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Abstract: Standard Configural Frequency Analysis (CFA) is a one-step pro-
cedure that determines which cells of a cross-classification contradict a base
model. The results are possible types/antitypes depending on whether the
observed cell frequencies are significantly lower/higher with respect to the
base model. Selecting these cells out does not guarantee that the base model
fits. Therefore, the role played by these cells for the base model is unclear,
and interpretation of types and antitypes can be problematic. In this paper,
functional CFA is proposed. This model of CFA pursues two goals simultane-
ously. First, cells are selected out that constitute types and antitypes. Second,
the base model is fit to the data. This is done using an iterative procedure that
blanks out individual cells one at a time, until the base model fits or until there
are no more cells that can be blanked out. In comparison to standard CFA,
functional CFA is shown to be more parsimonious, that is, fewer types and
antitypes need to be selected out. The methods are illustrated and compared
using data examples from the literature.

Zusammenfassung: Die Lienert’sche Konfigurationsfrequenzanalyse (KFA)
ist ein 1-Schritt Verfahren, mit Hilfe dessen man bestimmen kann, welche
Zellen einer Kreuztabellierung einem Basismodell widersprechen. Dabei
resultieren mögliche Typen/Antitypen, je nachdem ob die Häufigkeiten in
Bezug auf das Basismodell signifikant über-/unterbesetzt sind. Nimmt man
diese Zellen aus dem Modell, ist nicht garantiert, dass das Modell die Daten
auch gut beschreibt. Deshalb ist die Rolle, die diese Zellen für das Basis-
modell spielen, unklar, und die Interpretation von Typen und Antitypen kann
problematisch werden. In dieser Arbeit wird der Ansatz einer funktionalen
KFA vorgestellt. Dabei werden zwei Ziele verfolgt: Erstens werden die
Zellen identifiziert, die Typen und Antitypen konstituieren. Zweitens wird
das Basismodell an die Daten angepasst. Diese Ziele werden mit einer iter-
ativen Prozedur verfolgt, die eine Zelle nach der anderen aus der Kreuzta-
bellierung entfernt. Die Iteration endet, wenn das Basismodell die Daten gut
beschreibt, oder wenn keine Zellen mehr entfernt werden können. Im Ver-
gleich zur Lienert’schen KFA ist die funktionale sparsamer, d.h., es werden
weniger Typen und Antitypen identifiziert. Die Methoden werden mit Hilfe
von Datenbeispielen aus der Literatur illustriert.

Keywords: Configural Frequency Analysis, Functional CFA, Kieser-Victor
CFA.
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1 Introduction
Configural Frequency Analysis (CFA; Lienert, 1968; von Eye and Gutiérrez-Peña, 2004)
allows the researcher to identify those cells in a cross-tabulation that contradict a partic-
ular base model. Existing approaches to CFA have approached the identification process
from three directions. The first and classical approach specifies a base model and, then,
examines either all cells or a selection of cells with the goal of finding those that con-
tradict the base model. This approach assumes under the null hypothesis that each case
in the table was drawn from the same population. The typical base model is a simple,
hierarchical log-linear model the expected frequencies of which can be estimated using
closed forms. More complex base models have also been discussed (von Eye, 2002). The
second approach (Kieser and Victor, 1991, 1999, 2000) proceeds under the assumption
that the cases in those cells that belong to a CFA type (a review of the concepts of CFA
types and antitypes follows in the next section of this article) were drawn from different
populations. Therefore, estimation of expected cell frequencies must exclude these cases.
The typical base model is a quasi-independence log-linear model for which, in most cases,
closed forms do not exist. The third approach is Bayesian (Gutiérrez-Peña and von Eye,
2000).

In this article, a fourth approach to CFA is proposed. This approach will also be
frequentist, and will be compared to the first two approaches. It is functional in the sense
that types and antitypes are defined by the role they play for the base model. Iteratively,
cells will be blanked out that contradict the base model. The iteration concludes as soon
as the base model can be retained. A corresponding implementation in R (R Development
Core Team, 2007) is provided.

