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Abstract: A goodness-of-fit test for testing the acceleration function in a
nonparametric life time model is proposed. For this aim the limit distribution
of an L2-type test statistic is derived. Furthermore, a bootstrap method is
considered and the power of the test is studied.
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1 Introduction
We consider a life time model which describes the following situation: By some covariate
X the time to failure may be accelerated or retarded relative to some baseline. Examples
for X are the dose of a drug, temperature, pressure or stress. The speeding up or slowing
down is accomplished by some positive function ψ, the acceleration function, and we may
write

T =
T0

ψ(X)
,

where T0 is the so-called baseline life time and T is the observable life time. We will
assume that T is an absolute continuous random variable (r.v.) and that the covariate X
does not depend on the time. For simplicity of presentation let X be one-dimensional.

For statistical application a suitable choice of the acceleration function is important
and the problem of testing ψ arises. A survey of test procedures for testing ψ under
different model assumptions is given in Liero and Liero (2008).

The aim of the present paper is to propose and to discuss in more detail test procedures
for testing whether the function ψ belongs to a pre-specified parametric class of functions

F = {ψ|ψ(·) = ψ(·; β), β ∈ Rd}.
The test is based on the transformation of the life time model to a regression model.

Then the test problem is a problem of checking whether a regression function has a para-
metric form or alternatively that ψ is nonparametric. As test statistic for this goodness-
of-fit test an integrated squared distance between regression estimators characterizing the
hypothesis and the alternative is discussed in Section 2. For the formulation of the corre-
sponding asymptotic α-test a limit theorem is stated. In Section 3 a bootstrap procedure
is proposed and illustrated. The behavior of the power under local alternatives is investi-
gated in Section 4. Proofs are given in Section 5.

2 Test Statistic and its Limit Distribution
Let (Ti, Xi), i = 1, . . . , n be independent copies of the pair (T, X). With the logarithm
transformation Yi = log Ti we obtain the nonparametric regression model

Yi = µ− log ψ(Xi) + εi
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where µ = E log T0, and since εi = log T0i − µ

Eεi = 0 and varεi = σ2.

With this transformation the testing problem

H : ψ ∈ F versus K : ψ 6∈ F

is transformed into
H : m ∈M versus K : m 6∈ M

with
M = {m|m(·) = m(·; β, µ) = µ− log ψ(·; β), β ∈ Rd, µ ∈ R}.

As test statistic we propose the weighted L2-distance between a parametric estimator
for the hypothetical m ∈M and a nonparametric estimator for m.

First, consider the parametric estimator in the hypothetical model

Yi = m(Xi; β, µ) + εi = µ− log ψ(Xi; β) + εi.

Assuming ψ(0) = 1 for identifiability we estimate β and µ by the least squares method,
that is

(β̂n, µ̂n) = argminβ,µ

n∑
i=1

(Yi − µ + log ψ(Xi; β))2.

To characterize the regression under the alternative we choose an estimator which is
good for all possible regression functions, i.e. we apply nonparametric techniques. Non-
parametric regression estimators can be written as weighted average of the response vari-
ables Yi,

m̂n(x) =
n∑

i=1

Wbni(x,X1, . . . , Xn)Yi.

Roughly speaking, if we estimate m at x the weights Wbni are chosen so that those Yi

for which Xi is near to x get a large weight. This estimation idea is realized by the
well-known Nadaraya-Watson kernel estimator with weights

Wbni(x,X1, . . . , Xn) =

1
bn

K
(

x−Xi

bn

)

1
nbn

∑n
j=1 K

(
x−Xj

bn

) .

Here K : R→ R is a kernel function, and bn is a sequence of bandwidths tending to zero
as n →∞.

Several asymptotic properties as consistency, asymptotic expression for the mean
squared error and limit theorems are investigated. For our purpose we formulate the fol-
lowing limit theorem about the asymptotic normality of the stochastic part of the weighted
integrated squared error

Qn =

∫

M

(
m̂n(x)− m̃n(x)

)2

a(x)dx,
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where

m̃n(x) =
n∑

i=1

Wbni(x,X1, . . . , Xn)m(Xi) =
n∑

i=1

Wbni(x,X)m(Xi).

