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Abstract: Shapiro and Wilk (1965) proposed a highly intuitive goodness-of-
fit test of normality with nuisance location and scale parameters. The test has
received a considerable attention in the literature; its asymptotic null distribu-
tion is covered by the results of de Wet and Wenter (1973), and was recently
studied by Sen (2002).

We extend the Shapiro-Wilk test to the situation with nuisance regression
and scale, and construct a test based on the pair of the maximum likelihood
estimator and of a pseudo-L-estimator of the standard deviation in the linear
regression model. The asymptotic equivalence of these estimators is a char-
acteristic property of the normal distribution of the errors. We shall show
that the asymptotic null distribution of the test criterion under the hypothesis
of normality is similar to that of the Shapiro-Wilk test in the location-scale
model. The main tool of the proof is the second-order asymptotics of L-
estimators (see Jutkova and Sen, 1996) extended to pseudo-L-estimators
in regression model. The proposed test is numerically compared with a test
earlier proposed by the authors (see dkosa et al., 2003), based on robust
estimators of scale.

Keywords: BLUE of Scale Parameter, Goodness-of-fit Test, MLE of Scale
Parameter, Shapiro-Wilk Test of Normality.

1 Introduction

LetYy,...,Y, be independent observations following the linear model
Vi=0+x.8+0e;,i=1,...,n, (1)
wherex; € R, i = 1,...,n are given regressors, not all equalc R', 8 ¢ R’

ando > 0 are unknown intercept, regression and scale parameters, and thecean@s
independent and identically distributed according to a continuous distribution furfction
with location 0 and scale parameter 1.

We want to test the hypothesis

Hy: F=®, against H: F=F, #® (2)
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where® is the standard normal d.ff; is a general nonnormal d.f., add 3, ando are
treated as nuisance parameters.

For the location-scale model€. when3 = 0), Shapiro and Wilk (1965) considered
a goodness-of-fit test based on two estimators:of ,,, the BLUE (best linear unbiased
estimator) undeH,, anda,,, the maximum likelihood estimator (MLE) undgk,.

If Y1,...,Y, arei.i.d. observations with the distributiok”(x, o%), then the MLE ofr
is 7,,, where

ﬁ=n*§]n—zﬂ 3)

Let (Y}, ..., Y.") be the vector of the corresponding order statistics. Then the best linear
unbiased estimate (BLUH),, of ¢ has the form

n

Ly=Y ayY; (4)

=1

where
a = (ay,...,a,) = (M, V,'M,) "M, V1), a/1,=0, (5)

whereM,, = M denotes the vector of expected values of order statisticd/ang V is
the corresponding variance matrix. Shapiro and Wilk (1965) modified the BLUE of
LnO = Z?:l ani701/;* where

MV~ '
(M/V-1V-1M)Y?’

/
anO

(6)

thena/ 1, = 0 andal a,o = 1. L, is asymptotically equivalent to

1l & i
T, ==Y & Y 7
- (n+1)z (7)

i1=1

(see, e.g. Serfling, 1980, p. 267). Let us write the Shapiro-Wilk criterion in the form

L2
Wn:n(l— &T;)). (8)

n

Two scale estimatorgé,,, andg,, are asymptotically (first-order) equivalent if and only

if FF = &, i.e. if the hypothesis of normality is true, while under non-normal alterna-
tive F; with the finite second moment, the sequeg@(l — L(f—%(’) has a nondegenerate
asymptotic (normal) distribution. A similar idea was used bg/ dkogd and Sen (2001)

for testing a goodness-of-fit to a general symmefijcthe test criterion was a difference

of two estimators of location which were asymptotically equivalent (of the second order)

ifand only if ' = Fj,.
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2 Extension of the Shapiro-Wilk Test

In order to find a form of the statistic (8), easily extendable to the linear regression model
(1), consider the transformed errors of model (1)

eg = #(en - én) = %[In - HnO]en (1)
where
HnO - 71]-/n]-n (2)
and write
L0\ ?
W, =n 1—(8—5) , (3)
where n
S0 = (nMel)(e))?, L0 = > onia (4)

are the correspondlng pseudoestimators based oraaO Wheree (<. < areor-
derede?,, ..., e . The asymptotic distribution of general quadratlc statlstlcs was studied

by de Wet and Wenter (1973), and specifically the asymptotic distribution of the Shapiro-
Wilk statistic unde, was studied by Sen (2002); it turns out thatpas> o,

W, Z M2 (5)
k>1
where )\, are real numbers connected with the coefficients of the quadratic forn¥,and
arei.i.d. N(0,1) variablesf = 1,2, .. ..

