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Abstract: We establish a representation as a sum of independent random
variables, plus a remainder term, for estimators of integral functionals of the
density function, which have a certain simple structure. From this represen-
tation we derive a central limit theorem, a law of large numbers and a law of
the iterated logarithm.
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1 Introduction

For several decades there has been considerable interest in the problem of estimating
integral functionals of the density function of the form

T (f) =
∫

IR
ϕ

(
f(x), f ′(x), . . . , f (k)(x), x

)
dx, (1)

wheref is a Lebesgue density. Such integral functionals appear in the asymptotic variance
of certain nonparametric statistics. They also arise in a number of bandwidth selection
procedures for density estimators. (Refer, especially, to Bickel and Ritov, 1988; Birgé
and Massart, 1995; Hall and Marron, 1987; Laurent, 1996, 1997; Levit, 1978; Nadaraya,
1989, along with the references therein.). Some motivating special cases are

T1(f) :=
∫

IR
(f ′(x) )

2
dx, T2(f) :=

∫

IR
f 2(x)dx andT3(f) =:

∫

IR
f(x) log(f(x)) dx.

Let f̂h(x) denote thekernel density estimator

f̂h(x) = n−1
n∑

i=1

h−1K
(

x−Xi

h

)
:= n−1

n∑

i=1

Kh (x−Xi) , (2)

whereK is akernelsatisfying conditions (K.i) and (K.ii) below andhn = h is a sequence
of positive constants converging to zero. Set

fh(x) = Ef̂h(x) = f ∗Kh(x). (3)

We will assume thatK satisfies

(K.i) K is non-negative and bounded by some0 < κ < ∞;

(K.ii)
∫∞
−∞ K(u)du = 1.

Sometimes we will also impose the condition

(K.iii)
∫
R Ψ(x)dx < ∞, whereΨ(x) = sup|y|≥|x| |K(y)|.
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Here are some examples of kernels that satisfy these conditions.

1. K(u) = 1{u ∈ [−1/2, 1/2]} (Uniform Kernel);

2. K(u) = 3
4
(1− x2)+ (Epanechnikov Kernel);

3. K(u) = 1
2
exp(−|u|) (Double exponential Kernel);

4. K(u) = 1√
2π

exp(−u2/2) (Standard Normal Kernel).

Assuming a smooth enough densityf , Eggermont and LaRiccia (1999) (also see their
monograph Eggermont and LaRiccia, 2001) established an almost sure representation for
the kernel density function negative entropy estimator

T (f̂h) =
∫

IR
f̂h(x) log(f̂h(x)) dx, (4)

whereK(u) = 2−1 exp(−|u|), u ∈ IR, is the double exponential kernel. Namely they
proved under suitable regularity conditions onh = hn andf that the following repre-
sentation as a sum of independent random variables, plus a remainder term, holds for
T (f̂h) :

T (f̂h)− T (f) = n−1
n∑

i=1

{log f(Xi)− E log f(Xi)}+ R∗
n,

whereR∗
n = o

(
n−1/2

)
, a.s. From this representation they inferred a law of the iterated

logarithm [LIL] for T (f̂h), along with best asymptotic normality by applying a result of
Levit (1978). Their approach was based upon a special submartingale structure of the
estimator, which follows from a Green’s function property possessed by the double ex-
ponential kernel. For other approaches towards proving consistency and best asymptotic
normality of estimators of integral functionals off consult Laurent (1996), who concen-
trates on the special casesT2(f) andT3(f), and the references therein.

It would be very useful to develop a general approach to establish the asymptotic
distribution and exact rate of consistency under minimal assumptions of estimators of
T (f) of the form ∫

IR
ϕ

(
f̂h(x), f̂

(1)
h (x), . . . , f̂

(k)
h (x), x

)
dx, (5)

where for each1 ≤ i ≤ k, f̂
(i)
h is theith derivative off̂h, whenK is i times continuously

differentiable. However, at present this goal appears to be much too ambitious. In this
note we obtain a representation in terms of a sum of independent random variables, plus
a remainder term, for integral functionals of density estimators having a certain simple
structure. From our representation we will derive a central limit theorem, a law of large
numbers and an LIL forT (f̂h). In the last section we will apply our results to the special
case of the kernel density estimatorT2(f̂h) of the integrated squared densityT2(f).