Here a is a known weight function and M is a bounded interval; the symbol X stands for
the sample X1, . . . , Xn.

The limit behavior of Qn was considered by several authors such as Collomb (1976),
Liero (1992), and Härdle and Mammen (1993). For a proof of the version given here the
reader is referred to Liero (2008).

Theorem 1 Suppose that the following conditions are satisfied:1

(1) The density g of the covariate X is Lipschitz continuous in a neighborhood of M ;
further there exist constants c and C, such that

0 < c ≤ g(x) for all x ∈ M and g(x) ≤ C for all x ∈ R.

(2) The function ψ is Lipschitz continuous in a neighborhood of M .

(3) There exists a number ζ > 4 such that E| log T0|ζ < ∞.

(4) The kernel K has a compact support, is Lipschitz continuous and satisfies

sup
x
|K(x)| < ∞ and

∫
K(x)dx = 1.

(5) The weight function a is bounded and piecewise continuous.

(6) The bandwidth sequence bn is a sequence of positive numbers with

bn → 0 n1/2bn/ log n →∞.

Then
Qn − ηn

τn

D→ N(0, 1)

with

ηn = (nbn)−1κσ2

∫

M

g−1(x)a(x)dx and τ 2
n = (n2bn)−12κ∗σ4

∫

M

g−2(x)a2(x)dx,

where κ =
∫

K2(x)dx and κ∗ =
∫

(K ∗K)2(x)dx (∗ denotes the convolution).

In the limit theorem we consider only the stochastic part of the deviation of the esti-
mator m̂n from the underlying regression function. This is done in order to avoid the bias
of the nonparametric estimator. The consequence for the definition of our test statistic is
that we do not compare m̂n with the hypothetical regression with estimated parameters
m(·; β̂n, µ̂n) but with its smoothed version

m̃n(x; β̂, µ̂) =
n∑

i=1

Wbni(x,X)m(Xi; β̂, µ̂).

1With “D→” we denote convergence in distribution.
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In other words, the test statistic has the form

QH
n = Qn(β̂n, µ̂n) :=

∫

M

( n∑
i=1

Wbni(x,X)(Yi −m(Xi; β̂n, µ̂n))
)2

a(x)dx.

Now, from the theory of least squares estimation we know that under regularity con-
ditions the estimators β̂n and µ̂n are

√
n-consistent. Thus, the limit statement following

from Theorem 1 for Qn(β, µ) with fixed β and µ remains true if we replace the parameters
by these

√
n-consistent estimators and we have

QH
n − ηn

τn

D→ N(0, 1). (1)

To apply the limit statement (1) for the formulation of the asymptotic α-test we have to
replace the unknown variance σ2 and the marginal density g in the standardizing terms ηn

and τ 2
n by appropriate estimators. The function g can be estimated by a Rosenblatt-Parzen

kernel estimator. For the estimation of σ2 one can use the parametric estimator of the
variance based on the residuals in the hypothetical model. Another possibility is to choose
a nonparametric estimator. In Liero (2003) estimators for the variance in a homogeneous
nonparametric regression model are considered. One proposal is to estimate σ2 by

σ̂2
n =

1

n− 2

n∑
i=2

(Y[i] − Y[i−1])
2 with Y[j] = Yi iff Xi = Xj:n

where Xj:n denotes the jth order statistic.
Furthermore, note that under the assumptions of Theorem 1 the standardizing terms

are asymptotically equivalent to

ηn ≈ σ2

n∑
i=1

∫

M

W 2
bni(x,X)a(x)dx

and

τ 2
n ≈ 2σ4

n∑
i=1

n∑
j=1
i6=j

(∫

M

Wbni(x,X)Wbnj(x,X)a(x)dx

)2

.