We propose an extension of the Shapiro-Wilk test to the linear regression model (1),
treatingd, B ando as nuisance. The test is based on the transformed residuals¥f the
with respect to the maximum likelihood estimators of the nuisance parameters. The MLE
of parameters, 3, o under normafb have the form

=Y,=n""1,Y, =0 +¢e, e, =n""1e,;

%>

= (X, X,) 7' XY, = B+ o(X,X,) ey (6)

Q>

n

52 ="ty (Yi— 0, —xiB,)* = o*n"'e}[I, — Hy — HyJe,,
=1

where

Hn - [hn,ij] ! - Xn(X/an)_lxgw (7)
ij=1
while H,,, was defined in (2), an&,, is then x p matrix with the rowsx’,...,x,. We
shall assume th&X satisfies

X1, =0, Rank(X,)=p<n-—1
and (8)

max hnii = O(n™') asn — oo (the balanced design).
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The matriced,,, andH,, are both of orden x n and idempotent; moreover, by (8), they
satisfy

HnOHn =0= HanO; (9)

and .
Tr(Hyo) =1 and Tr(H,) = Y fnsi = p. (10)

i=1

Letr,, denote the vector of residuals Wfwith respect to the MLE of andg :
£, =Y, — 01, — X,8, = o[l, — Hy — H,le, = 0, (say). (11)
Our test statistic will be based on the standardized residuals
r, = Dy %5, = 0Dy [, — Hy — Hyle, = 06, (say) (12)

where
D, =diag (1 =2 —hp11,..., 1= L — ) - (13)

UnderH,, the vector,, has the normal distribution
N,(0,0%[1, — H,o — H,]) (14)

while the transformed,,; have the norma\N (0, o2) distribution,i = 1, ..., n. Moreover,
the correlation between theg; is only of orderO(n~1). It follows from (8), (12) and (14)
that B (7,; — ) = O(n~?); hence, the difference of the linear estimates diased on
r,, and onr,,, respectively, will be onyO,(n1).
We propose the goodness-of-fit test of the hypothesis (2) of the normality, based on

the observation¥y, . .., Y,,, following the linear regression model (1) with unknotng
ando. The test criterion is
~ 2
W,=n{1l- (é’") . (15)

where

1 n
2+ 2
Sn - n Z rm
=1
Z-/n - agﬂ“n:z‘, (16)
=1
are the residual variance and the linear estimater with a,,, o, : = 1,...,n defined in
(6) andr,,.; being the order statistics corresponding to the residuals (12). We shall show
that the asymptotic null distribution df/,, coincides with that ofit,,; hence, the test
rejects the hypothesis of the normality on the asymptotic significancedgwedvided

—~

W, > 7, (17)
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wherer, is the asymptotic critical value of the Shapiro-Wilk test of normality with nui-
sance location and scale. The coefficiemts), ¢« = 1,...,n and the critical values of

the original Shapiro-Wilk test fon < 50 are tabulated in Shapiro and Wilk (1965). For

n > 50, the critical values should be calculated, e.g., by a Monte Carlo procedure (see
Section 4 devoted to a numerical illustration). To justify this, we must prove the following
theorem:

Theorem 2.1 Let Y7, ..., Y, follow the linear regression model (1) with the standard
normal distribution of the errors,, ..., ¢,. Then,
W, — W, = o,(n”!) as n — oo. (18)

The proof is postponed to the Section 3.

Remark 2.1 Once we have established the asymptotic equivalendz/ﬁn(ﬁnd W,, the
guestion of the form of the asymptotic distributiorﬁ\(j:;c becomes simpler, because we can
refer to the rich literature on the location/scale model (see, e.g. Shapiro, 1998). From the
point of view of applications, we are mainly concerned with the case of moderate or small
sample sizes. The relation (18) does not provide a good approximation for finite sample
sizes, when we can obtain the critical values by means of a simulation. For moderately
large sample sizes, we can adopt some resampling technique, to get a better approxima-
tion. A methodological justification for this approach was given bgkina and Janssen
(1993), who validated the bootstrapping technique for degenérettatistics and related
functionals. Incidentally, jackknifing may not be applicable, as the anticipated laws are
not normal. More details can be found in Section 4 on numerical illustrations.

