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Abstract: The Receiver Operating Characteristic (ROC) curve is a statisti-
cal tool for evaluating the accuracy of diagnostics tests. The empirical ROC
curve (which is a step function) is the most commonly used non-parametric
estimator for the ROC curve. On the other hand, kernel smoothing meth-
ods have been used to obtain smooth ROC curves. The preceding process
is based on kernel estimates of the distribution functions. It has been ob-
served that kernel distribution estimators are not consistent when estimat-
ing a distribution function near the boundary of its support. This problem is
due to “boundary effects” that occur in nonparametric functional estimation.
To avoid these difficulties, we propose a generalized reflection method of
boundary correction in the estimation problem of ROC curves. The proposed
method generates a class of boundary corrected estimators.

Zusammenfassung: Die Receiver Operating Characteristic (ROC) Kurve
ist ein statistisches Werkzeug zur Bewertung der Präzision diagnostischer
Tests. Die empirische ROC Kurve (sie ist eine Treppenfunktion) ist der am
weitesten verbreitete nicht-parametrische Schätzer der ROC Kurve. Ander-
erseits wurden Kerngättungsmethoden verwendet, um glatte ROC Kurven zu
erhalten. Der vorangehende Prozess basiert dabei auf Kernschätzungen der
Verteilungsfunktionen. Es wurde beobachtet, dass Kernschätzer der Vertei-
lung nicht konsistent sind falls die Verteilungsfunktion in der Nähe des Ran-
des ihres Trägers geschätzt wird. Dieses Problem beruht auf dem “Randef-
fekt” der in der nicht-parametrischen funktionalen Schätzung auftritt. Um
derartige Schwierigkeiten zu vermeiden, empfehlen wir eine verallgemein-
erte Reflexionsmethode der Randkorrektur im Schätzproblem von ROC Kur-
ven. Die vorgeschlagene Methode generiert eine Klasse von randkorrigierten
Schätzern.

Keywords: Reflection, Distribution Estimation.

1 Introduction
The Receiver Operating Characteristic (ROC) describes the performance of a diagnostic
test which classifies subjects into either group without condition G0 or group with condi-
tion G1 by means of a continuous discriminant score X , i.e., a subject is classified as G1 if
X ≥ d and G0 otherwise for a given cutoff point d ∈ R. The ROC is defined as a plot of
probability of false classification of subjects from G1 versus the probability of true classi-
fication of subjects from G0 across all possible cutoff point values of X . Specifically, let
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F0 and F1 denote the distribution functions of X in the groups G0 and G1, respectively.
Then, the ROC curve can be written as

R(p) = 1− F1

(
F−1

0 (1− p)
)

, 0 < p < 1 ,

where p is the false positive rate in (0, 1) as the corresponding cut-off point ranges from
−∞ to +∞ and F−1

0 denotes the inverse function of F0.

A simple non-parametric estimator for R(p) is to use the empirical distribution func-
tions for F0 and F1. The resulting ROC curve is a step function and it is called the
empirical ROC curve. Another type of non-parametric estimator for R(p) is derived from
kernel smoothing methods. Kernel smoothing is most widely used mainly because it is
easy to derive and has good asymptotic and small sample properties. Kernel smoothing
has received a considerable attention in density estimation context; see, for example the
monographs of Silverman (1986) and Wand and Jones (1995). However, applications of
kernel smoothing in distribution function estimation are relatively few. Some theoretical
properties of a kernel distribution function estimator have been investigated by Nadaraya
(1964), Reiss (1981), and Azzalini (1981). Lloyd (1998) proposed a nonparametric esti-
mator of ROC by using kernel estimators for the distribution functions F0 and F1.