2 Representations of Integral Functionals of Density Es-
timators

In this note we shall restrict ourselves to integral functionals of the following form:

T (f) =
∫

IR
f(x)φ(f(x))dx, (6)
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whereφ is a twice continuously differentiable function defined on an open set containing
the closure of the image off, {f(x) : x ∈ R} . The motivating special cases areT2(f)
andT3(f). SetΦ(u) = uφ(u),

Φ1(u) =
d

dx
Φ(x)|x=u andΦ2(u) =

d

dx
Φ1(x)|x=u. (7)

By Taylor’s formula we have

T (f̂h)− T (fh) =:
∫

IR
Φ1(fh(x))

(
f̂h (x)− fh (x)

)
dx + Rn, (8)

where

Rn =
∫

IR

{∫ f̂h(x)

fh(x)

(
f̂h(x)− u

)
Φ2 (u) du

}
dx. (9)

We shall confine ourselves to determining the rate at which the remainder termRn in (9)
converges to zero, when there exists a positive nondecreasing functionϕ with derivative
ϕ′ such that

(ϕ.i) |Φ2(u)| ≤ ϕ′(u);

(ϕ.ii) ϕ satisfies a Ḧolder condition with exponent0 < α ≤ 1.

Notice that the class of integral functionals satisfying these conditions includes theT2(f)
functional, but not the negative entropy functionalT3(f). To establish a useful represen-
tation forT3(f) under minimal assumptions requires too much space and therefore will
be presented elsewhere.

Theorem 1. Assume thatK satisfies (K.i) and (K.ii) and that (ϕ.i) and (ϕ.ii) hold. Then
for Rn in (9) and any sequence of positiveh = hn ≤ 1, we have

Rn = O





(log n)(1+α)/2

n(1−α)/2
+ 1


 1

(nh)α


 , a.s. (10)

and

Rn = Op

(
1

(nh)α

)
. (11)

Corollary 1. In addition to assumptions (K.i), (K.ii), (ϕ.i) and (ϕ.ii), assume that there
exists aCα > 0 such that

sup
0<h≤1

∫

IR
{fh(x)}(1+α)/2 dx ≤ Cα. (12)

Then forRn in (9) and any sequence of positiveh = hn ≤ 1, we have

Rn = O


(log n)(1+α)/2

n(1+α)/2hα
+

1

(nh)(1+α)/2


 , a.s. (13)

and

Rn = Op

(
1

(nh)(1+α)/2

)
. (14)
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Remark 1. Note that for0 < α < 1, theRn in (10) is= O (1/ (nh)α) , a.s., and when
α = 1, thisRn = O (log n/ (nh)) , a.s.
Remark 2. Assumeh = hn = n−γ for someγ > 0. Notice that under the assumptions of
Theorem 1, that if1/2 < α ≤ 1 and1− 1

2α
> γ > 0, thenRn = o(n−1/2), a.s., and under

the assumptions of Corollary 1, if we choose0 < γ < α/(1 + α) thenRn = o(n−1/2),
a.s.
Remark 3. Condition (12) is satisfied whenever for someλ > (1− α)/(1 + α),

∫

IR
|x|λf(x)dx +

∫

IR
|y|λK(y)dy < ∞.

Consult Devroye (1987) for a proof of this fact.

