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Abstract: Shapiro and Wilk (1965) proposed a highly intuitive goodness-of-
fit test of normality with nuisance location and scale parameters. The test has
received a considerable attention in the literature; its asymptotic null distribu-
tion is covered by the results of de Wet and Wenter (1973), and was recently
studied by Sen (2002).

We extend the Shapiro-Wilk test to the situation with nuisance regression
and scale, and construct a test based on the pair of the maximum likelihood
estimator and of a pseudo-L-estimator of the standard deviation in the linear
regression model. The asymptotic equivalence of these estimators is a char-
acteristic property of the normal distribution of the errors. We shall show
that the asymptotic null distribution of the test criterion under the hypothesis
of normality is similar to that of the Shapiro-Wilk test in the location-scale
model. The main tool of the proof is the second-order asymptotics of L-
estimators (see Jurečková and Sen, 1996) extended to pseudo-L-estimators
in regression model. The proposed test is numerically compared with a test
earlier proposed by the authors (see Jurečková et al., 2003), based on robust
estimators of scale.

Keywords: BLUE of Scale Parameter, Goodness-of-fit Test, MLE of Scale
Parameter, Shapiro-Wilk Test of Normality.

1 Introduction

Let Y1, . . . , Yn be independent observations following the linear model

Yi = θ + x′iβ + σei, i = 1, . . . , n, (1)

wherexi ∈ IRp, i = 1, . . . , n are given regressors, not all equal,θ ∈ IR1, β ∈ IRp

andσ > 0 are unknown intercept, regression and scale parameters, and the errorsei are
independent and identically distributed according to a continuous distribution functionF

with location 0 and scale parameter 1.
We want to test the hypothesis

H0 : F ≡ Φ, against H1 : F ≡ F1 6= Φ (2)
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whereΦ is the standard normal d.f.,F1 is a general nonnormal d.f., andθ, β, andσ are
treated as nuisance parameters.

For the location-scale model (i.e. whenβ = 0), Shapiro and Wilk (1965) considered
a goodness-of-fit test based on two estimators ofσ: Ln, the BLUE (best linear unbiased
estimator) underH0, andσ̂n, the maximum likelihood estimator (MLE) underH0.

If Y1, . . . , Yn arei.i.d. observations with the distributionN (µ, σ2), then the MLE ofσ
is σ̂n, where

σ̂2
n = n−1

n∑
i=1

(Yi − Ȳi)
2. (3)

Let (Y ∗
1 , . . . , Y ∗

n )′ be the vector of the corresponding order statistics. Then the best linear
unbiased estimate (BLUE)Ln of σ has the form

Ln =
n∑

i=1

aniY
∗
i (4)

where

a′ = (a1, . . . , an) = (M′
nV

−1
n Mn)−1(M′

nV
−1
n ), a′n1n = 0, (5)

whereMn = M denotes the vector of expected values of order statistics andVn = V is
the corresponding variance matrix. Shapiro and Wilk (1965) modified the BLUE ofσ to
Ln0 =

∑n
i=1 ani,0Y

∗
i where

a′n0 =
M′V−1

(M′V−1V−1M)1/2
; (6)

thena′n01n = 0 anda′n0an0 = 1. Ln0 is asymptotically equivalent to

Tn =
1

n

n∑
i=1

Φ−1

(
i

n + 1

)
Y ∗

i (7)

(see, e.g. Serfling, 1980, p. 267). Let us write the Shapiro-Wilk criterion in the form

Wn = n

(
1− L2

n0

σ̂2
n

)
. (8)

Two scale estimatorsLn0 and σ̂n are asymptotically (first-order) equivalent if and only
if F ≡ Φ, i.e. if the hypothesis of normality is true, while under non-normal alterna-

tive F1 with the finite second moment, the sequence
√

n
(
1− L2

n0

σ̂2
n

)
has a nondegenerate

asymptotic (normal) distribution. A similar idea was used by Jurečková and Sen (2001)
for testing a goodness-of-fit to a general symmetricF0; the test criterion was a difference
of two estimators of location which were asymptotically equivalent (of the second order)
if and only if F ≡ F0.
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2 Extension of the Shapiro-Wilk Test