3 Proof of the Asymptotic Null Distribution of /Wn

Becausel,, and s, are both scale-equivariant, we may put= 1, without loss of gen-
erality. Lete! andr, be the residuals given in (1) and (12), respectively. Then under
HOv

e® ZN,(0,A%), 1,2 N,(0,A,) (1)

where

1

" _[I,-H, and A, = D, ?[T, — H, — H,|D;". )

Al =

n

n—1

Notice that the diagonal elements Af and ofA,, are all equal to 1. (1) and (12) imply
that

r, —e) ~ N, (0,T,) (3)
where
T, = {%’”L,jzl and max Tnij| = O(n™") (4)
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by (8). This together with the Bernstein inequality implies that

0 /1
max |Tni — €,;] = O ( %) a.s., asn — oo (5)

and hence also

max |7, — eo,| = O < log—") a.s., asn — oo (6)

1<i<n n

wherer,.; < ... < r,, andel ... < el  are the sets of order statistics fgrande?,
respectively. Denote

Zn(x) = ni[Fy(x) = F(2)), 2 € R (7)
where . .
Fg(x):%ZI[egigx], Fn(x):%ZI[rmgx], re R (8)

are the respective empirical distribution functions of the residuals. H¥én(z) = 0 and

n

EZX(x)=n"% Y [20(z) — 2P(ry < 2,¢0; < o))

) ~ne
i=1

n

tnE Z [P(rm <@, <))+ P, < x,ed . < 1) (9)
i#]
(s 3,6, < 0) = P&, St mg <3), 1€ R

' nyg

and, in view of (1), (12) and (1)-(4), this further implies that

EZ*(z) < Ko(z){1 + (’)(n*%)}, r€ R, K <oo, ¢(x) = di(f) (10)
Similarly we can find the upper bound for theé-th moment ofZ,, (z) :
EZ}(x) < K*(¢(2)) {1+ O(n"2)}, v € R (12)

asn — oo, where K* is a finite constant, independent of(but it may depend o).
Hence, by (7) and (11),

P {n%\ﬁn@) ~ )] > g} <niCH(e) (12)
for everye > 0 and some~* () < oo. Specifically, using (12) witlk > 8, we obtain
max {ng F, (nil) — F? (#1) } =o(l)a.s., asn — oo (13)

and because bothi, andF® are monotone, we conclude from (13) that

sup {n%|ﬁn(x) - Fg(x)|} =o(1) a.s., asn — oo, (14)

TER
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hence
max |F)(r;) — 1| = o (n_§) a.s. (15)

1<j<n

Because of the identity

R =23 asy2are] = n (et
i=1
the Bahadur representation (see Bahadur, 1966) yields

sup{ Fg(:c)—FS(w—‘I)(\/%ﬂ”Fén) +(I)(\/§y+én>

Cle—y| < n_%(log n)%} =0 (n_% log n) a.s. asn — oo. (16)

Insertingz = r,,.;, y = e?m. in (16), we obtain with the aid of (6) and (13) that

max {’CD (w/”—_lrn:j + en) — & (\/“—_1627 + en> ‘}
1<j<n n no
— n—1 LB _ )
- { "D (V w ) Bens) } .
= max {'CID (\/n—lrn:j + én) —Up;j } =0 (nfg) a.s. asn — oo
1<j<n n

whereU,,.; is the order statistic corresponding to the sample of sis®m the uniform
RJ0, 1] distribution. Then (17) implies

11
| max Tnij — 62:j| =0 (n 2 15) a.s. asn — oo. (18)
nT6 <j<n—nT6

Forj < nis orj >n — nis we shall use the approximation (6).
It follows from (3) and (15) that

0 f
B (1) e o0

N

S_g n 2n
and (19)
IA/n o /Wn -2
;. ol T Op(n™7)
and it further follows from (4), (6) and (12) that

1 -~ ! ~

22 _ 02 ~ - / . —1

=5 - — {(B 8) (X,X,) (B B)} +o,(n ") (20)

where; (B — ﬁ)l (X! X,) (E — ﬁ) =e/ H,e, = O,(1). Therefore,

322 = §721 + —(e/ H,e,) + op(n_l), (21)

S|
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and hence,

By (19),

— LY L, 2 SO .
Wn—WS:2n{S—g—§ }+0p(1):—n{L2— ”Ln}+0p(1) (23)

2 1 e He, R
= [ e o L+ o)

50 3¢/ (I— Hyoen

2n - e H,e, -
SinceS? - 1 andL? > 1asn — oo andL, = LY + (L, — L?), it suffices to
show thatl,, — L 2."0asn — co. Denotet,; — &' (+5).i=1,...,n. Using the

approximation (7), we have

n

1

=23 = el {0k e = [+ )~ ]} (24)

= %( —53%) = B, (say).
Using (22), the first term on the right-hand side of (24) is
1, _
_%(eanen) + 0p(n 1)' (25)