2.1 Proof of Theorem 1

Notice that by (ϕ.i), the remainder termRn defined in (9) satisfies

|Rn| ≤
∫

IR

(
f̂h(x)− fh(x)

) (
ϕ(f̂h(x))− ϕ(fh(x))

)
dx,

which by (ϕ.ii) is, for someC > 0,

≤ C
∫

IR

(∣∣∣f̂h(x)− fh(x)
∣∣∣
1+α

)
dx =: C∆n(α). (15)

Write for i = 1, 2, . . . , n,

Yi(x) = n−1 {Kh (x−Xi)− fh(x)} ,

so that

(∆n(α))1/(1+α) =

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
1+α

. (16)

Furthermore, for eachi = 1, 2, . . . , n, we get

∥∥∥n−1Kh (· −Xi)
∥∥∥
1+α

=
1

nhα/(1+α)

(∫

IR
h−1K

(
x−Xi

h

)1+α

dx

)1/(1+α)

=
||K||1+α

nhα/(1+α)
.

Thus by applying the McDiarmid inequality, exactly as on page 39 of Devroye (1991)
(also refer to Pinelis (1990)), we get for anyt > 0,

P





∣∣∣∣∣∣

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
1+α

− E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
1+α

∣∣∣∣∣∣
> t



 ≤ 2 exp

(
−t2nh2α/(1+α)

2||K||21+α

)
. (17)

From this inequality we readily conclude via the Borel-Cantelli lemma that
∥∥∥∥∥

n∑

i=1

Yi

∥∥∥∥∥
1+α

= E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
1+α

+ O

( √
log n√

nhα/(1+α)

)
, a.s. (18)
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Now 
E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
1+α




1+α

≤ E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
1+α

1+α

=
∫

IR
E

∣∣∣∣∣
n∑

i=1

Yi(x)

∣∣∣∣∣
1+α

dx,

which by the moment inequality of von Bahr and Esseen (1965) is

≤ 2
n∑

i=1

∫

IR
E|Yi(x)|1+αdx.

Next observe that by Jensen’s inequality for eachi = 1, . . . , n,

n∑

i=1

∫

IR
E|Yi(x)|1+αdx ≤

n∑

i=1

2α

n1+α

[∫

IR
E (Kh (x−Xi))

1+α dx +
∫

IR

(∫

IR
Kh (x− y) f (y) dy

)1+α

dx

]
,

which, in turn, again by Jensen’s inequality and|K| ≤ κ, is

≤ 2α+1κα

nαhα

∫

IR2
Kh (x− y) f(y)dydx =

2α+1κα

nαhα
. (19)

Thus we have by (15), (16), (18) and (19),

∆n(α) = O


(log n)(1+α)/2

n(1+α)/2hα
+

1

(nh)α


 , a.s.

Assertion (11) follows in the same way from (17). tu

2.2 Proof of Corollary 1

We will only prove (13). Assertion (14) is proved similarly. Notice that

E

∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
1+α

1+α

=
∫

IR
E

∣∣∣∣∣
n∑

i=1

Yi(x)

∣∣∣∣∣
1+α

dx ≤
∫

IR


E

(
n∑

i=1

Yi(x)

)2



(1+α)/2

dx

≤
∫

IR

[
1

nh2

∫

IR

(
K

(
x− y

h

))2

f(y)dy

](1+α)/2

dx,

which by using|K| ≤ κ, is

≤ κ(1+α)/2

(nh)(1+α)/2

∫

IR

[∫

IR
Kh (x− y) f(y)dy

](1+α)/2

dx.

By assumption (12) this last bound is≤ κ(1+α)/2Cα/ (nh)(1+α)/2 . Hence from (18) we
conclude that whenever (12) holds we have almost surely that

∆n(α) = O


(log n)(1+α)/2

n(1+α)/2hα
+

1

(nh)(1+α)/2


 .

tu
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3 Central Limit Theorem and Law of Large Numbers

Our next theorem, when combined with Theorem 1 and Corollary 1, provides conditions
under which the central limit theorem and law of large numbers hold forT (f̂h). Introduce
the assumptions

(Φ.i) f is bounded by some constantM > 0;

(Φ.ii) Φ1 is continuous and bounded by a constantL on [0,M ] .