2 A Review of Lienert’s Classical CFA
When applying CFA, researchers, in a first step, specify a base model, also called chance
model. In the present context we focus on log-linear base models. The standard base
model thus has the form log m = Xλ, where m is the vector of model frequencies,
X, is the design matrix, and λ is the parameter vector. CFA examines individual cells.
Let the observed frequency of Cell c be nc, and the corresponding expected frequency,
mc, be estimated under some chance model, where c goes over all cells in the table.
CFA tests, typically for each cell, the null hypothesis under which E(nc − mc) = 0. If
E(nc −mc) > 0, cell c is said to constitute a CFA type. If E(nc −mc) < 0, cell c is said
to constitute a CFA antitype. If E(nc −mc) = 0, cell c is said to constitute neither a type
nor an antitype. In brief, types occur more frequently than one would expect by chance,
and antitypes occur less frequently than one would expect by chance.

For the decision as to whether a cell constitutes a CFA type or antitype, a number of
tests has been proposed (for an overview, see von Eye, 2002). Each of these tests can
be used to examine individual cells of a cross-classification. Tests for the examination of
groups of cells have also been proposed. CFA tests are either exact or asymptotic, and
they either can be used under any sampling scheme or require product-multinomial sam-
pling. The binomial test is exact and can be used under any sampling scheme. The z-test
and the X2-test are asymptotic and can also be used under any sampling scheme. The ex-
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Table 1: Standard CFA for Weather (W) and Persons Waiting (P) cross-classification.
Configuration c nc mc rc p-value Type/Antitype?

11 173 142.10 5.2366 .0000 Type
12 76 106.89 -5.2366 .0000 Antitype
21 50 54.21 -0.9555 .3393 –
22 45 40.78 0.9555 .3393 –
31 15 15.40 -0.1627 .8707 –
32 12 11.59 0.1627 .8707 –
41 51 61.06 -2.1765 .0295 –
42 56 45.93 2.1765 .0295 –
51 27 39.94 -3.3343 .0009 Antitype
52 43 30.05 3.3343 .0009 Type
61 15 18.26 -1.1985 .2307 –
62 17 13.73 1.1985 .2307 –

act and asymptotic hypergeometric tests (Lehmacher, 1981) require product-multinomial
sampling. These tests are the most powerful of all current CFA tests, by far.

Base models of CFA contain all effects that are not of interest to the researcher (von
Eye, 2004). Thus, if a base model is rejected, (1) the data are bound to reflect types or
antitypes, and (2) these types and antitypes reflect the effects that are of interest to the
researcher. In the present article, we focus on log-linear base models. These models have,
in standard frequentist CFA, been mostly simple models, that is, models for which closed
forms exist for the estimation of the expected frequencies.

In the present article, the group of log-linear base models will be extended to enable
the functional approach to CFA. The new log-linear base models will not be in the class
of simple hierarchical models any more. Instead, they will be non-standard (Mair, 2007;
Mair and von Eye, 2007). That is, these models will contain terms that identify cells as
structural in a sense comparable to structural zeros. Adding these terms changes standard
hierarchical CFA base models into nonstandard models.

Data example: The following data example is presented to illustrate the application
of Lienert’s classical approach to CFA. It uses data from Wurzer (2005, p. 98). In a
6 × 2 table the variable weather (W) is cross-classified with persons waiting at a public
Internet terminal (P). W was scored as 1 = dry and warm, 2 = dry and cold, 3 = raining
and warm, 4 = raining and cold, 5 = snowing and warm, 6 = snowing and cold; P was
scored as 1 = yes and 2 = no. The results of ordinary CFA are given in Table 1. Note that
the standardized Pearson residuals rc and the corresponding N(0, 1)-approximation were
used (see Section 3.1) with a Bonferroni-protected α∗ = 0.00417. Obviously, one type is
constituted by persons that are waiting when the weather is dry and warm; one antitype is
constituted by persons that are not waiting when the weather is dry and warm. The second
type is constituted by individuals who do not wait when snow falls and it is warm. The
second antitype is constituted by individuals who do wait under these weather conditions.