Let η̂n and τ̂n be defined as ηn and τn with the unknown terms being replaced estima-
tors. We can formulate the following consequence:

Corollary 1 Suppose that the assumptions of Theorem 1 are satisfied and that ψ(·) =
ψ(·; β) for some β, i.e. H holds. Further assume the following

(1) The least square estimators β̂n and µ̂n fulfil

√
n(β̂n − β) = O(1), and

√
n (µ̂n − µ) = O(1) in probability. (2)
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(2) The function ψ is partially differentiable w.r.t. β. The functions Bj defined by

Bj(x; β) =
∂ log ψ(x; β)

∂βj

j = 1, . . . , d

are uniformly continuous with respect to both arguments and satisfy
∫

M

|Bj(x, β)|a(x)dx < ∞,

∫

M

|Bj(x, β)Bl(x, β)|a(x)dx < ∞ (3)

for j, l = 1, . . . , d.

Then
QH

n − η̂n

τ̂n

D→ N(0, 1). (4)

Based on (4) the following asymptotic α-test is proposed: Reject H if

QH
n > τ̂nzα + η̂n,

where zα is the (1− α)-quantile of the standard normal distribution.

3 A Bootstrap Proposal
The error which occurs by approximating the distribution of the test statistic by the stan-
dard normal distribution depends not only on the underlying distribution and the sample
size n but also on the smoothing parameter bn. Thus, it can happen, that this approxima-
tion is not good enough, even when n is large. So let us consider the following model-
based resampling procedure:

1. With the l.s.e. µ̂n and β̂n (constructed with the original data) define the modified
residuals

ri =
ei√

(1− hi)
=

yi − ŷi√
(1− hi)

,

where ŷi are the fitted values and hi are the leverages.

2. For r = 1, . . . , R:

(a) For i = 1, . . . , n:

i. Set x∗ri = xi.
ii. Randomly sample ”errors” ε∗ri from the centered modified residuals

r1 − r, . . . , rn − r.
iii. Set y∗ri = m(x∗ri; µ̂, β̂) + ε∗ri

(b) Use the sample (y∗ri, x
∗
ri) to construct the nonparametric estimate m̂∗

rn and the
smoothed estimated hypothetical regression m̃∗

rn.

(c) Evaluate the distances Q∗
rn and the standardized statistic

V ∗
rn =

Q∗
rn − η̂n

τ̂n

.
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3. Use the ordered V ∗
[1]n < V ∗

[2]n < · · · < V ∗
[R]n to define the critical value by V ∗

[(1−α)R]n,
and the hypothesis H is rejected if

Qn − η̂n

τ̂n

> V ∗
[(1−α)R]n.

The following figure illustrates this procedure. A sample of n = 100 exponential dis-
tributed r.v.’s with hypothetical acceleration function defined by ψ(x; β) = exp(−βx)
was generated. In the histogram of the R = 1000 bootstrapped V ∗’s the quantile V ∗

[0.95R]n,
the quantile based on the limit distribution and the value of the standardized test statistic
are given. The second figure shows the result for a simulation with the alternative acceler-
ation function ψ(x; β) = exp(−βx−sin(πx/2)). In this case the hypothesis is rejected by
the bootstrap procedure, in difference to the procedure based on the asymptotic quantile.
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In this simulation the bootstrap method works. Of course, an example is not a justifi-
cation of this bootstrap method in general. However, it shows that resampling can be an
appropriate tool. Therefore it seems to be useful and necessary to get a deeper theoretic
insight into resampling and simulation procedures to justify their application.