Write for h > 0,

Sn(h) :=
∫

IR
Φ1(fh(x))

(
f̂h (x)− fh (x)

)
dx.

Theorem 2. Assume thatK satisfies (K.i), (K.ii) and (K.iii) and (Φ.i) and (Φ.ii) hold.
Then for any sequence of positive constantsh = hn ≤ 1 converging to zero and satisfying

T (f̂h)− T (fh) = Sn(h) + Rn, (20)

with Rn = o(1) almost surely, we have, with probability 1, asn →∞,

T (f̂h) →
∫

IR
Φ1(f(y))f(y)dy, (21)

and wheneverRn = op

(
n−1/2

)
in (12),we have, asn →∞,

√
n

{
T (f̂h)− T (fh)

}
→d N

(
0, σ2

f (Φ1)
)
, (22)

where

σ2
f (Φ1) :=

∫

IR
Φ2

1(f(y))f(y)dy −
(∫

IR
Φ1(f(y))f(y)dy

)2

. (23)

Remark 4. Applying the results of Levit (1978) (also consult Laurent, 1996) we see that
σ2

f (Φ1) is the variance of any best asymptotically normal estimator ofT (f).

3.1 Proof of Theorem 2

Our proof requires the following fact and lemma. First we need a special case of a result
in Stein (1970) (also consult Devroye and Györfi, 1985).

Fact 1. (Stein)Let ϕ be a measurable function onIR such that
∫
IR ϕ(x)dx = 1 and

setϕε(x) = ε−1ϕ(ε−1x), ε > 0. Further let Ψ(x) = sup|y|≥|x| |ϕ(y)| and assume that∫
IR Ψ(x)dx < ∞. Then for all functionsg in L1 (IR) and almost allx ∈ IR,

lim
ε↘0

g ∗ ϕε(x) = g(x). (24)

For forh > 0, define

Z(h) =
∫

IR
Φ1(fh(x))Kh(x−X)dx, (25)

whereX has densityf.
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Lemma 1.Under the assumptions of Theorem 2, ash ↘ 0,

E (Z(h)) =
∫

IR

[∫

IR
Φ1(fh(s))Kh (s− y) ds

]
f(y)dy →

∫

IR
Φ1(f(y))f(y)dy (26)

and

E (Z(h))2 =
∫

IR

[∫

IR2
Φ1(fh(s))Φ1(fh(t))Kh (s− y) Kh (t− y) dsdt

]
f(y)dy

→
∫

IR
Φ2

1(f(y))f(y)dy < ∞. (27)

Proof. First consider (27). Notice that after a change of variables the left hand side of
(27) is equal to

∫

IR

[∫

IR2
Φ1(fh(y + hu))Φ1(fh(y + hv))K (u) K (v) dudv

]
f(y)dy.

Writing

fh(y + hu) =
∫

IR
h−1K

(
y − t

h
+ u

)
f(t)dt,

we see by the Stein Fact 1 that for almost everyy and allu, ash ↘ 0,

fh(y + hu) → f(y).

Therefore, since|fh| ≤ M, we have by (Φ.ii) that for almost everyy and everyu andv,

Φ1(fh(y + hu))Φ1(fh(y + hv)) → Φ2
1(f(y)).

Thus by the bounded convergence theorem for almost everyy,

ϕh(y) :=
∫

IR2
Φ1(fh(y + hu))Φ1(fh(y + hv))K (u) K (v) dudv → Φ2

1(f(y)).

Moreover, since eachϕh is bounded, we have ash ↘ 0,

∫

IR
ϕh(y)f(y)dy →

∫

IR
Φ2

1(y)f(y)dy.