In order to find a form of the statistic (8), easily extendable to the linear regression model
(1), consider the transformed errors of model (1)

e0
n =

√
n

n−1
(en − ēn) =

√
n

n−1
[In −Hn0]en (1)

where
Hn0 = n−11′n1n (2)

and write

Wn = n

{
1−

(
L0

n

S0
n

)2
}

, (3)

where

S0
n =

(
n−1(e0

n)′(e0
n)

) 1
2 , L0

n =
n∑

i=1

ani,0e
0
n:i (4)

are the corresponding pseudoestimators ofσ based one0
n, wheree0

n:1 ≤ . . . ≤ e0
n:n are or-

derede0
n1, . . . , e

0
nn. The asymptotic distribution of general quadratic statistics was studied

by de Wet and Wenter (1973), and specifically the asymptotic distribution of the Shapiro-
Wilk statistic underH0 was studied by Sen (2002); it turns out that, asn →∞,

Wn
D−→

∑

k≥1

λkZ
2
k (5)

whereλk are real numbers connected with the coefficients of the quadratic form, andZk

arei.i.d. N (0, 1) variables,k = 1, 2, . . . .

We propose an extension of the Shapiro-Wilk test to the linear regression model (1),
treatingθ, β andσ as nuisance. The test is based on the transformed residuals of theYi

with respect to the maximum likelihood estimators of the nuisance parameters. The MLE
of parametersθ, β, σ under normalΦ have the form

θ̂n = Ȳn = n−11′nYn = θ + ēn, ēn = n−11′nen;

β̂n = (X′
nXn)−1X′

nYn = β + σ(X′
nXn)−1en; (6)

σ̂2
n = n−1

n∑
i=1

(Yi − θ̂n − x′iβ̂n)2 = σ2n−1e′n[In −Hn0 −Hn]en,

where
Hn =

[
hn,ij

]n

i,j=1
= Xn(X′

nXn)−1X′
n, (7)

while Hn0 was defined in (2), andXn is then × p matrix with the rowsx′1, . . . ,x
′
n. We

shall assume thatX satisfies

X′1n = 0, Rank(Xn) = p < n− 1

and (8)

max
1≤i≤n

hn,ii = O(n−1) as n →∞ (the balanced design).
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The matricesHn0 andHn are both of ordern×n and idempotent; moreover, by (8), they
satisfy

Hn0Hn = 0 = HnHn0; (9)

and

Tr(Hn0) = 1 and Tr(Hn) =
n∑

i=1

hn,ii = p. (10)

Let r̃n denote the vector of residuals ofY with respect to the MLE ofθ andβ :

r̃n = Yn − θ̂1n −Xnβ̂n = σ[In −Hn0 −Hn]en = σẽn (say). (11)

Our test statistic will be based on the standardized residuals

rn = D
− 1

2
n r̃n = σD

− 1
2

n [In −Hn0 −Hn]en = σên (say) (12)

where
Dn = diag

(
1− 1

n
− hn,11, . . . , 1− 1

n
− hn,nn

)
. (13)

UnderH0, the vector̃rn has the normal distribution

Nn(0, σ2[In −Hn0 −Hn]) (14)

while the transformedrni have the normalN (0, σ2) distribution,i = 1, . . . , n. Moreover,
the correlation between therni is only of orderO(n−1). It follows from (8), (12) and (14)
thatIE(r̃ni − rni)

2 = O(n−2); hence, the difference of the linear estimates ofσ based on
rn and oñrn, respectively, will be onlyOp(n

−1).