Applying the Cauchy-Schwarz inequality 8),, we obtain that

B < {% Z(Tm' - 621')2} {% Z l%(rm +e0;) — ni } (26)

i=1 i=1

Using (5) fori < n1é andi > n — n1¢, and (18) forn1¢ < i < n — nis, we obtain

l — -1
- Zz_l:(rm- —el)P=0 (n =% log n) : (27)

On the other hand, it follows from (5) and from the convergence properties afthe
proved in Hoeffding (1953) that

2
_Z{ Tnz"—enz gm} :O;D <loin>7 asn — oo. (28)
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Therefore, it follows from (26)—(28)

B2 _0 logn\? 1 B 1 29
n — ~p n2 g = 0p 2 , aSn — oo. (29)

As a result,
L,—L° = —%(e%Hnen) — 0p <%) ; (30)
so that by (23) and (30),
W, — W, = o, (%) : (31)
and that completes the proof of the theorem. O

4 Numerical lllustration

We shall illustrate the performance of the proposed test on simulated regression models.
As the regression matrix is used the Mayer matrix (based on real historical physical mea-
surements) of order (273), or its multiple, with the first column,,; the value of the
nuisance regression parameter vectgs is (14.5, 1.542417, 0.05)’. For more details on
this model we refer to Juékova et al. (2003).

In our numerical experiment, the errors were generated by sampling from the follow-
ing alternative densities:

normalN'(0,1) . f(z) = \/%efé normalN(0,16) :  f(z) = 4%1%67%
logistic (0,1) :  f(x) = gy logistic (0, 4) : (@) = T
Laplace(0,1) :  f(z) = le Il Laplace(0, 4) : f(z) = Fe4el
Cauchy: f(@) = s

In order to gain an insight into larger sample size behavior of our proposed test, we also
replicate the Mayer design matrix 4, 8, 16 and 32 times, resulting in the design matrix
of 108, 216, 432 and 864 rows, respectively; in each case the efrare generated to
insure independence.

1000 replications were simulated for each case. Based on these data, we calculated
the test statistics

g ZA;Z n n%,0 n:i 2
Wn:n<1—g>:n<1—<zl=lf ’0;')>, 1)
Sh Zi:l T ni

wherea,,; o andr,,; are defined in (6) and (12), respectively: 1, ..., n.
Because the asymptotic null distributions of the test statistigsand coefficients
(ay,...,a,) are not known fom > 50, they were approximated in the following way:
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The coefficients;;, i« = 1,...,n, n > 50 were approximated as suggested in Shapiro
and Wilk (1965); namely, we calculated

ar=2M;, (i=2,3,...,n—1)

and )
@2 =a’ = LG+ 1)
"VRD (An+ 1)
The coefficients,,, a,, are directly usable but; ¢+ = 2,...,n — 1, must be normalized in

the following way:
1 — 2a?
= | = (i=2... .n—1)
Doy

The expected value¥; of order statistics, = 2, ..., n—1, were computed by the numeri-
cal integration. A similar approach was used by Royston (1982b), Royston (1982a), Roys-
ton (1995), and his algorithm is used in many software packages offering the Shapiro-
Wilk test.

The distribution of the test statistic was then approximated by the following Monte
Carlo procedure: For a fixea, a random sample of size from the normal distribution
was generated, ari/d?n was computed with the coefficients : = 1,...,n. Thisrandom
experiment was repeated 100 000 times. For the sake of comparison, the nonparametric
test, proposed by the authors in Jikeva et al. (2003) was performed for testing the
normality on the same data. This test is based on the criterion

Ty =n? {1og 50 1og §<Fo>}
Sn1

(see Jurékowva et al., 2003,for the details of the notation). Tables 1-6 give the numbers of
rejections ofHH, (among 1000 tests) for both test criteria described above. Tables 5 and 6
are based on the same vectors of the simulated errors, for the sake of comparison; while
Table 5 is based on the sixteenfold Mayer matrix, the slope columns of design matrix
used for Table 6 are simulated from the uniform distribution and standardized to have an
average zero.

4.1 Conclusion

The numerical results illustrate that the Shapiro-Wilk type test distinguishes well the nor-
mal distribution of the errors in the linear regression models from the above distribution
shapes. With its easy calculation and a high efficiency, the proposed test of the Shapiro-
Wilk type is practically appealing.

Notice that for moderate samples the empirical power of the Shapiro-Wilk test is
higher than the power of the test proposed in dkoea et al. (2003) (cf. Tables 1 and
2), while for larger sample it seems to be an opposite case (cf. Tables 3—6). A comparison
of Tables 5 and 6 shows that this is not due to the choice of the matrix. This fact can be
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explained by the way how were both tests performed: While the Shapiro-Wilks critical
values were calculated for each fixedn the above manner, the critical values of the
test of Jurékova et al. (2003) are purely asymptotic; and the asymptotics naturally works

better for largen.