This proves (27). Assertion (26) is proved similarly. tu

Turning to the proof of Theorem 2, write fori = 1, . . . , n,

Zi (h) :=
∫

IR
Φ1(fh(x))Kh (x−Xi) dx, (28)

where eachX1, . . . , Xn are i.i.d. with densityf. Note that since each|Zi (h)| ≤ L and

Sn(h) = n−1
n∑

i=1

{Zi (h)− EZi (h)} ,
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we can apply Hoeffding’s inequality to get for allt > 0,

P
{
|Sn(h)| > t/

√
n

}
≤ 2 exp

(
−2t2/L2

)
,

from which we readily check using the Borel–Cantelli lemma that almost surely

Sn(h) = O
(√

log n/n
)

. (29)

Thus (21) is a consequence of (26).
Turning to the proof of (22), observe by (26) and (27), ash ↘ 0,

V ar (Z (h)) → σ2
f (Φ1).

Thus (22) follows directly from|Zi (h)| ≤ L, combined with Liapounov’s central limit
theorem (e.g. Shorack, 2000). tu

4 Laws of the Iterated Logarithm

In this section we introduce a general approach to obtain laws of the iterated logarithm
[LIL] for T (f̂h). This will be based upon the following special case of a LIL stated as
Theorem 4.2 in Kuelbs (1976). LetC[0, h0], h0 > 0, denote the space of continuous
functions on[0, h0] equipped with the supremum norm|| · ||∞.

Proposition 1.Let Z, Z1, Z2, . . . , be a sequence of i.i.d.C[0, h0], h0 > 0, valued random
variables satisfying for allh ∈ [0, h0],

V arZ(h) = σ2(h) < ∞. (30)

Also assume there exists a nonnegative random variableW satisfyingEW 2 < ∞ and an
0 < γ ≤ 1 such that for allh1, h2 ∈ [0, h0]

|Z(h1)− Z(h2)| ≤ W |h1 − h2|γ . (31)

Then

lim sup
n→∞

sup
h∈[0,h0]

±
∑n

i=1 {[Zi(h)− EZi(h)}√
2n log log n

= τ, a.s. (32)

where
τ = sup

h∈[0,h0]
σ(h). (33)

We will soon be applying the following straightforward corollary to Proposition 1.

Corollary 2. In addition to the assumptions of Proposition 1, assume that

lim
h↘0

V ar(Z(h)− Z(0)) = 0. (34)

Then for any sequence of positive constantshn ∈ [0, h0] converging to zero,

lim sup
n→∞

±
∑n

i=1 {Zi(hn)− EZi(hn)}√
2n log log n

= σ(0), a.s. (35)
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4.1 The Aim of All This

The aim of all this is to show, under suitable regularity conditions, that almost surely

lim sup
n→∞

±
√

n
{
T (f̂hn)− T (fhn)

}

√
2 log log n

= lim sup
n→∞

±
∑n

i=1 {Zi(hn)− EZi(hn)}√
2n log log n

= σ(0),

(36)
where forh > 0, Z1 (h) , Z2 (h) , . . . , are i.i.d.Z (h) , with Z(h) as in (25), andσ2(0) =

σ2
f (Φ1) , wheneverh = hn is such thatRn = o

(√
log log n/n

)
, a.s. Here are some

sufficient conditions that will permit us to apply Corollary 2 to give (36).

Example. Assume thatΦ1 is Hölder of order0 < α ≤ 1 andf satisfies the condition that
for some0 < β ≤ 1 and allx, y ∈ R

|f(x + y)− f(x)| ≤ g(x)|y|β, (37)

whereE (gα(X))2 < ∞. Also assume that

∫ ∞

−∞
|u|βK(u)du < ∞. (38)

To verify that (31) holds, observe that by two changes of variables

Z(h) =
∫

IR
Φ1

(∫

IR
f (X + h (u− v)) K(v)dv

)
K(u)du,

Therefore for some constantC > 0

|Z(h1)− Z(h2)|
≤ C

∫

IR

∣∣∣∣
∫

IR
{f (X + h1 (u− v))− f (X + h2 (u− v))}K(v)dv

∣∣∣∣
α

K(u)du,

which by concavity (0 < α ≤ 1) and (37) is for some constantB > 0

≤ Bgα(X)
∫

IR

∣∣∣∣
∫

IR

(
|u|β + |v|β

)
K(u)K(v)dudv

∣∣∣∣
α

|h1 − h2|αβ =: Agα(X)|h1 − h2|αβ.