We propose the goodness-of-fit test of the hypothesis (2) of the normality, based on
the observationsY1, . . . , Yn, following the linear regression model (1) with unknownθ, β

andσ. The test criterion is

Ŵn = n



1−

(
L̂n

ŝn

)2


 . (15)

where

ŝ2
n =

1

n

n∑
i=1

r2
ni

L̂n =
n∑

i=1

a0
nirn:i, (16)

are the residual variance and the linear estimator ofσ with ani,0, i = 1, . . . , n defined in
(6) andrn:i being the order statistics corresponding to the residuals (12). We shall show
that the asymptotic null distribution of̂Wn coincides with that ofWn; hence, the test
rejects the hypothesis of the normality on the asymptotic significance levelα provided

Ŵn ≥ τα (17)



P.K. Sen et al. 167

whereτα is the asymptotic critical value of the Shapiro-Wilk test of normality with nui-
sance location and scale. The coefficientsani,0, i = 1, . . . , n and the critical values of
the original Shapiro-Wilk test forn ≤ 50 are tabulated in Shapiro and Wilk (1965). For
n > 50, the critical values should be calculated, e.g., by a Monte Carlo procedure (see
Section 4 devoted to a numerical illustration). To justify this, we must prove the following
theorem:

Theorem 2.1 Let Y1, . . . , Yn follow the linear regression model (1) with the standard
normal distribution of the errorse1, . . . , en. Then,

Ŵn −Wn = op(n
−1) as n →∞. (18)

The proof is postponed to the Section 3.

Remark 2.1 Once we have established the asymptotic equivalence ofŴn and Wn, the
question of the form of the asymptotic distribution ofŴn becomes simpler, because we can
refer to the rich literature on the location/scale model (see, e.g. Shapiro, 1998). From the
point of view of applications, we are mainly concerned with the case of moderate or small
sample sizes. The relation (18) does not provide a good approximation for finite sample
sizes, when we can obtain the critical values by means of a simulation. For moderately
large sample sizes, we can adopt some resampling technique, to get a better approxima-
tion. A methodological justification for this approach was given by Huškov́a and Janssen
(1993), who validated the bootstrapping technique for degenerateU -statistics and related
functionals. Incidentally, jackknifing may not be applicable, as the anticipated laws are
not normal. More details can be found in Section 4 on numerical illustrations.

3 Proof of the Asymptotic Null Distribution of Ŵn

BecausêLn and ŝn are both scale-equivariant, we may putσ = 1, without loss of gen-
erality. Lete0

n andrn be the residuals given in (1) and (12), respectively. Then under
H0,

e0
n
D
= Nn(0,Λ0

n), rn
D
= Nn(0,Λn) (1)

where

Λ0
n =

n

n− 1
[In −Hn0] and Λn = D

− 1
2

n [In −Hn0 −Hn]D
− 1

2
n . (2)

Notice that the diagonal elements ofΛ0
n and ofΛn are all equal to 1. (1) and (12) imply

that

rn − e0
n ∼ Nn(0,Γn) (3)

where

Γn =
[
γn,ij

]n

i,j=1
and max

1≤i≤n
|γn,ij| = O(n−1) (4)
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by (8). This together with the Bernstein inequality implies that

max
1≤i≤n

|rni − e0
ni| = O

(√
log n

n

)
a.s., as n →∞ (5)

and hence also

max
1≤i≤n

|rn:i − e0
n:i| = O

(√
log n

n

)
a.s., as n →∞ (6)

wherern:1 < . . . < rn:n ande0
n:1, . . . < e0

n:n are the sets of order statistics forrn ande0
n,

respectively. Denote
Zn(x) = n

3
4 [F̂n(x)− F 0

n(x)], x ∈ IR (7)

where

F 0
n(x) = 1

n

n∑
i=1

I[e0
ni ≤ x], F̂n(x) = 1

n

n∑
i=1

I[rni ≤ x], x ∈ IR (8)

are the respective empirical distribution functions of the residuals. ThenIEZn(x) = 0 and

IEZ2
n(x) = n−

1
2

n∑
i=1

[2Φ(x)− 2IP (rni ≤ x, e0
ni ≤ x)]

+n−
1
2

n∑

i6=j

[
IP (rni ≤ x, rnj ≤ x)) + IP (e0

ni ≤ x, e0
nj ≤ x) (9)

