the conditions of Theorem 1:∫
Θ0

p̃(θ)dθ =

∫
Θ0

p(θ)dθ , (11)

then

ᾱ = α+ εx ·
1

W0

·
∫
Θ0

F1(θ)p(θ)dθ + εθ
1

W0

·
∫
Θ0

γH1(θ)(p̃(θ)− p(θ))dθ+

O(ε2x) +O(ε2θ) +O(h) ;

β̄ = β + εx ·
1

W1

·
∫
Θ1

F0(θ)p(θ)dθ + εθ
1

W1

·
∫
Θ1

γH0(θ)(p̃(θ)− p(θ))dθ+

O(ε2x) +O(ε2θ) +O(h) .

Note that if the condition (11) is satisfied, then the distortion (6) does not change
the prior probabilities of the hypotheses H0, H1, but just “re-distribute” the probability
measure inside each of the sets Θ0, Θ1.

Corollary 2 Under conditions of Theorem 1, if εx = 0, then

ᾱ = α+
εθ
W0

·
∫
Θ0

((π(θ))′B(2)(θ) + πm+1(θ)− α)(p̃(θ)− p(θ))dθ +O(ε2θ) +O(h) ,

β̄ = β +
εθ
W1

·
∫
Θ1

((π(θ))′B(1)(θ) + π0(θ)− β)(p̃(θ)− p(θ))dθ +O(ε2θ) +O(h) .

Note that Corollary 2 covers the situation where the distortion of the probability den-
sity function of observations is absent, and the hypothetical model is distorted via (6)
only. These results correspond to those given in Kharin (2010) for this situation.

In case if εθ = 0 the result of Theorem 1 meets one presented in Kharin (2008).
Denote by t̄i, i = 0, 1, the conditional mathematical expectation of the random number

of observations N provided the hypothesis Hi is true, if the hypothetical model is distorted
according to (6), (7).

Theorem 2 Under the conditions of Theorem 1, the conditional expected sample sizes
satisfy the asymptotic expansions:

t̄i = ti+εx·
1

Wi

·
∫
Θi

A(θ)p(θ)dθ+εθ·
(
ti·(W̃i−Wi)+

1

Wi

·
∫
Θi

t(θ)(p̃(θ)−p(θ))dθ
)
+ (12)

O(ε2x) +O(ε2θ) +O(h) , i = 0, 1 .
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Proof. Under the conditions of Theorem 2 we have from Kharin (2008)

t̄(θ) = t(θ) + εx · A(θ) +O(ε2x) +O(h) .

The conditional expected sample sizes under distortions are

t̄i =

∫
Θ

t̄(θ) · 1

W̄i

· p̄(θ) · 1Θi
(θ) , i = 0, 1 . (13)

Substituting (10) into (13), we get the asymptotic expansion

t̄i =

∫
Θi

(t(θ) + εx · A(θ)) ·
1

Wi

·
(
1 +

εθ
Wi

·
∫
Θi

(p̃(u)− p(u))du
)
×

(p(θ) + εθ · (p̃(θ)− p(θ)))dθ +O(ε2x) +O(ε2θ) +O(h) , i = 0, 1 .

After equivalent transformations we come to

t̄i = ti+εx ·
1

Wi

·
∫
Θi

A(θ)p(θ)dθ+εθ ·
(
ti · (W̃i−Wi)+

1

Wi

·
∫
Θi

t(θ)(p̃(θ)−p(θ))dθ
)
+

εxεθ ·
1

Wi

(
(W̃i −Wi) ·

∫
Θi

A(θ)p(θ)dθ +

∫
Θi

A(θ)(p̃(θ)− p(θ))dθ

)
+

O(ε2x) +O(ε2θ) +O(h) , i = 0, 1 .

and get (12).

Corollary 3 In the conditions of Corollary 1 the following asymptotic expansions hold:

t̄i = ti + εx ·
1

Wi

·
∫
Θi

A(θ)p(θ)dθ + εθ ·
1

Wi

·
∫
Θi

t(θ)(p̃(θ)− p(θ))dθ+

O(ε2x) +O(ε2θ) +O(h) , i = 0, 1 .

Corollary 4 If the conditions of Corollary 2 are satisfied, then

t̄i = ti+
εθ
Wi

·
∫
Θi

(1+(π(θ))′S(θ)1m−ti)(p̃(θ)−p(θ))dθ+O(ε2θ)+O(h) , i = 0, 1 .

The results of Corollary 4 correspond to those given in Kharin (2010) for the situation,
where the distortion of the probability density function of observations is absent.

In case of εθ = 0 the result of Theorem 2 turns to one presented in Kharin (2008).

Theorem 3 If the conditions of Theorem 1 are satisfied, then the following asymptotic
expansion holds for the expected sample size:

t̄ = t+ εx ·
∫
Θ

A(θ)p(θ)dθ + εθ ·
∫
Θ

t(θ)(p̃(θ)− p(θ))dθ +O(ε2x) +O(h) . (14)
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Proof. From the representation t̄ =
∫
Θ
t̄(θ)p(θ)dθ and (10) we have

t̄ =

∫
Θ

(t(θ) + εx · A(θ))(p(θ) + εθ · (p̃(θ)− p(θ)))dθ +O(ε2x) +O(h) .

Performing equivalent transformations we get

t̄ = t+ εx ·
∫
Θ

A(θ)p(θ)dθ + εθ ·
∫
Θ

t(θ)(p̃(θ)− p(θ))dθ+

εxεθ ·
∫
Θ

A(θ)(p̃(θ)− p(θ))dθ +O(ε2x) +O(h) ,

and come to (14).

Let us note that there is no terms of the order 2 and higher w.r.t. εθ in the expansion
(14). This expansion could be also presented in the form

t̄ = (1− εθ) · t+ εθ · t̃+ εx ·
(
(1− εθ) ·

∫
Θ

A(θ)p(θ)dθ+

εθ ·
∫
Θ

A(θ)p̃(θ)dθ
)
+O(ε2x) +O(h) ,

where t̃ means the expected sample size for the case where the hypothetical probability
density function p(·) is replaced by the “contaminating” density p̃(·). This could be useful
for interpretation of the influences of the distortions (6) and (7).

Corollary 5 If the conditions of Corollary 2 are satisfied, then

t̄ = t+ εθ ·
∫
Θ

(π(θ))′ · S(θ) · 1m · (p̃(θ)− p(θ))dθ +O(h) .

The results of Corollary 5 correspond to those in Kharin (2010) for the situation,
where the distortion of the probability density function of observations is absent.

In case of εθ = 0 the result of Theorem 3 turns to one presented in Kharin (2008).

5 Conclusion
The Bayesian sequential statistical test of composite hypotheses is considered in the paper.
The presented results give a possibility to evaluate the robustness under simultaneous dis-
tortion of two probability density functions that form the hypothetical model — the prior
probability density function of parameters vector and the conditional probability density
function of observations provided the parameters vector value is fixed. The asymptotic
expansions are constructed for the error type I and II probabilities, and also for the condi-
tional and total sample sizes w.r.t. the probabilities εθ, εx of “contamination”.

It is proved that the deviations of the mentioned characteristics from the hypothetical
values have the first order w.r.t. the “contamination” levels under the distortions. Special
cases of distortions are analyzed.

The results are useful for construction of robust Bayesian sequential tests by the min-
imax criterion via the scheme used in Kharin (2002b) for simple hypotheses case.
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