Lloyd and Yong (1999) showed that Lloyd’s estimator has better mean squared er-
ror properties than the empirical ROC curve estimator. However, his estimator has some
drawbacks. For example, Lloyd’s estimator is unreliable near the end points of the support
of the ROC curve due to so-called “boundary effects” that occur in nonparametric func-
tional estimation. Although there is a vast literature on boundary correction in density
estimation context, boundary effects problem in distribution function context has been
less studied.

In this paper, we develop a new kernel type estimator of the ROC curve that removes
boundary effects near the end points of the support. Our estimator is based on a new
boundary corrected kernel estimator of distribution functions and it is based on ideas of
Karunamuni and Alberts (2005a, 2005b, 2006), Zhang and Karunamuni (1998, 2000),
(Karunamuni and Zhang, 2008), and Zhang, Karunamuni, and Jones (1999) developed
for boundary correction in kernel density estimation. The basic technique of construction
of the proposed estimator is kind of a generalized reflection method involving reflecting
a transformation of the observed data. In fact, the proposed method generates a class of
boundary corrected estimators. We derive expressions for the bias and variance of the
proposed estimator. Furthermore, the proposed estimator is compared with the “classical
estimator” using simulation studies. We observe that the proposed estimator successfully
remove boundary effects and performs considerably better than the “classical estimator”.

Kernel smoothing in distribution function and ROC curve estimation is discussed in
the next section. The proposed estimator is given in Section 3. Simulation results are
given in Section 4. A real data example is analyzed in Section 5. Finally, some concluding
remarks are given in Section 6.
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2 Kernel Smoothing

2.1 Kernel ROC Estimator
Suppose that independent samples X01, . . . , X0n0 and X11, . . . , X1n1 are available from
some two unknown distributions F0 and F1, respectively, where F0 ∈ G0 and F1 ∈ G1

and G0 and G1 denote two groups of continuous distribution functions. Then a simple
nonparametric estimator of the ROC curve R(p) = 1 − F1

(
F−1

0 (1− p)
)
, 0 < p < 1, is

known as the empirical ROC curve given by

R̃E(p) = 1− F̃1

(
F̃−1

0 (1− p)
)

, 0 ≤ p ≤ 1 ,

where F̃0 and F̃1 denote the empirical distribution functions of F0 and F1 based on the
data X01, . . . , X0n0 and X11, . . . , X1n1 , respectively; that is

F̃0(x) =
1

n0

n0∑
i=1

I(X0i ≤ x) , F̃1(x) =
1

n1

n1∑
i=1

I(X1i ≤ x) .

Note that R̃ is not a continuous function. In fact, it is a step function on the interval [0, 1].
This is a notable weakness of the empirical ROC curve R̃(p). Since the ROC curve is a
smooth function of p, we would expect to have an estimator that is smooth as well. Lloyd
(1998) proposed a smooth estimator using kernel smoothing techniques. His idea is to
replace unknown distribution F0 and F1 by two smooth kernel estimators. Specifically,
he employed following kernel estimators of F0 and F1:

F̂0(x) =
1

n0

n0∑
i=1

W

(
x−X0i

h0

)
, F̂1(x) =

1

n1

n1∑
i=1

W

(
x−X1i

h1

)
,

where W (x) =
∫ x

−1
K(t)dt, h0 and h1 denote bandwidths (h0 → 0 and h1 → 0 as

n0 → ∞ and n1 → ∞, respectively), and K is a unimodal symmetric density function
with support [−1, 1]. The corresponding estimator of the ROC curve R(p) is then given
by

R̂(p) = 1− F̂1

(
F̂−1

0 (1− p)
)

, 0 ≤ p ≤ 1 .

An example of a smooth estimate of R(p) using R̂(p) is illustrated in Figure 1.
When G0 and G1 contain distributions with finite support then the estimator R̂ exhibits

boundary effects near the endpoints of the support due to the same boundary effects that
occur in the uncorrected kernel estimators F̂0 and F̂1. The main purpose of this article
is to improve the kernel distribution estimators and thereby to avoid boundary effects of
smooth kernel ROC estimators. Details of the boundary problem with F̂0 and F̂1 are
described in the next section.