The effect coded design matrix X for the data example in Table 1 is of the following
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form:

X =




1 1 0 0 0 0 1
1 1 0 0 0 0 −1
1 0 1 0 0 0 1
1 0 1 0 0 0 −1
1 0 0 1 0 0 1
1 0 0 1 0 0 −1
1 0 0 0 1 0 1
1 0 0 0 1 0 −1
1 0 0 0 0 1 1
1 0 0 0 0 1 −1
1 −1 −1 −1 −1 −1 1
1 −1 −1 −1 −1 −1 −1




From left to right, this design matrix contains in the first column the constant vector,
the vectors for the main effects of W, and the vector for the main effect of P. There are no
vectors for interactions. Therefore, the CFA types and antitypes suggest that interactions
exist (LR-X2 = 31.82, df = 5, p < 0.0001). But, as was indicated above, CFA is not
interested in identifying these interactions. Instead, CFA focuses on the interpretation of
those cells (configurations) that stand out as types and antitypes.

Note that the model used for the present data example is equivalent to the model
log m = λ + λH + λT + λHT + λP where H indicates humidity and T temperature. The
type and antitype thus can be interpreted as “weather conditions predict waiting behavior”
(for prediction CFA, see von Eye, Mair, and Bogat, 2005).

3 Functional CFA

3.1 Basic principles of functional CFA

One characteristic that, with the exception of Kieser and Victor CFA (KV-CFA; more
detail follows below), all CFA approaches share is that they are one-step methods. One
base model is specified, and the analysis is performed in one run. The result is expressed
in terms of local deviations from the base model. However, as Victor (1989) notes, due to
dependencies between the cells in a table, so called phantom types can occur: If a certain
cell constitutes a type/antitype it can result that a neighbor cell becomes a type/antitype as
well; without being actually a type. Thus, stepwise approaches can be advantageous since
type/antitype cells are excluded one-by-one and the model is re-fitted after each step.

Functional CFA (fCFA) asks questions concerning the deviations from a base model.
However, it combines the goals of modeling with the goals of CFA. fCFA asks what
role particular configurations play for a base model. If a configuration contradicts a base
model, it is removed from the table and the base model is fitted again. This process is
repeated until either no cells can be removed any more or the base model fits. Thus, the
researcher can extract and interpret types/antitypes successively and fit the model after
each step without biasing the results due to phantom types. At the end, when no types can
be detected anymore, the base model fits.
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fCFA thus uses base models that differ from standard CFA. The base models of fCFA
consist of two parts. The first is identical to the base model of standard CFA, that is,
log m = Xsλs. This part is structural in the sense that it specifies the variable rela-
tionships considered in the base model. The second is the part used to blank out type and
antitype cells. This part is termed functional as it serves to mark those cells that contradict
the base model and, thus, constitute types and antitypes. The base model thus changes to
log m = Xsλs +Xfλf . The functional part of the model is created in an iterative process
(see below).

If the iteration comes to an end before the pool of cells that can be removed is depleted
(i.e, df = 0), the results are the following:

1. A selection of cells that constitute CFA types and antitypes. The interpretation of
these cells proceeds as in standard CFA. However, the base model needs to be kept
in mind.

2. A fitting final model. This model describes the variable relationships within an
incomplete table, that is, a table without the type and antitype cells. These cells
have been removed by way of declaring them structural zeros.

In contrast to standard CFA which practically always yields types or antitypes, fCFA can
yield the statement that a base model cannot be fitted to a table. In this case, the types
and antitypes that were constituted by the cells removed during the iteration cannot be
interpreted, because the goal of fitting the base model was not reached.