4 The Power under Local Alternatives

The proposed test is consistent, i.e. if the underlying acceleration function ψ does not
belong to the class F , then the power of the test converges to one as n →∞. To study the
distinguishability of the test it seems to be useful to investigate the behavior of the power
under local alternatives. That is we consider a sequence of acceleration functions, say
ψKn , such that ψKn /∈ F but ψKn tends to a function ψ ∈ F . Let us consider functions of
the form

ψKn(·) = ψ(·, β)∆n(·) with ∆n → 1 for n →∞,
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where β is arbitrarily fixed. For simplicity of presentation we assume that the parameter
β is known. The power of the proposed L2-test under this alternative is given by

πn = PKn

(
QH

n (µ̂n, β) > τ̂nzα + η̂n

)
, (5)

where PKn is the probability measure of the r.v. (T, X) with the conditional survival
function defined by S0(tψ

Kn(x)). We can formulate the following result:

Theorem 2 Suppose that the assumptions of Theorem 1 are satisfied and that ∆n is Lip-
schitz continuous. Then the power is characterized by the sequence

%n = nb1/2
n

∫

M

(log ∆n(x))2a(x)dx

in such a way that

lim
n

πn =





α if %n → 0
c∗ if %n → c > 0
1 if %n →∞,

(6)

where c∗ = 1− Φ(zα − c′) with c′ = c
(
2σ4κ∗

∫
M

g−2(x)a(x)dx
)−1/2

.

Let us consider the special case that the function ∆n is defined by ∆n(x)=exp(−λnD(x))
with λn being a sequence of positive numbers tending to zero. Then the ”crucial” se-
quence %n has the form

%n = nb1/2
n λ2

n

∫

M

D2(x)a(x)dx,

and the power tends to a nontrivial limit, i.e. limn πn ∈ (α, 1), if λn = n−1/2b
−1/4
n c.

The formula for λn suggests that a larger bandwidth would increase the power. How-
ever, a large bandwidth leads to oversmoothing. Moreover, the approximation of the dis-
tribution of the test statistic by the standard normal distribution improves if the bandwidth
tends to zero faster. Thus, the choice of the bandwidth requires some deeper investigation
but this issue is beyond the scope of this paper.

Remark: If we do not assume that the parameter β is known we have to study the
behavior of the least square estimator β̂n (constructed in the hypothetical model) under
the alternative. In general it will turn out that the

√
n-consistency does not remain true

and consequently the error of parameter estimation will occur within the power.

5 Proofs
For simplicity of notation we write θ = (β, µ)t and

Qn(θ) =

∫

M

(m̂n(x)− m̃n(x; θ))2a(x)dx.

Further, we use Kb(x) = b−1K(x/b) and gn(x) = EKbn(x−X1).
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Proof of Consequence 1: We have for QH
n = Qn(θ̂n)

QH
n − η̂n

τ̂n

=
τn

τ̂n

(
Qn(θ)− ηn

τn

+
3∑

r=1

ζrn

)

with

ζ1n = τ−1
n

∫

M

(m̃n(x; θ)− m̃n(x; θ̂n))2a(x)dx

ζ2n = 2τ−1
n

∫

M

(m̃n(x; θ)− m̃n(x; θ̂n))(m̂n(x)− m̃n(x; θ))a(x)dx

ζ3n = τ−1
n (ηn − η̂n) .

By Theorem 1 it is sufficient to show that τn/τ̂n
P→ 1 and ζrn

P→ 0.
Consider ζ1n. By Taylor expansion we obtain

ζ1n = τ−1
n

n∑
i=1

n∑
j=1

∇θm(Xi; θn)t(θ̂n − θ)∇θm(Xj; θ)
t(θ̂n − θ)

×
∫

M

Wbni(x,X)Wbnj(x,X)a(x)dx (7)

where∇θm denotes the (d+1)-dimensional vector of partial derivatives of m with respect
to θ, and θ is a point between θ and θ̂n. With

Akln(θ) =
n∑

i=1

n∑
j=1

∂m(Xi, θ)

∂θk

∂m(Xj, θ)

∂θl

∫

M

Wbni(x,X)Wbnj(x,X)a(x)dx

we have

ζ1n = τ−1
n

d+1∑

k=1

d+1∑

l=1

Akln(θn)(θ̂nk − θk)(θ̂nl − θl).