2.2 Kernel Distribution Estimator and Boundary Effects
Let f denote a continuous density function with support [0, a], 0 < a ≤ ∞, and consider
nonparametric estimation of the cumulative distribution function F of f based on a ran-
dom sample X1, . . . , Xn from f . Suppose that F (j), the j-th derivative of F , exists and is
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Figure 1: Smooth estimate of R(p).

continuous on [0, a], j = 0, 1, 2, with F (0) = F and F (1) = f . Then the traditional kernel
estimator of F is given by

F̂h,K(x) =
1

n

n∑
i=1

W

(
x−Xi

h

)
, W (x) =

∫ x

−1

K(t)dt ,

where K is a symmetric density function with support [−1, 1] and h is the bandwidth
(h → 0 as n → ∞). The basic properties of F̂h,K(x) at interior points are well-known
(e.g. Lejeune and Sarda, 1992), and under some smoothness assumptions these include,
for h ≤ x ≤ a− h,

E
(
F̂h,K(x)

)
− F (x) =

1

2
β2f

(1)(x)h2 + o(h2)

nvar
(
F̂h,K(x)

)
= F (x) (1− F (x)) + hf(x)

∫ 1

−1

W (t) (W (t)− 1) dt + o(h) .

The performance of F̂h,K(x) at boundary points, i.e., for x ∈ [0, h)∪ (a− h, a], however,
differs from the interior points due to so-called “boundary effects” that occur in nonpara-
metric curve estimation problems. More specifically, the bias of F̂h,K(x) is of order O(h)

instead of O(h2) at boundary points, while the variance of F̂h,K(x) is of the same order.
This fact can be clearly seen by examining the behavior of F̂h,K inside the left boundary
region [0, h]. Let x be a point in the left boundary, i.e., x ∈ [0, h]. Then we can write
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x = ch, 0 ≤ c ≤ 1. The bias and variance of F̂h,K(x) at x = ch are of the form

E
(
F̂h,K(x)

)
− F (x) = hf(0)

∫ −c

−1

W (t)dt (1)

+ h2f (1)(0)

{
c2

2
+c

∫ −c

−1

W (t)dt−
∫ c

−1

tW (t)dt

}
+ o(h2)

nvar
(
F̂h,K(x)

)
= F (x)(1− F (x)) + hf(0)

{∫ c

−1

W 2(t)dt− c

}
+ o(h) . (2)

From expression (1) it is now clear that the bias of F̂h,K(x) is of order O(h) instead of
O(h2). To remove this boundary effect in kernel distribution estimation we investigate a
new class of estimators in the next section.

3 The Proposed Estimator

In this section we propose a class of estimators of the distribution function F of the form

F̃h,K(x) =
1

n

n∑
i=1

{
W

(
x− g1(Xi)

h

)
−W

(
−x + g2(Xi)

h

)}
, (3)

where h is the bandwidth, K is a symmetric density function with support [−1, 1], and
g1 and g2 are two transformations that need to be determined. The same type of esti-
mator in density estimation case has been discussed in Zhang et al. (1999). As in the
preceding paper, we assume that gi, i = 1, 2, are nonnegative, continuous and monoton-
ically increasing functions defined on [0,∞). Further assume that g−1

i exists, gi(0) = 0,
g

(1)
i (0) = 1, and that g

(2)
i exists and is continuous on [0,∞), where g

(j)
i denotes the j-th

derivative of gi, with g
(0)
i = gi and g−1

i denoting the inverse function of gi, i = 1, 2. We
will choose g1 and g2 such that F̃h,K(x) ≥ 0 everywhere. Note that the i-th term of the
sum in (3) can be expressed as

W

(
x− g1(Xi)

h

)
−W

(
−x + g2(Xi)

h

)
=

∫ x+g2(Xi)

h

−x+g1(Xi)

h

K(t)dt .