To describe the procedure of fCFA, consider a CFA base model that is specified as
log m = Xsλs. Let this base model meet the criteria set up by von Eye and Schuster
(2000). Then, the iteration that is performed in fCFA involves the following steps:

1. Inspect the cell-wise discrepancies from this base model and identify the largest.
2. Blank out the cell with the largest discrepancy and re-fit the base model.
3. Repeat steps 1 and 2 until either the base model fits or the table becomes impossible

to re-analyze because too many cells have been blanked out and the base model still
does not fit.

Blanking out cells uses the same methods as declaring cells structural zeros. In each
case, no model-specific probability density mass is placed into these cells, and these cells
are excluded from the estimation of both overall fit and cell-specific residuals. Several
types of residuals within the GLM framework can be taken into account. The classical
definition are the Pearson residuals ei which for a Poisson GLM are defined by

ei =
ni −mi√

mi

.

Asymptotic theory states that standardized Pearson residuals given by

ri =
ni −mi√
mi(1− hii)

follow more closely the standard normal distribution. The elements hii (0 ≤ hii ≤ 1) are
the main diagonal elements of the hat matrix

H = W1/2X (X′WX)
−1

X′W1/2 .
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For Poisson GLM the elements wii of the diagonal matrix W are the model frequencies
mi (see e.g. Agresti, 2002, p. 139). If ni = mi, no standard error can be computed. In
fCFA this occurs for cells already blanked out. However, this issue does not affect the
appropriateness of the solution since the residual values are used in a descriptive manner
in terms of blanking out max |ri| within each iteration l.

Another technical matter concerns the correction of the α-level. It is an important
issue in ordinary CFA since we have a simultaneous testing situation: Each cell is tested
on the base of the residuals whether it constitutes a type or an antitype (see von Eye, 2002,
Section 3.10). What is basically done in fCFA is that at each step the LR-test is carried
out and if the model does not fit, the maximal residual value emax

i is said to constitute a
type if sgn emax

i = 1 and an antitype if sgn emax
i = −1. Thus, no test is carried out at

an individual residual level. Please note that the individual tests and the protected alpha
mentioned in the analysis of the data in Table 1 are needed for classical CFA only, but not
for fCFA. For fCFA, the largest residual is used, and the significance test is not performed.

However, since fCFA is a stepwise approach where, after each step, the model fit is
tested, we have the situation of sequential testing. A corresponding α-correction becomes
relevant in the case of (large) tables where many iterations have to be performed in order
to achieve a model that does not contradict with the log-linear base model. As in Kieser
and Victor (1999), a corresponding procedure for multiple testing of nested hypothesis
proposed by Bauer and Hackl (1987) can be applied.

3.2 A comparison between fCFA and KV-CFA

As was mentioned in the last section, the version of CFA proposed by Kieser and Victor
(1999, 2000) is the only approach other than fCFA, that involves a stepwise selection
procedure. Kieser and Victor (1999) propose the following steps for their exploratory
forward inclusion routine.

1. Starting from a log-linear base model, contrasts for structural zeros are sequentially
included.

2. Select the parameter for which the corresponding LR-value is minimal. (Note that
this step involves removing cells from the table.)