Therefore (31) holds withW = Agα(X) andγ = αβ.

Remark 5. Assumption (37) is a generalization of a condition of Bickel and Ritov (1988).

5 Application to the Estimation of the Integrated Squared
Density

The functionalT2 (f) serves as a basic quantity that appears in expressions for the asymp-
totic efficiency of the Wilcoxon signed rank statistic for location hypotheses and the
asymptotic variance of the Hodges-Lehmann location estimator. (Refer, for instance, to
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Randles and Wolfe, 1991). In our final section we apply our results to the estimation of
T2 (f). First we employ Theorem 1 withφ(u) = u andα = 1 to give for any densityf,

T2(f̂h)− T2 (fh) = 2
∫

IR
fhn(x)

(
f̂h (x)− fh (x)

)
dx + Rn

where

Rn = O

(
log n

nh

)
, a.s. andRn = Op

(
1

nh

)
.

Now assume thatf is bounded. We see that wheneverhn → 0 andnhn/ log n →∞, we
haveRn = o(1) a.s., which by Theorem 2, implies

T2(f̂h) → T2 (f) , a.s. (39)

Further, wheneverhn → 0 and
√

nhn → ∞, yielding Rn = op(n
−1/2), we get by Theo-

rem 2 that √
n

{
T2(f̂h)− T2 (fh)

}
→d N

(
0, σ2

f (Φ1)
)
, (40)

where

σ2
f (Φ1) = 4

[∫

IR
f 3(x)dx−

(∫

IR
f 2(x)dx

)2
]
.

Moreover, wheneverhn → 0 and
hn

√
n log log n

log n
→∞, giving Rn = o

(√
log log n/n

)
a.s.,

and both (37) and (38) hold for some0 < β ≤ 1, then by Proposition 1 and the Example
above,

lim sup
n→∞

±
√

n
{
T2(f̂h)− T2(fh)

}

√
2 log log n

= σf (Φ1) , a.s. (41)

Remark 6. By taking advantage of theU−statistic structure ofT2(f̂h), Nadaraya (1989)
establishes (39) in his Theorem 2.2 under the same assumptions that we impose onK,
but with our condition||f ||∞ < ∞ replaced by the weaker assumption thatT2 (f) < ∞.
However, he requires a stronger condition onhn, namely he substitutes ournhn/ log n →
∞ by the more restrictive condition thatnh2

n/ log n → ∞. It is also interesting to com-
pare his Theorem 2.3 with our assumptions leading to (40). He shows that with more
smoothness assumptionsT2(fh) can be replaced byT2(f) in (40). Another approach to
the LIL for T2(f̂h), which would require fewer regularity conditions on the density func-
tion, can be based on a moderate deviation result forT2(f̂h). For closely related details
consult Gińe and Mason (2002).

Acknowledgements

The author would like to thank his colleagues Paul Deheuvels, Paul Eggermont and
William Wedin for useful comments and the referee for carefully reading the manuscript.

This work was completed with the support of NSA Grant MDA904–02–1–0034 and
NSF Grant DMS–0203865.



D.M. Mason 141

References

P.J. Bickel and Y. Ritov. Estimating integrated squared density derivatives–sharp best
order of convergence estimates.Sankhya Ser. A, 50:381–393, 1988.
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L. Devroye and L. Gÿorfi. Nonparametric Density Estimation: The L-1 View. J. Wiley,
New York, 1985.

P.P.B. Eggermont and V.N. LaRiccia. Best asymptotic normality of the kernel density
entropy estimator for smooth densities.IEEE Trans. Inform. Theory, 45:1321–1326,
1999.

P.P.B. Eggermont and V.N. LaRiccia.Maximum Penalized Likelihood: Volume I, Density
Estimation. Springer, New York, 2001.
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