The preceding integral is non-negative provided the inequality−x+g1(Xi) ≤ x+g2(Xi)
holds. Since x ≥ 0, the preceding inequality will be satisfied if g1 and g2 are such that
g1(Xi) ≤ g2(Xi) for i = 1, . . . , n. Thus we will assume that g1 and g2 are chosen such
that g1(x) ≤ g2(x) for x ∈ [0,∞) for our proposed estimator. Now, we can obtain the



22 Austrian Journal of Statistics, Vol. 38 (2009), No. 1, 17–32

bias and variance of (3) at x = ch, 0 ≤ c ≤ 1, as

E
(
F̃h,K(x)

)
− F (x) = h2

{
f (1)(0)

(
c2

2
+ 2c

∫ −c

−1

W (t)dt−
∫ c

−c

tW (t)dt

)

−f(0)g
(2)
1 (0)

∫ c

−1

(c− t)W (t)dt (4)

−f(0)g
(2)
2 (0)

∫ −c

−1

(c + t)W (t)dt

}
+ o(h2)

nvar
(
F̃h,K(x)

)
= F (x)(1− F (x)) + hf(0)

{∫ c

−1

W 2(t)dt

−2

∫ c

−1

W (t)W (t− 2c)dt +

∫ −c

−1

W 2(t)dt

}
+ o(h) . (5)

The proofs of (4) and (5) are given in the Appendix. Note that the contribution of g2 on
the bias vanishes as c → 1. By comparing expressions (1), (4), (2), and (5) at boundary
points we can see that the variances are of the same order and the bias of F̂h,K(x) is of
order O(h) whereas the bias of F̃h,K(x) is of order O(h2). So our proposed estimator
removes boundary effects in kernel distribution estimation since the bias at boundary
points is of the same order as the bias at interior points.

It is clear that there are various possible choices available for the pair (g1, g2). How-
ever, we will choose g1 and g2 so that the condition F̃h,K(0) = 0 will be satisfied because
of the fact that F (0) = 0. A sufficient (but not necessary) condition for the preceding
condition to be satisfied is that g1 and g2 must be equal. Thus we need to construct a sin-
gle transformation function g such that g = g1 = g2. Other important properties that are
desirable in the estimator F̂h,K are the local adaptivity (i.e., the transformation function
g depends on c) and that F̃h,K(x) being equal to the usual kernel estimator F̂h,K(x) at
interior points. For the latter, g must satisfy that g(y) → y as c → 1. In order to display
the dependance of g on c, 0 ≤ c ≤ 1, we shall denote g by gc in what follows.

Summarizing all the assumptions, it is clear now that gc should satisfy the conditions

(i) gc : [0,∞) → [0,∞), gc is continuous, monotonically increasing and g
(i)
c exists,

i = 1, 2.

(ii) g−1
c (0) = 0 and g

(1)
c (0) = 1.

(iii) gc(y) → y for c → 1.

Functions satisfying conditions (i) to (iii) are easy to construct. The trivial choice is
gc(y) = y, which represents the “classical” reflection method estimator. Based on ex-
tensive simulations, we observed that the following transformation adapts well to various
shapes of distributions:

gc(y) = y +
1

2
Icy

2 , (6)

for y ≥ 0 and 0 ≤ c ≤ 1, where Ic =
∫ −c

−1
W (t)dt.