−IP (rni ≤ x, e0
nj ≤ x)− IP (e0

ni ≤ x, rnj ≤ x)
]
, x ∈ IR

and, in view of (1), (12) and (1)-(4), this further implies that

IEZ2
n(x) ≤ Kφ(x){1 +O(n−

1
2 )}, x ∈ IR, K < ∞, φ(x) =

dΦ(x)

dx
. (10)

Similarly we can find the upper bound for the2k-th moment ofZn(x) :

IEZ2k
n (x) ≤ K∗(φ(x))k{1 +O(n−

1
2 )}, x ∈ IR (11)

asn → ∞, whereK∗ is a finite constant, independent ofn (but it may depend onk).
Hence, by (7) and (11),

IP
{

n
5
8 |F̂n(x)− F 0

n(x)| > ε
}
≤ n−

k
4 C∗(ε) (12)

for everyε > 0 and someC∗(ε) < ∞. Specifically, using (12) withk > 8, we obtain

max
1≤i≤n

{
n

5
8

∣∣∣F̂n

(
i

n+1

)− F 0
n

(
i

n+1

)∣∣∣
}

= o(1) a.s., as n →∞ (13)

and because botĥFn andF 0
n are monotone, we conclude from (13) that

sup
x∈IR

{
n

5
8 |F̂n(x)− F 0

n(x)|
}

= o(1) a.s., as n →∞, (14)
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hence
max
1≤j≤n

|F 0
n(rn:j)− j

n
| = o

(
n−

5
8

)
a.s. (15)

Because of the identity

F 0
n(x) = 1

n

n∑
i=1

I

[
ei ≤

√
n−1

n
x + ēn

]
= Fn

(√
n−1

n
x + ēn

)
,

the Bahadur representation (see Bahadur, 1966) yields

sup
{ ∣∣∣F 0

n(x)− F 0
n(y)− Φ

(√
n−1

n
x + ēn

)
+ Φ

(√
n−1

n
y + ēn

)∣∣∣

: |x− y| ≤ n−
1
2 (log n)

1
2

}
= O

(
n−

3
4 log n

)
a.s. as n →∞. (16)

Insertingx = rn:j, y = e0
n:j in (16), we obtain with the aid of (6) and (13) that

max
1≤j≤n

{∣∣∣∣Φ
(√

n−1
n

rn:j + ēn

)
− Φ

(√
n−1

n
e0

n:j + ēn

)∣∣∣∣
}

= max
1≤j≤n

{∣∣∣∣Φ
(√

n−1
n

rn:j + ēn

)
− Φ(en:j)

∣∣∣∣
}

(17)

= max
1≤j≤n

{∣∣∣∣Φ
(√

n−1
n

rn:j + ēn

)
− Un:j

∣∣∣∣
}

= o
(
n−

5
8

)
a.s. as n →∞

whereUn:j is the order statistic corresponding to the sample of sizen from the uniform
R[0, 1] distribution. Then (17) implies

max
n

15
16≤j≤n−n

15
16

|rn:j − e0
n:j| = o

(
n−

1
2
− 1

15

)
a.s. as n →∞. (18)

For j < n
15
16 or j > n− n

15
16 we shall use the approximation (6).

It follows from (3) and (15) that

L0
n

S0
n

=

(
1− Wn

n

) 1
2

= 1− Wn

2n
+Op(n

−2)

and (19)

L̂n

ŝn

= 1− Ŵn

2n
+Op(n

−2)

and it further follows from (4), (6) and (12) that

ŝ2
n = S02

n − 1

σ2n

{(
β̂ − β

)′
(X′

nXn)
(
β̂ − β

)}
+ op(n

−1) (20)

where 1
σ2

(
β̂ − β

)′
(X′

nXn)
(
β̂ − β

)
= e′nHnen = Op(1). Therefore,

S02
n = ŝ2

n +
1

n
(e′nHnen) + op(n

−1), (21)
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and hence,

S0
n = ŝn

{
1 +

1

2

e′nHnen

e′n(I−Hn0)en

+ op(n
−1)

}
(22)

By (19),

Ŵn −W 0
n = 2n

{
L0

n

S0
n

− L̂n

ŝn

}
+ op(1) =

2n

S0
n

{
L0

n −
S0

n

ŝn

L̂n

}
+ op(1) (23)

=
2n

S0
n

{
L0

n −
[
1 +

1

2

e′nHnen

e′n(I−Hn0)en

+ op(n
−1)

]
L̂n

}
+ op(1)

=
2n

S0
n

(L0
n − L̂n)− e′nHnen

s03
n

L̂n + op(1).

