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Abstract: We establish a representation as a sum of independent random
variables, plus a remainder term, for estimators of integral functionals of the

density function, which have a certain simple structure. From this represen-
tation we derive a central limit theorem, a law of large numbers and a law of

the iterated logarithm.
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1 Introduction

For several decades there has been considerable interest in the problem of estimating
integral functionals of the density function of the form

() = | ¢ (f@).f@).....f).x) dr, (1)

wheref is a Lebesgue density. Such integral functionals appear in the asymptotic variance
of certain nonparametric statistics. They also arise in a number of bandwidth selection
procedures for density estimators. (Refer, especially, to Bickel and Ritov, 198& Birg
and Massart, 1995; Hall and Marron, 1987; Laurent, 1996, 1997; Levit, 1978; Nadaraya,
1989, along with the references therein.). Some motivating special cases are

L(f) = [ (f@)de, B(f) i= [ f2(a)dwandTa(f) = | f(x)log(f(a)) do.
Let f,(z) denote thé&ernel density estimator

=R n _ Xz n
fula) = ST () =0 S K (- X)), @
i=1 i=1
whereK is akernelsatisfying conditions (K.i) and (K.ii) below anfd, = & is a sequence
of positive constants converging to zero. Set
fu(x) = Efu(x) = f % Kn(2). (3)
We will assume thal( satisfies
(K.i) K is non-negative and bounded by sone x < oc;
(K.ii) [%0, K(u)du = 1.
Sometimes we will also impose the condition
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Here are some examples of kernels that satisfy these conditions.
1. K( )= 1{u € [—1/2,1/2]} (Uniform Kernel);
K(u) =32 (1 — 2?), (Epanechnikov Kernel);
K(u) =3 exp(—|u|) (Double exponential Kernel)
K(u) = 7= exp(—u?/2) (Standard Normal Kernel).

Assumlng a smooth enough densijty Eggermont and LaRiccia (1999) (also see their
monograph Eggermont and LaRiccia, 2001) established an almost sure representation for
the kernel density function negative entropy estimator

T(f) = [ Fe)log(fu(w) de, @

where K (u) = 2 texp(—|u|), u € R, is the double exponential kernel. Namely they
proved under suitable regularity conditions bn= h,, and f that the following repre-
sentation as a sum of independent random variables, plus a remainder term, holds for

7(f,) )
T(fi) = T() = n™* 3 {log f(X)) = Blog f(X0)} + Ry,

whereR; = o (n*l/Q) , a.s. From this representation they inferred a law of the iterated

logarithm [LIL] for T(fh), along with best asymptotic normality by applying a result of
Levit (1978). Their approach was based upon a special submartingale structure of the
estimator, which follows from a Green’s function property possessed by the double ex-
ponential kernel. For other approaches towards proving consistency and best asymptotic
normality of estimators of integral functionals gfconsult Laurent (1996), who concen-
trates on the special casgs ) and75(f), and the references therein.

It would be very useful to develop a general approach to establish the asymptotic

distribution and exact rate of consistency under minimal assumptions of estimators of
T (f) of the form

| e (f@). 5@ . fP (@), 2) da. 5)

where for each < i <k, A(l) is theith derivative offh, whenK is ¢ times continuously
differentiable However, at present this goal appears to be much too ambitious. In this
note we obtain a representation in terms of a sum of independent random variables, plus
a remainder term, for integral functionals of density estimators having a certain simple
structure. From our representation we will derive a central limit theorem, a law of large
numbers and an LIL foT(fh). In the last section we will apply our results to the special
case of the kernel density estimaf f,) of the integrated squared density( /).

2 Representations of Integral Functionals of Density Es-
timators

In this note we shall restrict ourselves to integral functionals of the following form:

= | f@)o(f (@), ©)
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whereg is a twice continuously differentiable function defined on an open set containing
the closure of the image of, { f(z) : = € R}. The motivating special cases &fg(f)
andT3(f). Setd®(u) = ugp(u),

= i@(mz:u and®,(u) = i<I>1(:c)\m:u. (7)

1 (u) dx
By Taylor’s formula we have

T(f) = T(f) =t [ @1(fa@)) (Fu (@) = fu (@) do + R, ®)

where

R, = /IR {/fj}:?) (fh(x) - u) Dy (u) du} dx. 9)

We shall confine ourselves to determining the rate at which the remaindefgm(9)
converges to zero, when there exists a positive nondecreasing fupciwith derivative
¢’ such that

(p.1) |®o(u)] < ¢'(u);
(.1i) ¢ satisfies a Klder condition with exponerit < o < 1.