3. Repeat steps 1 and 2 until the goodness-of-fit test is non-significant.

KV-CFA differs in two central points from fCFA. First, the authors aim at minimizing the
overall LR statistic. The blanking out of cells is a means toward this goal. In contrast,
in functional CFA the identification of “outlandish cells” is the goal. The fact that fCFA
typically yields a model that fits, is a byproduct. However, this byproduct is a condition
for an admissible solution. Second, to find an optimal solution, KV-CFA uses the overall
goodness-of-fit LR-criterion. In contrast, fCFA blanks those cells out that are extreme
based on the magnitude of residual scores. Solutions based on different statistics will
differ depending on the discrepant characteristics of these statistics (see, e.g., von Eye
and Mun, 2003; von Weber, von Eye, and Lautsch, 2004). In the following applications,
it becomes clear that the different criteria for imposing structural zero contrasts and, thus,
blanking out types/anti-type cells will typically result in different solutions.
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For problems with large and high-dimensional tables involved (as, e.g., in data min-
ing) it is straightforward to show that fCFA performs much faster than KV-CFA: Let us
denote the iteration steps by l = 0, . . . , L and the total number of cells by C. Within
each iteration step, KV-CFA computes C − l models. For a simple example of a cross-
classification of 6 variables each of them having 4 categories the total number of cells is
C = 4096. Thus, in step 0, KV-CFA computes 4096 models, in the second step 4095, etc.
fCFA is far more efficient since within each step l, only one model is fitted, i.e., the model
which blanks out the cell with the largest residual. Thus, in total only L models have to
be computed.

3.3 Application examples for fCFA and KV-CFA
In this section we compute various examples and compare the results from fCFA and
KV-CFA. All computations are performed using the R package cfa (Funke, Mair, and
von Eye, 2007). The corresponding functions are fCFA() and kvCFA(). The R call is of
the following structure: n.i is the observed frequency vector, X the design matrix, and
tabdim a vector denoting the dimensions of the table. These three arguments are required
to specify. In addition, the user can select the residual type by means of restype and the
α-level using alpha.

Example 1: We start with the application of fCFA and KV-CFA on the dataset in
Table 1. The R code chunk is

> #----------- define design matrix, data, dimensions ---------
> dd <- data.frame(a1=gl(6,2), b1=gl(2,1,12))
> X <- model.matrix(~a1+b1, dd, contrasts = list(a1 = "contr.sum",
+ b1 = "contr.sum"))
> n.i <- c(173,76,50,45,15,12,51,56,27,43,15,17)
> tabdim <- c(6,2)
> #------------------ Kieser-Victor CFA -----------------------
> (res1 <- kvCFA(n.i, X, tabdim = tabdim))
> summary(res1)
> #-------------------- functional CFA ------------------------
> (res2 <- fCFA(n.i, X, tabdim = tabdim))
> summary(res2)

The results for fCFA are given in Table 2 and those for KV-CFA in Table 3.
Functional CFA and KV-CFA blank out cell 12 (antitype) and cell 11 (type), respec-

tively. Ordinary CFA (see Table 1) has identified four types/antitypes. In tables that are
spanned by dichotomous variables, using standardized residuals has the effect that the
sum of the residuals in cells with complementary indices is zero. Therefore, standardized
residuals will not allow one to select types or antitypes solely based on the magnitude
of the residual. We recommend considering one of the following strategies. First, if
researchers are mainly interested in types, blank out type-constituting cells only.

Second, if types and antitypes are equally interesting, use information that is pro-
vided by other measures of discrepancy. We can use the hypergeometric test proposed by
Lehmacher (1981) which uses the exact variance instead of an asymptotic variance for the
denominator of the formula for the standard normal z. This test is known as Lehmacher’s
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Table 2: fCFA for Internet Terminal Data.
Step Cell blanked out LR-X2 χ2 df p-value

0 none 31.82 31.43 5 < 0.0001
1 11 3.97 3.94 4 0.4107

Table 3: KV-CFA for Internet Terminal Data.
Step Cell blanked out LR-X2 χ2 df p-value

0 none 31.82 31.43 5 < 0.0001
1 11 3.97 3.94 4 0.4107

z. Alternatively, the squared Pearson residuals X2 as well as log-linear interaction terms
(unweighted and weighted) as defined in Goodman (1991) can be taken into account.