Remark: Some discussion on the above choice of gc and other various improvements
that can be made would be appropriate here. It is possible to construct functions gc that
improve the bias further under some additional conditions. For instance, if one examines
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the right hand side of bias expansion (4) then it is not difficult to see that the terms inside
bracket (i.e., the coefficient of h2) can be made equal to zero if gc is appropriately chosen.
Indeed, if gc is chosen such that

f(0)g(2)
c (0)

{∫ c

−1

(c− t)W (t)dt +

∫ −c

−1

(c + t)W (t)dt

}

= f (1)(0)

(
c2

2
+ 2c

∫ −c

−1

W (t)dt−
∫ c

−c

tW (t)dt

)
,

then the bias of F̃h,K(x) would be theoretically of order O(h3). For such a function gc,
the second derivative at zero, g

(2)
c (0), will depend on the ratio d1 = f (1)(0)/f(0). In this

case, the function gc would probably be some cubic polynomial; see e.g. Karunamuni and
Alberts (2005a, 2005b, 2006). Then the problem of estimation of d1 naturally arises as in
the preceding paper. Another problem that one would face is that the second derivative
g

(2)
c (0) may not go to 0 when c → 1 as in the case of density estimation context. Thus

one may not be able to find any function gc which satisfies condition (iii) and hence the
estimator F̃h,K loses the property of “natural extension” to the classical estimator outside
the boundary points. These are basically the main reasons why we decided to implement
a quadratic function defined in (6) as our choice of transformation.

4 Simulation
To test the effectiveness of our estimator, we simulated its performance against the re-
flection method. The simulation is based on 1000 replications. In each replication, the
random variables X0 ∼ Exp(2) and X1 ∼ Gamma(3, 2) were generated and the estimate
of the ROC curve was computed. The probability distributions of both groups G0 and G1

are illustrated in Figure 2.
In all replications sample sizes of n0 = n1 = 50 were used. In this case, the actual

global optimal bandwidths (see Azzalini, 1981) for F0 and F1 are hF0 = 2.9149 and
hF1 = 5.8298, respectively. For the kernel estimation of the cumulative distributions we
used the quartic kernel K(x) = 15

16
(1 − x2)2I[−1,1], where IA is the indicator function on

the set A. In our experience, the quality of estimated curve by using this kernel is not
too sensitive to an optimal bandwidth choice. Hence we used this kernel also in the next
section.

For each ROC curve we have calculated the mean integrated squared error (MISE) on
the interval [0, 1] over all 1000 replications and have displayed the results in a boxplot in
Figure 3. The variance of each estimator can be accurately gauged by the whiskers of the
plot. The values of means and standard deviations for MISE of each method are given in
Table 1.

We also obtained 10 typical realizations of each estimator and displayed these in Fig-
ure 4 for comparison purposes with the theoretical ROC curve. The solid line represents
the theoretical ROC curve and the dotted lines illustrate the 10 realizations.

The final estimate of the ROC curve depends on estimates of the cumulative distribu-
tion functions F0 and F1. While boundary effects cause problems by estimating F0 and
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Figure 2: The probability distribution of groups G0 and G1.

Table 1: Means and standard deviations of the MISE.

Method Mean STD
Proposed 0.0053 0.0047
Reflection 0.0065 0.0050
Classical 0.0084 0.0054

F1 inside the left boundary region, the quality of the final estimate of the ROC can also
be influenced by these effects near the right boundary of the interval [0, 1] as well. As we
can see in Figure 4, the biggest difference between the above mentioned methods is in the
second half part of the interval [0, 1]. Table 1 describes the performance of our proposed
method with respect to the MISE. The values of the mean and the standard deviation for
the MISE were smallest in case of our proposed estimator. Although the theoretical bias
of our estimator is of the same order as in the case of the reflection method, the numerical
results of estimators of the ROC curves were better for our estimator in the simulation. In
our opinion, this is due to the fact that our estimator is locally adaptive.

5 Consumer Loans Data
In this example we used some (unspecified) scoring function to predict the solidity of a
client. The goal here is to determine which clients are able to pay their loans. We consid-
ered a test set of 332 clients; 309 paid their loans (group G0) and 22 had problems with
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Figure 3: Boxplots of the MISE over [0, 1] for our proposed method (1), the reflection
method (2), and the classical estimator with boundary effects (3).
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Figure 4: Estimates of the ROC for our proposed method (1), the reflection method (2),
and the classical estimator with boundary effects (3).

payments or did not pay (group G1). We used the ROC curve to assess the discrimination
between clients with and without a good solidity. It is of interest for us to know here if
our scoring function is a good predictor of the solidity.