SinceS0
n

p−→ 1 andL0
n

p−→ 1 asn → ∞ and L̂n = L0
n + (L̂n − L0

n), it suffices to
show thatL̂n − L0

n

p−→ 0 asn →∞. Denoteξni = Φ−1
(

i
n+1

)
, i = 1, . . . , n. Using the

approximation (7), we have

L̂n − L0
n =

1

n

n∑
i=1

(rni − e0
ni)ξni

=
1

n

n∑
i=1

(rni − e0
ni)

{
1

2
(rni + e0

ni)−
[
1

2
(rni + e0

ni)− ξni

]}
(24)

=
1

2n

(
n∑

i=1

r2
ni −

n∑
i=1

e02
ni

)
− 1

n

n∑
i=1

(rni − e0
ni)

[
1

2
(rni + e0

ni)− ξni

]

=
1

2
(ŝ2

n − S02
n )−Bn (say).

Using (22), the first term on the right-hand side of (24) is

− 1

2n
(e′nHnen) + op(n

−1). (25)

Applying the Cauchy-Schwarz inequality toBn, we obtain that

B2
n ≤

{
1

n

n∑
i=1

(rni − e0
ni)

2

} {
1

n

n∑
i=1

[
1

2
(rni + e0

ni)− ξni

]2
}

. (26)

Using (5) fori < n
15
16 andi > n− n

15
16 , and (18) forn

15
16 ≤ i < n− n

15
16 , we obtain

1

n

n∑
i=1

(rni − e0
ni)

2 = O
(
n−1− 1

16 log n
)

. (27)

On the other hand, it follows from (5) and from the convergence properties of thee0
n:i

proved in Hoeffding (1953) that

1

n

n∑
i=1

{
1

2
(rn:i + e0

n:i)− ξni

}2

= Op

(
log n

n

)
, as n →∞. (28)



P.K. Sen et al. 171

Therefore, it follows from (26)–(28)

B2
n = Op

((
log n

n2

)2
1

n
1
16

)
= op

(
1

n2

)
, as n →∞. (29)

As a result,

L̂n − L0
n = − 1

2n
(e′nHnen)− op

(
1

n

)
, (30)

so that by (23) and (30),

Ŵn −Wn = op

(
1

n

)
, (31)

and that completes the proof of the theorem. ¤

4 Numerical Illustration

We shall illustrate the performance of the proposed test on simulated regression models.
As the regression matrix is used the Mayer matrix (based on real historical physical mea-
surements) of order (27×3), or its multiple, with the first column1n; the value of the
nuisance regression parameter vector isβ = (14.5, 1.542417, 0.05)′. For more details on
this model we refer to Jurečková et al. (2003).

In our numerical experiment, the errors were generated by sampling from the follow-
ing alternative densities:

normalN (0, 1) : f(x) = 1√
2π

e−
x2

2 normalN (0, 16) : f(x) = 1
4
√

2π
e−

x2

32

logistic (0, 1) : f(x) = e−x

(1+e−x)2
logistic (0, 4) : f(x) = e−x/4

(1+e−x/4)2

Laplace(0, 1) : f(x) = 1
2
e−|x| Laplace(0, 4) : f(x) = 4

2
e−4|x|

Cauchy: f(x) = 1
π(1+x2)

.

In order to gain an insight into larger sample size behavior of our proposed test, we also
replicate the Mayer design matrix 4, 8, 16 and 32 times, resulting in the design matrix
of 108, 216, 432 and 864 rows, respectively; in each case the errorsei are generated to
insure independence.

