Varianzschätzung in komplexen Erhebungen

Authors

  • Ralf Münnich Universität Trier, Deutschland

DOI:

https://doi.org/10.17713/ajs.v37i3&4.311

Abstract

Im Rahmen der Qualitätsberichterstattung europäischer Statistiken sollen im Europäischen Statistischen System neben klassischen Qualitätsangaben auch Aussagen zur Genauigkeit von Statistiken gemacht werden. Neben Nichtstichprobenfehlern spielen im Rahmen der Genauigkeit von Statistiken Stichprobenfehler eine wesentliche Rolle. Im Allgemeinen
erfolgt die Quantifizierung dieser Fehler über Angaben zur Varianz der interessierenden
Statistik, welche zumeist aus der selben Stichprobe geschätzt werden müssen.


Im Rahmen der vorliegenden Arbeit soll ein Überblick über die aktuell verwendeten
Varianzschätzmethoden gegeben werden. Dabei werden deren Vorund Nachteile diskutiert. An Hand zweier für die Praxis einer Amtlichen Statistik bedeutsamen Beispiele sollen die Verfahren demonstriert werden.

References

Andersson, C., and Nordberg, L. (1994). A method for variance estimation of non-linear functions of totals in surveys - theory and software implementation. Journal of Official Statistics, 10, 395-405.

Berger, Y. G., and Skinner, C. J. (2003). Variance estimation for a low income proportion. Journal of the Royal Statistical Society, Series C, 52, 457-468.

Berger, Y. G., and Skinner, C. J. (2004). Variance estimation for unequal probability designs. (DACSEIS deliverable D6.1, http://www.dacseis.de)

Binder, D. A., and Kovačević, M. S. (1995). Estimating some measures of income inequality from survey data: An application of the estimating equation approach. Survey Methodology, 21, 137-145.

Bjørnstad, J. (2004). Non-Bayesian Multiple Imputation. In Proceedings of the Q2004 conference.

Bjørnstad, J. (2007). Non-Bayesian multiple imputation (with discussion). Journal of Official Statistics, 23, 433-491.

D’Arrigo, J., and Skinner, C. J. (2003). Variance estimation for estimators subject to raking adjustment. (DACSEIS deliverable D8.1, http://www.dacseis.de)

Davison, A. C., and Sardy, S. (2007). Resampling variance estimation in surveys with missing data. Journal of Official Statistics, 23, 371-386.

Demnati, A., and Rao, J. N. K. (2004). Linearization variance estimators for survey data. Survey Methodology, 30, 17-26.

Dennis, I., and Guio, A. (2004). Poverty and social exclusion in the EU. (Statistics in Focus 16, Eurostat, Luxembourg, catalogue number: KS-NK-04-016-EN-N. http://epp.eurostat.cec.eu.int/portal/page? pageid=1073,1135281,10731135295& dad=portal& schema=PORTAL&p product code=KS-NK-04-016)

Deville, J. C. (1999). Variance estimation for complex statistics and estimators: Linearization and residual techniques. Survey Methodology, 25, 193-203.

Deville, J. C., and Särndal, C. E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376-382.

Eurostat. (2005). European Statistics Code of Practice: For the National and Community Statistical Authorities. (http://epp.eurostat.cec.eu.int/portal/page? pageid=2273,1,2273 47141302& dad=portal& schema=PORTAL)

Gabler, S., Häder, S., and Lynn, P. (2003). Refining the concept and measurement of design effects. In Bulletin of the International Statistical Institute 54th Session (Vol. LX, p. 371-372).

Hedayat, A. S., and Sinha, B. K. (1991). Design and Inference in Finite Population Sampling. New York: John Wiley & Sons.

Hulliger, B., andMünnich, R. (2006). Variance estimation for complex surveys in the presence of outliers. In Proceedings of the Survey Research Methods Section (p. 3153-3161). American Statistical Association. (http://www.amstat.org/Sections/

Srms/Proceedings/y2006/Files/JSM2006-000530.pdf)

Kish, L. (1995). Methods for design effects. Journal of Official Statistics, 11, 55-77.

Lohr, S. (1999). Sampling: Design and Analysis. CA: Pacific Grove: Duxbury Press.

Münnich, R. (2005). Datenqualität in komplexen Stichprobenerhebungen. (unveröffentlichte Habilitationsschrift, Universität Tübingen)

Münnich, R., Bihler, W., Bjørnstad, J., Zhang, L., Davison, A., Haslinger, A., et al. (2003). Data Quality in Complex Surveys. (DACSEIS deliverable D1.1, http://www.dacseis.de)

Münnich, R., and Rässler, S. (2005). PRIMA: A new multiple imputation procedure for binary variables. Journal of Official Statistics, 21, 325-341.

Rao, J. N. K., and Shao, J. (1992). Jackknife variance estimation with survey data under hot deck imputation. Biometrika, 79, 811-8220.

Rässler, A., and Riphahn, R. T. (2006). Survey item nonresponse and its treatment. Allgemeines Statistisches Archiv, 90, 217-232.

Rubin, D. B. (1978). Multiple Imputation in Sample Surveys - A Phenomenological Bayesian Approach to Nonresponse. In Proceedings of the Survey Research Methods Sections of the American Statistical Association (p. 20-40).

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.

Shao, J., and Sitter, R. R. (1996). Bootstrap for imputed survey data. Journal of the American Statistical Association, 91, 278-1288.

Shao, J., and Tu, D. (1995). The Jackknife and Bootstrap. New York: Springer.

Särndal, C. E., and Lundstr¨om, S. (2005). Estimation in Surveys with Nonresponse. Chichester: John Wiley & Sons.

Särndal, C. E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling. New York: Springer.

Wiegert, R., and Münnich, R. (2004). German Register Data for Regression Estimation in Survey Sampling – A Study on the German Microcensus Respecting for Data Protection. Jahrbücher für Nationalökonomie und Statistik, 224, 247-259.

Wolter, K. M. (2007). Introduction to Variance Estimation (2nd ed.). New York: Springer.

Woodruff, R. S. (1971). A simple method for approximating the variance of a complicated estimate. Journal of the American Statistical Association, 66, 411-414.

Published

2016-04-03

How to Cite

Münnich, R. (2016). Varianzschätzung in komplexen Erhebungen. Austrian Journal of Statistics, 37(3&4), 319–334. https://doi.org/10.17713/ajs.v37i3&4.311

Issue

Section

Articles