Notice that the class of integral functionals satisfying these conditions includés(the
functional, but not the negative entropy functiofig( f). To establish a useful represen-
tation for 73(f) under minimal assumptions requires too much space and therefore will
be presented elsewhere.

Theorem 1. Assume thak’ satisfies (K.i) and (K.ii) and thatd.i) and (y.ii) hold. Then
for R, in (9) and any sequence of positike= h,, < 1, we have

(log n)(1+04)/2 1
R,=0 ((n(l—a)/Q +1 (nh)a , a.S. (10)

1
R, =0, ((nh>“> . (11)

Corollary 1. In addition to assumptions (K.i), (K.ii)(i) and (p.ii), assume that there
exists aC, > 0 such that

and

sup | {fa@)} do < Co (12)

0<h<1

Then forR,, in (9) and any sequence of positike= h,, < 1, we have

B (10gn)<1+a)/2 1
Ry =0 ( nl+a)/2ha T (nh)(1+a)/2 ; .S, (13)
and
1
=00 () 0
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Remark 1. Note that for0 < o < 1, the R,, in (10) is= O (1/(nh)"), a.s., and when
a=1,thisR, = O (logn/(nh)), a.s.

Remark 2. Assumeh = h,, = n~" for somey > 0. Notice that under the assumptions of
Theorem 1, thatif /2 < a < 1andl — o~ > v > 0, thenR, = o(n""/?), a.s., and under
the assumptions of Corollary 1, if we chodse< v < /(1 + «) thenR,, = o(n~'/?),
a.s.

Remark 3. Condition (12) is satisfied whenever for sothe- (1 — «)/(1 + «),

el f@)de+ [P E )y < oo
R R
Consult Devroye (1987) for a proof of this fact.

2.1 Proof of Theorem 1
Notice that by (.i), the remainder tern®,, defined in (9) satisfies

Bl < | (@) = £l@)) (0(Fa@)) = (fale))) da
which by (p.ii) is, for someC' > 0,
< C/IR (\fh(x) _ fh(x)\“a) dz = CA (). (15)
Write fori =1,2,...,n,

Yi(x) = n~ {K (x = Xi) = ful2)}

so that
(An(a))/0*) = |3, (16)
1=1 1+o
Furthermore, foreach=1,2,...,n, we get
1 z— X\t NIk
-1 o 1 7 o 1+a
ot (= X0, = (/Rh K( - ) da:) e

Thus by applying the McDiarmid inequality, exactly as on page 39 of Devroye (1991)
(also refer to Pinelis (1990)), we get for any 0,

+2 h2a/(1+a)
P{ > t} < 2exp <—”> .an

211112 44
From this inequality we readily conclude via the Borel-Cantelli lemma that

V1
+0 (%) , a.s.
1+a \/ﬁ

n

Y

=1

n

Y

i=1

- F

14+«

1+«

n

Y

=1

n

> Y

=1

=F
14+«

(18)
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n 1+o
(E Y, ) <E
=1 1+o 14+«

which by the moment inequality of von Bahr and Esseen (1965) is

< 22/ E|Y(x)[“*da.
i=17"R

Next observe that by Jensen’s inequality for eaehl, ... n,

Z [ B <
annf_a UmmKh(x— ) da +/ (/ Kn(z—y )dy)lmdx],

=1
which, in turn, again by Jensen’s inequality did < , is

Now
14+«

dx,

14+«

Y

=1

> Vila)

bR

2a+1KIa 2a+1 «
< — = :
<= | K =) Fy)dyde = =5 (19)
Thus we have by (15), (16), (18) and (19),
B (log )72 1
Ay (a) =0 ( )2 + nh)® ) a.s.
Assertion (11) follows in the same way from (17) ad

2.2 Proof of Corollary 1

We will only prove (13) Assertion (14) is proved similarly. Notice that

l+a n g (/2
- [ E de < | E(ZYx))] dz
1ta R [i= R i—1
L PR (1+0)/2
< — K d d
- /IR nh? /]R < < h >) 1) y] o

which by using K| < &, is

po(14a) /2
S( (1+a/2/ [/ K (=) fy)dy

By assumption (12) this last bound s x(+)/2C,, / (nh) /% Hence from (18) we
conclude that whenever (12) holds we have almost surely that

B (log n)(1+a)/2 1
An(a) =0 ( n(l—i—a)/?ha + (nh) (1+a)/ :

Y

=1

E

(14+a)/2
dzx.
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3 Central Limit Theorem and Law of Large Numbers