1000 replications were simulated for each case. Based on these data, we calculated
the test statistics

Ŵn = n

(
1− L̂2

n

ŝ2
n

)
= n

(
1− (

∑n
i=1 ani,0rn:i)

2

∑n
i=1 r2

ni

)
, (1)

whereani,0 andrni are defined in (6) and (12), respectively,i = 1, . . . , n.

Because the asymptotic null distributions of the test statisticsŴn and coefficients
(a1, . . . , an) are not known forn > 50, they were approximated in the following way:



172 Austrian Journal of Statistics, Vol. 32 (2003), No. 1&2, 163-177

The coefficientsai, i = 1, . . . , n, n > 50 were approximated as suggested in Shapiro
and Wilk (1965); namely, we calculated

â∗i = 2Mi (i = 2, 3, . . . , n− 1)

and

â2
1 = â2

n =
Γ

(
1
2
(n + 1)

)
√

2Γ
(

1
2
n + 1

) .

The coefficientŝa1, ân are directly usable but̂a∗i i = 2, . . . , n− 1, must be normalized in
the following way:

âi = â∗i

√
1− 2a2

1∑n−1
i=2 â∗2i

(i = 2, . . . , n− 1)

The expected valuesMi of order statistics,i = 2, . . . , n−1, were computed by the numeri-
cal integration. A similar approach was used by Royston (1982b), Royston (1982a), Roys-
ton (1995), and his algorithm is used in many software packages offering the Shapiro-
Wilk test.

The distribution of the test statistic was then approximated by the following Monte
Carlo procedure: For a fixedn, a random sample of sizen from the normal distribution
was generated, and̂Wn was computed with the coefficientsâi, i = 1, . . . , n. This random
experiment was repeated 100 000 times. For the sake of comparison, the nonparametric
test, proposed by the authors in Jurečková et al. (2003) was performed for testing the
normality on the same data. This test is based on the criterion

T ∗
n = n

1
2

{
log

Sn0

Sn1

− log ξ(F0)

}

(see Jurěcková et al., 2003,for the details of the notation). Tables 1–6 give the numbers of
rejections ofH0 (among 1000 tests) for both test criteria described above. Tables 5 and 6
are based on the same vectors of the simulated errors, for the sake of comparison; while
Table 5 is based on the sixteenfold Mayer matrix, the slope columns of design matrix
used for Table 6 are simulated from the uniform distribution and standardized to have an
average zero.

4.1 Conclusion

The numerical results illustrate that the Shapiro-Wilk type test distinguishes well the nor-
mal distribution of the errors in the linear regression models from the above distribution
shapes. With its easy calculation and a high efficiency, the proposed test of the Shapiro-
Wilk type is practically appealing.

Notice that for moderate samples the empirical power of the Shapiro-Wilk test is
higher than the power of the test proposed in Jurečková et al. (2003) (cf. Tables 1 and
2), while for larger sample it seems to be an opposite case (cf. Tables 3–6). A comparison
of Tables 5 and 6 shows that this is not due to the choice of the matrix. This fact can be
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explained by the way how were both tests performed: While the Shapiro-Wilks critical
values were calculated for each fixedn in the above manner, the critical values of the
test of Jurěcková et al. (2003) are purely asymptotic; and the asymptotics naturally works
better for largern.

Table 1: Numbers of rejections ofH0 among 1000 cases on levelα for Mayer matrix
(27×3)

α=0.01 α=0.05 α=0.1

Distribution of errors Ŵn T ∗n Ŵn T ∗n Ŵn T ∗n

Normal N(0, 1) 19 12 43 60 102 143

Normal N(0, 16) 9 12 52 57 91 119

Logistic (0, 1) 42 22 126 76 179 137

Logistic (0, 4) 42 18 111 76 180 131

Laplace (0, 1) 131 53 275 127 361 210

Laplace (0, 4) 138 50 255 120 324 214

Cauchy (0, 1) 828 624 900 720 922 763

Table 2: Numbers of rejections ofH0 among 1000 cases on levelα for quadruple Mayer
matrix (108× 3)