Estimates of ROC are illustrated in Figure 5. The dashed line represents the estimate
obtained by our proposed method and the solid line is for the kernel ROC with boundary
effects. When choosing the optimal bandwidths for distribution function estimation, we
used the method described in Horová, Koláček, Zelinka, and El-Shaarawi (2008). A
somewhat similar method for density estimation is given in Sheather and Jones (1991).
The optimal bandwidths for distribution functions F0 and F1 were estimated as ĥF0 =
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Figure 5: The estimate of the ROC for consumer the loans data.

0.0068 and ĥF1 = 0.0286, respectively.

From the estimates of the ROC one can see that the scoring function is not a good
predictor of the solidity of a client. This fact could be also affected by the different sizes
of both groups. When group G1 is too small it causes larger boundary effects. It is clearly
visible that the estimate of the ROC obtained by the classical estimator (solid line) has
some values under the diagonal of the unit square. However, this situation does not show
up theoretically. Thus there is a larger influence of boundary effects to the quality of final
estimates of the ROC.

6 Conclusion

In this paper we proposed a new kernel-type distribution estimator to avoid the difficulties
near the boundary. The technique implemented is a kind of generalized reflection method
involving reflecting a transformation of the data. The proposed method generates a class
of boundary corrected estimators and it is based on ideas of boundary corrections for ker-
nel density estimators presented in Karunamuni and Alberts (2005a, 2005b, 2006). We
showed some good properties of our proposed method (e.g., local adaptivity). Further-
more, it is shown that bias of the proposed estimator is smaller than that of the “classical”
case.
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Appendix
Proof of (4). For x = ch, 0 ≤ c ≤ 1, using the property W (t) = 1−W (−t) we obtain

E(F̃h,K(x)) = E

(
W

(
x− g1(Xi)

h

))
− E

(
W

(
−x + g2(Xi)

h

))

=

∫ ∞

0

W

(
x− g1(y)

h

)
f(y)dy −

∫ ∞

0

W

(
−x + g2(y)

h

)
f(y)dy

= h

∫ c

−1

W (t)
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

)dt− h

∫ −c

−1

W (t)
f

(
g−1
2 ((−c− t)h)

)

g
(1)
2

(
g−1
2 ((−c− t)h)

)dt

= h

∫ −c

−1

W (t)

{
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

) − f
(
g−1
2 ((−c− t)h)

)

g
(1)
2

(
g−1
2 ((−c− t)h)

)
}

dt

+h

∫ c

−c

(1−W (−t))
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

)dt

= h

∫ −c

−1

W (t)

{
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

) − f
(
g−1
2 (−c− t)h)

)

g
(1)
2

(
g−1
2 ((−c− t)h)

)
}

dt

+F
(
g−1
1 (2ch)

)− h

∫ c

−c

W (t)
f

(
g−1
1 ((c + t)h)

)

g
(1)
1

(
g−1
1 ((c + t)h)

)dt .

Using a Taylor expansion of order 2 on the function F
(
g−1
1 (·)) we have

F
(
g−1
1 (2ch)

)
= F (0) + f(0)2ch +

(
f (1)(0)− f(0)g

(2)
1 (0)

)
2c2h2 + o(h2) .

By the existence and continuity of F (2)(·) near 0, we obtain for x = ch

F (0) = F (x)− f(x)ch +
1

2
f (1)(x)c2h2 + o(h2)

f(x) = f(0) + f (1)(0)ch + o(h)

f (1)(x) = f (1)(0) + o(1) .