A third approach is to exclude both cells at the same time. The effect of blanking out
a particular cell c (of a dichotomous variable) can be that in the next fCFA step nc = mc.
Let c′ denote the corresponding complementary cell. Since the margins are fixed it fol-
lows necessarily that nc′ = mc′ . Concerning the example above, if cell 11 is considered
as a type, cell 12 should be declared simultaneously as an antitype. Otherwise cell 12 fits
perfectly due to the fact that cell 11 was excluded. Subsequent versions of the cfa pack-
age will include corresponding strategies and options for the treatment of dichotomous
variables.

Example 2: A stepwise CFA (i.e., fCFA and KV-CFA) is performed on a dataset from
Aksan et al. (1999) (see also von Eye, 2002). Their children’s temperament data describe
Control (C), Negative Affect (A), and Approach (H). Each of the variables was classified
into 3 levels: C = 1 indicating low control, C = 2 average control, C = 3 high control; A =
1 low score negative effect, A = 2 average, A = 3 high; and H = 1 high score in approach,
H = 2 average, and H = 3 low. The base model is again a log-linear main effects model.
The fCFA results are given in Table 4. The corresponding results for the KV-CFA can be
found in Table 5.

Obviously, fCFA blanks out 7 cells. The set of types/antitypes is

Θ(f) = {313, 131, 132, 312, 323, 121, 122} .

For the KV-CFA the set of types/antitypes is

Θ(KV ) = {313, 131, 112, 332, 322, 121, 132} ,

where again 7 cells are blanked out. The common types/antitypes for both methods are

Θ(f) ∩Θ(KV ) = {313, 131, 132, 121} .

The first 2 iteration steps are basically the same for both methods, at l = 3 fCFA identifies
cell 312 as type whereas KV-CFA cell 112.

Example 3: For a further analysis of the behavior of fCFA against KV-CFA data from
Netter (1983) are used (see also von Eye, 2002). In an experiment on stress responses,
a sample of 162 subjects worked under two stress conditions. The first condition was a
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Table 4: fCFA for the Children’s Temperament Data.
Step Cell blanked out LR-X2 χ2 df p-value

0 none 171.34 185.16 20 < 0.0001
1 313 116.70 119.10 19 < 0.0001
2 131 85.68 83.77 18 < 0.0001
3 132 67.18 68.58 17 < 0.0001
4 312 49.82 49.86 16 < 0.0001
5 323 39.39 38.15 15 0.0005
6 121 29.93 29.48 14 0.0078
7 122 20.31 20.56 13 0.0878

Table 5: KV-CFA for the Children’s Temperament Data.
Step Cell blanked out LR-X2 χ2 df p-value

0 none 171.34 185.16 20 < 0.0001
1 313 116.70 119.10 19 < 0.0001
2 131 85.68 83.77 18 < 0.0001
3 112 65.97 65.21 17 < 0.0001
4 332 51.16 50.97 16 < 0.0001
5 322 39.96 39.61 15 0.0005
6 121 30.52 30.08 14 0.0065
7 132 19.77 19.80 13 0.1011

response time task, and the second condition a verbal fluency task. Under each condition,
plasma samples were taken to measure two levels of adrenaline (A1 ∈ {1, 2}, i.e., for each
condition; A1 ∈ {1, 2}) and two levels of noradrenaline (N1 ∈ {1, 2}; N1 ∈ {1, 2}). An
additional variable pertains to the participant classification (P) into hypertonic (P = 1)
and normal (P = 2). It results a 25 cross-classification of A1 ×A2 ×N1 ×N2 × P . This
time, we do not have a main-effects log-linear base model but rather a two-way interaction
model with respect to adrenalin/noradrenalin for both levels, i.e., [A1N1][A2N2][P ] in
bracket notation.

The results for fCFA are given in Table 6 and the results for KV-CFA in Table 7. The
set of types/antitypes found by fCFA is

Θ(f) = {22221, 11112, 12122, 21212, 21211, 11212, 21112, 11111, 21111} ,

whereas for KV-CFA

Θ(KV ) = {22221, 11112, 21122, 11111, 12212, 21121, 22222, 22121} .