α=0.01 α=0.05 α=0.1

Distribution of errors Ŵn T ∗n Ŵn T ∗n Ŵn T ∗n

Normal N(0, 1) 8 12 44 60 104 143

Normal N(0, 16) 8 12 47 57 95 119

Logistic (0, 1) 51 22 119 76 174 137

Logistic (0, 4) 44 18 112 76 158 131

Laplace (0, 1) 333 53 499 127 581 210

Laplace (0, 4) 354 50 529 120 606 214

Cauchy (0, 1) 1000 624 1000 720 1000 763
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Table 3: Numbers of rejections ofH0 among 1000 cases on levelα for eightfold Mayer
matrix (216× 3)

α=0.01 α=0.05 α=0.1

Distribution of errors Ŵn T ∗n Ŵn T ∗n Ŵn T ∗n

Normal N(0, 1) 10 9 48 56 95 108

Normal N(0, 16) 10 14 50 58 100 114

Logistic (0, 1) 52 88 95 205 146 305

Logistic (0, 4) 44 86 99 196 143 288

Laplace (0, 1) 543 664 727 837 783 891

Laplace (0, 4) 560 685 718 831 797 890

Cauchy (0, 1) 1000 1000 1000 1000 1000 1000

Table 4: Numbers of rejections ofH0 among 1000 cases on levelα for sixteenfold Mayer
matrix (432× 3)

α=0.01 α=0.05 α=0.1

Distribution of errors Ŵn T ∗n Ŵn T ∗n Ŵn T ∗n

Normal N(0, 1) 10 16 57 54 103 109

Normal N(0, 16) 8 9 55 51 100 100

Logistic (0, 1) 55 198 96 388 146 493

Logistic (0, 4) 47 183 95 367 133 487

Laplace (0, 1) 866 966 939 991 961 995

Laplace (0, 4) 854 962 906 990 937 995

Cauchy (0, 1) 1000 1000 1000 1000 1000 1000
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Table 5: Numbers of rejections ofH0 among 1000 cases on levelα for 32×Mayer matrix
(864× 3)

α=0.01 α=0.05 α=0.1

Distribution of errors Wn Tn Wn Tn Wn Tn

Normal N(0, 1) 18 15 59 49 105 109

Normal N(0, 16) 14 12 53 49 107 100

Logistic (0, 1) 76 459 134 688 205 770

Logistic (0, 4) 72 427 132 652 172 756

Laplace (0, 1) 991 1000 999 1000 1000 1000

Laplace (0, 4) 991 1000 998 1000 998 1000

Cauchy (0, 1) 1000 1000 1000 1000 1000 1000

Table 6: Numbers of rejections ofH0 among 1000 cases on levelα for simulated matrix
(864× 2)

α=0.01 α=0.05 α=0.1

Distribution of errors Wn Tn Wn Tn Wn Tn

Normal N(0, 1) 16 11 61 50 105 86

Normal N(0, 16) 9 7 52 47 100 96

Logistic (0, 1) 78 452 141 678 200 763

Logistic (0, 4) 71 403 131 630 181 735

Laplace (0, 1) 993 999 999 1000 1000 1000

Laplace (0, 4) 990 1000 996 1000 998 1000

Cauchy (0, 1) 1000 1000 1000 1000 1000 1000
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J. Jurěcková and P.K. Sen.Robust Statistical Procedures: Asymptotics and Interrelations.
J. Wiley, New York, 1st edition, 1996.
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R.J. Serfling.Approximation Theorems of Mathematical Statistics. J. Wiley, New York,
1st edition, 1980.



P.K. Sen et al. 177

S.S. Shapiro. Distribution assessment. In N. Balakrishnan and C.R. Rao, editors,Hand-
book of Statistics, Vol 17: Order Statistics: Applications, pages 475–494. Elsevier,
Amsterdam, 1998.

S.S. Shapiro and M.B. Wilk. An analysis of variance for normality (complete samples).
Biometrika, 52:591–611, 1965.

Authors’ addresses:

Pranab Kumar Sen Jana Jurečková
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