Table 1: Numbers of rejections &1, among 1000 cases on lewelfor Mayer matrix

(27x3)

a=0.01 a=0.05 a=0
Distribution of errors /Wn T /Wn Tx Wn Tx
Normal N(0,1) 19| 12| 43| 60| 102 | 143
Normal N (0, 16) 9| 12| 52| 57| 91 119
Logistic (0,1) 42 22 | 126 76 | 179 | 137
Logistic (0,4) 42 | 18| 111 | 76| 180 | 131
Laplace (0,1) 131 | 53| 275 | 127 | 361 | 210
Laplace (0,4) 138 50 | 265 | 120 | 324 | 214
Cauchy (0,1) 828 | 624 | 900 | 720 | 922 | 763

Table 2: Numbers of rejections &, among 1000 cases on levelfor quadruple Mayer

matrix (108 x 3)

a=0.01 a=0.05 a=0.1
Distribution of errors Wn Tx Wn Tx Wn Tx
Normal N(O, 1) 8 12 44 60 104 | 143
Normal N (0, 16) 8| 12| 4ar| 57 95 | 119
Logistic (0, 1) 51| 22| 119 | 76| 174 | 137
Logistic (0,4) 44 18 112 76 158 | 131
Laplace (0, 1) 333 53 499 | 127 581 | 210
Laplace (0,4) 354 50 529 | 120 606 | 214
Cauchy ((), 1) 1000 | 624 | 1000 | 720 | 1000 | 763
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Table 3: Numbers of rejections &1, among 1000 cases on levelfor eightfold Mayer
matrix (216 x 3)

a=0.01 a=0.05 a=0.1
Distribution of errors Wn Tx /I/I7n Tx /V[7n Tx
Normal N(0, 1) 10 9| 48 56 95 | 108
Normal N (0, 16) 10 14 50 58 | 100 | 114
Logistic (0,1) 52 88 95 | 205 | 146 | 305
LogBﬂC(0,4) 44 86 99 196 143 288
Lamace(o,l) 543 664 727 837 783 891
LaNace(0,4) 560 685 718 831 797 890
Cauchy(O,l) 1000 | 1000 | 1000 | 1000 | 1000 | 1000

Table 4: Numbers of rejections &f, among 1000 cases on levefor sixteenfold Mayer
matrix (432 x 3)

Distribution of errors| W, T W T Wi Tx

Normal N(0,1) 10| 16| 57| 54| 103| 109
Normal N(0,16) 8 9| 55| 51| 100 | 100
Logistic (0, 1) 55| 198 | 96| 388 | 146 | 493
Logistic (0, 4) 47 | 183 | 95| 367 | 133 | 487
Laplace (0,1) 866 | 966 | 939 | 991 | 961 | 995
Laplace (0, 4) 854 | 962 | 906 | 990 | 937 | 995

Cauchy (0,1) 1000 | 1000 | 1000 | 1000 | 1000 | 1000
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Table 5: Numbers of rejections 6f, among 1000 cases on levefor 32 x Mayer matrix
(864 x 3)

a=0.01 a=0.05 a=0.1
Distribution of errors| W, T, Wi T, Wi, T,
Normal N(0,1) 18 15 59 49 | 105 | 109
Normal N (0, 16) 14 12 53 49 | 107 | 100
Logistic (0,1) 76 | 459 | 134 | 688 | 205 | 770
Logistic (0,4) 72 427 132 652 172 756
Laplace (O, 1) 991 | 1000 999 | 1000 | 1000 | 1000
Laplace (O, 4) 991 | 1000 998 | 1000 998 | 1000
Cauchy (0, 1) 1000 | 1000 | 1000 | 1000 | 1000 | 1000

Table 6: Numbers of rejections &1, among 1000 cases on levelfor simulated matrix
(864 x 2)

a=0.01 a=0.05 a=0.1

Distribution of errors| W, T, W, T, W, T,

Normal N(0,1) 16 11 61 50 | 105 86
Normal N (0, 16) 9 7 52 47 | 100 96
Logistic (0, 1) 78 452 141 678 200 763
Logistic (0,4) 71| 403 | 131 | 630 | 181 | 735
Laplace (0, 1) 993 999 999 | 1000 | 1000 | 1000
Laplace (0,4) 990 | 1000 996 | 1000 998 | 1000

Cauchy (0,1) 1000 | 1000 | 1000 | 1000 | 1000 | 1000
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