Therefore,

F
(
g−1
1 (2ch)

)
= F (x) + f(0)ch +

(
3

2
f (1)(0)− 2f(0)g

(2)
1 (0)

)
c2h2 + o(h2) . (7)

Now, (7) and a Taylor expansion of order 1 of the functions

f
(
g−1
1 (·))

g
(1)
1

(
g−1
1 (·))

and
f

(
g−1
2 (·))

g
(1)
2

(
g−1
2 (·))
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give

E
(
F̃h,K(x)

)
− F (x)

= h

∫ −c

−1

W (t)
{

2f (1)(0)ch− f(0)h
(
(c− t)g

(2)
1 (0) + (c + t)g

(2)
2 (0)

)
+ o(h)

}
dt

+ f(0)ch +

{
3

2
f (1)(0)− 2f(0)g

(2)
1 (0)

}
c2h2 + o(h2)

− h

∫ c

−c

W (t)
{

f(0) +
(
f (1)(0)− f(0)g

(2)
1 (0)

)
(c + t)h + o(h)

}
dt

= h

{
f(0)c− f(0)

∫ c

−c

W (t)dt

}
+ h2

{
3

2
f (1)(0)c2 + 2f (1)(0)c

∫ −c

−1

W (t)dt

− 2f(0)g
(2)
1 (0)c2 − f(0)g

(2)
1 (0)

∫ −c

−1

(c− t)W (t)dt− f(0)g
(2)
2 (0)

∫ −c

−1

(c + t)W (t)dt

−
(
f (1)(0)− f(0)g

(2)
1 (0)

) ∫ c

−c

(c + t)W (t)dt

}
+ o(h2) .

From the symmetry of K and the definition W (x), one can write W (x) = 1
2

+ b(x),
where b(x) = −b(−x) for all x such that |x| ≤ 1. Thus

∫ c

−c
W (t)dt = c and therefore the

coefficient of h is zero. So after some algebra we obtain the bias expression as

E
(
F̃h,K(x)

)
− F (x) = h2

{
f (1)(0)

(
c2

2
+ 2c

∫ −c

−1

W (t)dt−
∫ c

−c

tW (t)dt

)

−f(0)g
(2)
1 (0)

∫ c

−1

(c− t)W (t)dt− f(0)g
(2)
2 (0)

∫ −c

−1

(c + t)W (t)dt

}
+ o(h2) .

Proof of (5). Observe that for x = ch, 0 ≤ c ≤ 1, we have

nvar
(
F̃h,K(x)

)
=

1

n
var

{
n∑

i=1

[
W

(
x− g1(Xi)

h

)
−W

(
−x + g2(Xi)

h

)]}

= E

{
W

(
x− g1(Xi)

h

)
−W

(
−x + g2(Xi)

h

)}2

−
{

E

[
W

(
x− g1(Xi)

h

)
−W

(
−x + g2(Xi)

h

)]}2

= A1 − A2 ,
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where

A1 = E

{
W

(
x− g1(Xi)

h

)
−W

(
−x + g2(Xi)

h

)}2

=

∫ ∞

0

{
W

(
x− g1(y)

h

)
−W

(
−x + g2(y)

h

)}2

f(y)dy

=

∫ ∞

0

{
W 2

(
x− g1(y)

h

)
+ W 2

(
−x + g2(y)

h

)}
f(y)dy

−
∫ ∞

0

2W

(
x− g1(y)

h

)
W

(
−x + g2(y)

h

)
f(y)dy

= h

∫ −c

−1

W 2(t)

{
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

) +
f

(
g−1
2 ((−c− t)h)

)

g
(1)
2

(
g−1
2 ((−c− t)h)

)
}

dt

+h

∫ c

−c

W 2(t)
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

)dt

−
∫ ∞

0

2W

(
x− g1(y)

h

)
W

(
−x + g2(y)

h

)
f(y)dy

= A1,1 + A1,2 − A1,3 .