Since for k > 1 and l > 1

Akln(θ) =
n∑

i=1

n∑
j=1

Bk(Xi, β)Bl(Xj, β)

∫

M

Wbni(x,X)Wbnj(x,X)a(x)dx

≈ n−2

n∑
i=1

n∑
j=1

Bk(Xi, β)Bl(Xj, β)

∫

M

Kbn(x−Xi)Kbn(x−Xj)

gn
2(x)

a(x)dx

≈ (nbn)−1

∫

M

∫
Bk(x− ubn, β)Bl(x− ubn, β)

K2(u)

gn
2(x)

g(x− ubn)a(x)dudx

+

∫

M

∫
Bk(x− ubn, β)Bl(x− vbn, β)×

×K(u)K(v)

gn
2(x)

g(x− ubn)g(x− vbn)a(x)dudvdx.
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Akln = O(1) in probability by the uniform continuity of Bk in both arguments and
condition (3). Corresponding results hold for A11n, A1ln, and Ak1n. Thus, by assumption
(2) we have

ζ1n = O(n−1τ−1
n ) = O(b1/2

n ) in probability.

Let us consider the second term ζ2n. This term is equal to

τ−1
n

n∑
i=1

n∑
j=1

εi∇θm(Xj, θ)
t(θ̂ − θ)

∫

M

Wbni(x,X)Wbnj(x,X)a(x)dx.

By (2) and the assumptions on the density g we have (in probability)

n∑
i=1

n∑
j=1

εi∇θm(Xj, θ)
t(θ̂ − θ)

∫

M

Wbni(x,X)Wbnj(x,X)a(x)dx = O(n−1)

and

ζ2n = O(b1/2
n ) = o(1) in probability.

Under the stated conditions the Rosenblatt-Parzen estimator is uniformly consistent
with the rate O((nbn/ log n)−1/2 + bn). In Liero (2003) it is shown that

√
n(σ̂2

n − σ2) =

O(1) in probability. This implies immediately ζ3n
P→ 0 and τn/τ̂n

P→ 1.
Proof of Theorem 2: The power is given by

πn = PKn

(
QH

n (µ̂n, β) > τ̂nzα + η̂n

)

= PKn

(
QKn

n (µ̂n, β)− η̂n

τ̂n

> zα +
QKn

n (µ̂n, β)− QH
n (µ̂n, β)

τ̂n

)
.

Consider the difference QKn
n (µ̂n, β)− QH

n (µ̂n, β) = −(ξ1n + ξ2n), where

ξ1n =

∫

M

(m̃Kn
n (x)− m̃n(x))2a(x)dx

=
n∑

i=1

n∑
j=1

∫

M

Wbni(x,X)Wbnj(x,X)(log ∆n(Xi))(log ∆n(Xj))a(x)dx

=
n∑

i=1

∫

M

W 2
bni(x,X)(log ∆n(Xi))

2a(x)dx

+
n∑

i=1

n∑
j=1
i6=j

∫

M

Wbni(x,X)Wbnj(x,X)(log ∆n(Xi))(log ∆n(Xj))a(x)dx

≈ (nbn)−1

∫

M

(log ∆n(x))2 a(x)

gn(x)
dxκ +

∫

M

(log ∆n(x))2a(x)dx
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and

ξ2n = 2

∫

M

(m̂n(x)− m̃Kn
n (x))(m̃Kn

n (x)− m̃n(x))a(x)dx

= 2
n∑

i=1

n∑
j=1

log ∆n(Xi)εj

∫

M

Wbni(x,X)Wbnj(x,X)a(x)dx

≈ 2n−2

n∑
i=1

n∑
j=1

log ∆n(Xi)εj

∫

M

Kbn(x−Xi)Kbn(x−Xj)
a(x)

gn(x)2
dx. (8)

The conditions of the theorem imply that

ξ1n/τ̂n ≈ nb1/2
n

∫

M

(log ∆n(x))2a(x)dxc′/c = %nc
′/c.

Further, the variance of the term (8) is of order n−1
∫

M
(log ∆n(x))2a(x)dx. Hence ξ2n is

dominated by ξ1n and the desired statement follows.
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