Correspondingly,

Θ(f) ∩Θ(KV ) = {22221, 11112, 11111} .

Again, after step 2 the procedures diverge. However, both methods need L = 9 iterations.
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Table 6: fCFA for Netter’s adrenaline data.
Step Cell blanked out LR-X2 χ2 df p-value

0 none 112.87 113.71 24 < 0.0001
1 22221 93.26 87.57 23 < 0.0001
2 11112 81.85 74.39 22 < 0.0001
3 12122 70.34 66.27 21 < 0.0001
4 21212 60.82 56.86 20 < 0.0001
5 21211 49.69 45.41 19 0.0002
6 11212 42.88 39.93 18 0.0008
7 21112 37.50 34.79 17 0.0029
8 11111 31.29 29.50 16 0.0124
9 21111 24.74 22.35 15 0.0535

Table 7: KV-CFA for Netter’s adrenaline data.
Step Cell blanked out LR-X2 χ2 df p-value

0 none 112.87 113.71 24 < 0.0001
1 22221 93.26 87.57 23 < 0.0001
2 11112 81.85 74.39 22 < 0.0001
3 21122 66.34 62.44 21 < 0.0001
4 11111 58.51 51.13 20 < 0.0001
5 12212 41.30 39.39 19 0.0022
6 21121 35.01 33.24 18 0.0094
7 22222 28.21 26.37 17 0.0425
8 22121 21.58 18.66 16 0.1573

4 Discussion

The new version of CFA proposed in this article, functional CFA, selects types and an-
titypes iteratively, based on the contribution to the base model that is made by the cells
that constitute the types and antitypes. Over the course of the iteration, the role played
by individual cells changes. Therefore, the results of functional CFA can be expected to
differ from the results from standard CFA in three important respects.

First, the number of types and antitypes is typically smaller in functional CFA. With
each iteration step, the discrepancies from the base model can be expected to become
smaller, and not all cells that constitute types and antitypes in the first step of the iteration
– this step is identical to standard frequentist CFA – need to be declared structural cells.
Therefore, the number of types and antitypes from functional CFA can be smaller.

Second, the pattern of types and antitypes identified by functional CFA can differ from
the pattern from standard CFA. The reason is that model-data discrepancies are model-
specific. Although the structural part of the base model does not change over the course
of the iterative search for types and antitypes, the functional part will change because,
with each iteration step, the design matrix will include additional vectors. These vectors
are needed to specify which cells are blanked out. Because of these additional vectors,
the standardized residuals for the non-structural cells can change, and, thus, their role as
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type- or antitype constituting.
Third, functional CFA can fail. In contrast to standard CFA which always yields

results functional CFA can fail when the number of cells that need to be declared structural
is so large that the base model cannot be fit again. In this case, no cell can be said to
constitute a type or antitype, and researchers may consider a different variant of CFA.

The question arises when to select functional CFA over standard CFA. From our per-
spective, functional CFA does not replace standard CFA. The relationship of functional
to standard CFA is analogous to that of stepwise regression to standard regression. Func-
tional CFA is a stepwise, exploratory procedure for the search for types and antitypes.
The model is re-fit at each step of the iteration. Functional CFA is the method of choice
in exploratory research. In confirmatory research, standard CFA (or confirmatory CFA by
Kieser and Victor, 1999) can be used.

Functional CFA improves on standard CFA in three elementary ways. First, in stan-
dard CFA, the situation can occur that types and antitypes contradict a model that does
not even fit. In these cases, the status of types and antitypes as contradicting a base model
is doubtful. Second, in most cases, it can be expected that functional CFA is more parsi-
monious in that fewer cells need to be marked as constituting types and antitypes. Third,
functional CFA can fail in the sense that the base model cannot be improved to the extent
that it fits the cells that are not marked as structural. The main reason for this is that the
number of structural cells has becomes too large.