Using a Taylor expansion as in the last proof, it can be shown that

A1,1 = h

∫ −c

−1

W 2(t)

{
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

) +
f

(
g−1
2 ((−c− t)h)

)

g
(1)
2

(
g−1
2 ((−c− t)h)

)
}

dt

= h

∫ −c

−1

W 2(t) (2f(0) + o(1)) dt .

For A1,2 we use the identity W (t) = 1−W (−t) and similarly as in the last proof we get

A1,2 = h

∫ c

−c

W 2(t)
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

)dt

= h

∫ c

−c

(
1− 2W (−t) + W 2(−t)

) f
(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

)dt

= h

∫ c

−c

f
(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

)dt− 2h

∫ c

−c

W (t)
f

(
g−1
1 ((c + t)h)

)

g
(1)
1

(
g−1
1 ((c + t)h)

)dt

+h

∫ c

−c

W 2(t)
f

(
g−1
1 ((c + t)h)

)

g
(1)
1

(
g−1
1 ((c + t)h)

)dt

= F
(
g−1
1 (2ch)

)− 2h

∫ c

−c

W (t) (f(0) + o(1)) dt + h

∫ c

−c

W 2(t) (f(0) + o(1)) dt

= F (x)− f(0)ch + hf(0)

∫ c

−c

W 2(t)dt + o(h) .

Using the continuity of g
(2)
i , gi(0) = 0, and g

(1)
i (0) = 1, i = 1, 2, and by a Taylor
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expansion of order 2 on g2

(
g−1
1 (·)), we have

g2

(
g−1
1 ((c− t)h)

)
= g2

(
g−1
1 (0)

)
+

g
(1)
2

(
g−1
1 (0)

)

g
(1)
1

(
g−1
1 (0)

)(c− t)h + o(h)

= (c− t)h + o(h) .

With the preceding expansion we obtain

A1,3 =

∫ ∞

0

2W

(
x− g1(y)

h

)
W

(
−x + g2(y)

h

)
f(y)dy

= 2h

∫ c

−1

W (t)W

(
−x

h
− g2

(
g−1
1 ((c− t)h)

)

h

)
f

(
g−1
1 ((c− t)h)

)

g
(1)
1

(
g−1
1 ((c− t)h)

)dt

= 2h

∫ c

−1

W (t)W

(−ch− (c− t)h− o(h)

h

)
(f(0) + o(1)) dt

= 2hf(0)

∫ c

−1

W (t)W (t− 2c)dt + o(h) .

Now we can express A1 as

A1 = A1,1 + A1,2 − A1,3

= 2hf(0)

∫ −c

−1

W 2(t)dt + F (x)− f(0)ch + hf(0)

∫ c

−c

W 2(t)dt

−2hf(0)

∫ c

−1

W (t)W (t− 2c)dt + o(h)

= F (x) + hf(0)

{
2

∫ −c

−1

W 2(t)dt− c +

∫ c

−c

W 2(t)dt− 2

∫ c

−1

W (t)W (t− 2c)dt

}

+o(h) .

With the expression obtained for the bias we obtain the expression for A2 as

A2 =

{
E

[
W

(
x− g1(Xi)

h

)
−W

(
−x + g2(Xi)

h

)]}2

=
{

E
(
F̃h,K(x)

)}2

= F 2(x) + o(h) .

Finally, we obtain the variance of the estimator as

nvar
(
F̃h,K(x)

)
= A1 − A2

= F (x) + hf(0)

{
2

∫ −c

−1

W 2(t)dt− c +

∫ c

−c

W 2(t)dt− 2

∫ c

−1

W (t)W (t− 2c)dt

}

−F 2(x) + o(h)

= F (x)(1− F (x))

+hf(0)

{
2

∫ −c

−1

W 2(t)dt− c +

∫ c

−c

W 2(t)dt− 2

∫ c

−1

W (t)W (t− 2c)dt

}
+ o(h) .
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