Multilevel Latent Variable Modeling: An Application in Education Testing


  • Jeroen K. Vermunt Department of Methodology and Statistics, Tilburg University, The Netherlands



A framework for multilevel latent variable modeling is presented that includes many existing models as special cases. It is shown that parameters can be estimated by maximum likelihood using a special variant of the EM algorithm. An application is presented from the field of school effectiveness research. This application uses a novel multilevel mixture item response model which clusters schools based on the students’ latent abilities and the item difficulties.


Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41, 164-171.

Bock, R. D., and Aikin, M. (1981). Marginal maximum likelihood estimation of item parameters. Psychometrika, 46, 443-459.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1-38.

Doolaard, S. (1999). Schools in Change or School in Chain. Unpublished doctoral dissertation, University of Twente, The Netherlands.

Fox, J. P., and Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 269-286.

Frühwirth-Schatter, S. (2006). Finite Mixture and Markov Switching Models. New York, NY: Springer.

Goldstein, H., and Browne,W. (2002). Multilevel factor analysis modelling using Markov chain Monte Carlo estimation. In G. A. Marcoulides and I. Moustaki (Eds.), Latent Variable and Latent Structure Models (p. 225-243). Mahwah, NJ: Lawrence Erlbaum Associates.

Grilli, L., and Rampichini, C. (2007). Multilevel factor models for ordinal variables. Structural Equation Modeling, 14, 1-25.

Hedeker, D., and Gibbons, R. D. (1996). MIXOR: A computer program for mixed effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49, 157-176.

Hox, J. (2002). Multilevel Analysis: Techniques and Applications. Mahwah, NJ.

Juang, B. H., and Rabiner, L. R. (1991). Hidden Markov models for speech recognition. Technometrics, 33, 251-272.

Lesaffre, E., and Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example. Applied Statistics, 50, 325-335.

Longford, N., and Muthén, B. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581-597.

Paas, L. J., Vermunt, J. K., and Bijmolt, T. H. (2007). Discrete-time discrete-state latent Markov modelling for assessing and predicting household acquisitions of financial products. Journal of the Royal Statistical Society, Series A, 170, 955-974.

Palardy, G., and Vermunt, J. K. (2007). Multilevel growth mixture models for classifying group-level observations. (submitted)

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Fransisco, CA: Morgan Kaufmann Publishers Inc.

Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2002). Reliable estimation of generalised linear mixed models using adaptive quadrature. The Stata Journal, 2, 1-21.

Rabe-Hesketh, S., Skrondal, A., and Pickles, A. (2004). Generalized multilevel structural equation modelling. Psychometrika, 69, 183-206.

Raudenbush, S. W., Johnson, C., and Sampson, R. J. (2003). A multivariate, multilevel rasch model with application to self-reported criminal behavior. Sociological Methodology, 33, 169-211.

Rothenberg, T. J. (1971). Identification of parametric models. Econometrica, 39, 577-591.

Skrondal, A., and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal and Structural Equation Models. London: Chapman & Hall/CRC.

Snijders, T. A. B., and Bosker, R. J. (1999). Multilevel Analysis. London: Sage Publications.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003). Winbugs user manual version 1.4. MRC Biostatistics Unit at Institute of Public Health at Cambridge University and Department of Epidemiology & Public Health at Imperial College School of Medicine.

Stroud, A. H., and Secrest, D. (1966). Gaussian Quadrature Formulas. Englewood Cliffs, NJ: Prentice Hall.

Van der Linden, W. J., Ronald, K., and Hambleton, R. K. (1997). Handbook of Modern Item Response Theory. New York, NY: Springer.

Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213-239.

Vermunt, J. K. (2004). An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models. Statistica Neerlandica, 58, 220-233.

Vermunt, J. K. (2007). Growth models for categorical response variables: standard, latent-class, and hybrid approaches. In K. van Montfort, H. Oud, and A. Satorra (Eds.), Longitudinal Models in the Behavioral and Related Sciences (p. 139-158). Mahwah, NJ.

Vermunt, J. K. (2008). Latent class and finite mixture models for multilevel data sets. Statistical Methods in Medical Research. (in press)

Vermunt, J. K., Langeheine, R., and Böckenholt, U. (1999). Discrete-time discrete-state latent Markov models with time-constant and time-varying covariates. Journal of Educational and Behavioral Statistics, 24, 178-205.

Vermunt, J. K., and Magidson, J. (2005). Latent GOLD 4.0 user’s guide. Belmont, MA: Statistical Innovations Inc.

Vermunt, J. K., and Magidson, J. (2007). LG-syntax user’s guide: Manual for Latent GOLD 4.5 syntax module. Belmont, MA: Statistical Innovations Inc.




How to Cite

Vermunt, J. K. (2016). Multilevel Latent Variable Modeling: An Application in Education Testing. Austrian Journal of Statistics, 37(3&4), 285–299.