It should be noted that, for the current analyses and comparisons, the exploratory ver-
sion of Kieser and Victor’s CFA was used. The authors have also proposed a confirmatory
version that begins with blanking out an a priori determined cell. It is obvious that this
version can lead to dramatically different appraisals of the type/antitype structure in a ta-
ble because this cell is not necessarily the one with the largest discrepancy or the one that
leads, when blanked out, to the greatest reduction in the overall goodness-of-fit score.

This article presents the first step in the development of functional CFA. There are
many areas that need to be developed further. The following areas seem to be most im-
portant, at this point. First, optimal selection procedures for types and antitypes need to
be developed. From the application of stepwise procedures for the development of regres-
sion models (see Neter, Kutner, Nachtsheim, and Li, 2004; von Eye and Schuster, 1998),
we know that many methods are not guaranteed to provide optimal solutions. Specifi-
cally, the fact that regression parameter estimates can change in the presence/absence of
certain variables poses problems for the final selection of a parsimonious solution. In an
analogous fashion, the selection of cells to be blanked out can have an effect on the final
solution. For the present article, the largest residual was used as the sole criterion. Al-
ternative criteria are conceivable, for example the criterion that the number of eventually
retained types and antitypes be smallest, or the criterion that the largest residual for step
i + 1 be maximized/minimized at step i. Kieser and Victor use a strategy that focuses on
the overall goodness-of-fit. Hybrid criterion sets are conceivable.

Furthermore, non-log-linear base models can be considered. As was demonstrated by
von Eye (2002, 2004), classes of base models exist that are not log-linear. Examples of
such models include models that use a priori probabilities. Future research will have to
determine the usability of the functional CFA approach under these classes of base models
as well as in a Bayesian context.



172 Austrian Journal of Statistics, Vol. 37 (2008), No. 2, 161–173

Acknowledgements
The authors are indebted to Eun Young Mun for helpful discussions of earlier versions of
this article.

References
Agresti, A. (2002). Categorical Data Analysis (2nd ed.). Hoboken, NJ: Wiley.
Aksan, N., Goldsmith, H. H., Smider, N. A., Essex, M. J., Clark, R., Hyde, J. S., et

al. (1999). Derivation and prediction of temperamental types among preschoolers.
Developmental Psychology, 35, 958-971.

Bauer, P., and Hackl, P. (1987). Multiple testing in a set of nested hypotheses. Statistics,
18, 345-349.

Funke, S., Mair, P., and von Eye, A. (2007). cfa: R package for the
analysis of configuration frequencies [Computer software manual]. URL:
http://cran.R-project.org.

Goodman, L. A. (1991). Measures, models, and graphical displays in the analysis of
cross-classified data. Journal of the American Statistical Association, 86, 1085-
1111.

Gutiérrez-Peña, E., and von Eye, A. (2000). A Bayesian approach to configural frequency
analysis. Journal of Mathematical Sociology, 24, 151-174.

Kieser, M., and Victor, N. (1991). A test procedure for an alternative approach to config-
ural frequency analysis. Methodika, 5, 87-97.

Kieser, M., and Victor, N. (1999). Configural frequency analysis (CFA) revisited - a new
look at an old approach. Biometrical Journal, 41, 967-983.

Kieser, M., and Victor, N. (2000). An alternative approach for the identification of types
in contingency tables. Psychologische Beiträge, 42, 402-404.

Lehmacher, W. (1981). A more powerful simultaneous test procedure in configural fre-
quency analysis. Biometrical Journal, 23, 429-436.

Lienert, G. A. (1968). Die Konfigurationsfrequenzanalyse als Klassifikationsmeth-
ode in der klinischen Psychologie. [Configural frequency analysis as classification
method in clinical psychology.]. Paper presented at the 26. Kongress der Deutschen
Gesellschaft für Psychologie in Tübingen.
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