Our next theorem, when combined with Theorem 1 and Corollary 1, provides conditions
under which the central limit theorem and law of large numbers hol@'fgy). Introduce
the assumptions

(®.i) f is bounded by some constaht > 0;
(®.ii) @, is continuous and bounded by a constamn [0, M] .
Write for h > 0,

/‘I) (fu(2)) (fn (2) — fh())dﬂ

Theorem 2. Assume thaf< satisfies (K.i), (K.ii) and (K.iii) and ®.i) and ($.ii) hold.
Then for any sequence of positive constants h,, < 1 converging to zero and satisfying

T(fn) = T(fn) = Sa(h) + R, (20)

with R,, = o(1) almost surely, we have, with probability 1, as— oo,

/ o ( y)dy, (21)
and wheneveR, = o, (n*l/Q) in (12),we have, as — oo,
Vi{T(Ff) = T(f)} —a N (0,03(®1)) (22)
where )
@) = [ Wy — ([ 9w 0)dy) @3)

Remark 4. Applying the results of Levit (1978) (also consult Laurent, 1996) we see that
o7(®,) is the variance of any best asymptotically normal estimatdr of).

3.1 Proof of Theorem 2

Our proof requires the following fact and lemma. First we need a special case of a result
in Stein (1970) (also consult Devroye anddBsfy, 1985).

Fact 1. (Stein)Let ¢ be a measurable function dit such that/y ¢(z)dx = 1 and
setp.(x) = e (e 'x), ¢ > 0. Further let ¥(z) = sup,>, l¢(y)| and assume that
Jr ¥Y(z)dz < co. Then for all functiongy in L, (IR) and almost allz € IR,

lim g+ ge(x) = g(2). (24)
For forh > 0, define
n = [ (@) Knlx = X)da, (25)

whereX has densityf.
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Lemma 1.Under the assumptions of Theorem 2 jas, 0,

EZ0) = [ | [ @fals)in (s =) ds| )y — [ 017w swdy  (@6)

and

Bz = [ [/ (ils >><1>1<fh<t>>Kh<s—y)Kh<t—y>dsdt} F(w)dy
H/ O2(f(y)f(y)dy < 0. @27)

Proof. First consider (27). Notice that after a change of variables the left hand side of
(27) is equal to

/IR {/1112 Oy (frly + hw) Py (fr(y + ho)) K (u) K (v) dudv} fly)dy.

Writing
—1
fuly + by = [ WK (yh + u> F(b)dt,
we see by the Stein Fact 1 that for almost eveand allu, ash \, 0,

Iuly + hu) — f(y).

Therefore, sinceéf,| < M, we have by ¢.ii) that for almost every; and every. andv,

D1 (faly + hu)®1(fuly + hv)) — ®1(f(y)).
Thus by the bounded convergence theorem for almost gvery
or() = [ @i(uly + b)) (faly + ho) K (u) K (0) dudv — B3(£(5)).
Moreover, since each,, is bounded, we have @s™\, 0,
[ o) fw)dy — [ @3y,
R R
This proves (27). Assertion (26) is proved similarly. O

Turning to the proof of Theorem 2, write for=1,...,n,

n)i= [ (@)K (¢ = X0) da (28)

where eachXy, ..., X,, arei.i.d. with densityf. Note that since eac¥; (k)| < L and

By =n? Z (Z:(h) — EZ, (1)},
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we can apply Hoeffding’s inequality to get for al> 0,

P{|Su(h)| > t/v/n} < 2exp (—2t*/L7),

from which we readily check using the Borel-Cantelli lemma that almost surely

Sp(h) =0 (\/logn/n) : (29)

Thus (21) is a consequence of (26).
Turning to the proof of (22), observe by (26) and (27)has, 0,

Var(Z (h)) — 0?(@1).

Thus (22) follows directly fromZ; (h)| < L, combined with Liapounov’s central limit
theorem (e.g. Shorack, 2000). O

4 Laws of the Iterated Logarithm

In this section we introduce a general approach to obtain laws of the iterated logarithm
[LIL] for T(fh). This will be based upon the following special case of a LIL stated as
Theorem 4.2 in Kuelbs (1976). L&Y0, ko], hg > 0, denote the space of continuous
functions on0, o] equipped with the supremum nofm ||...

Proposition 1.Let Z, 7, Z,, ..., be a sequence of i.i.d[0, ho|, ho > 0, valued random
variables satisfying for alh € [0, h|,

VarZ(h) = o*(h) < cc. (30)

Also assume there exists a nonnegative random variabsatisfyingE1W? < oo and an
0 < v < 1 such that for allhy, hy € [0, hg|

| Z(h1) = Z(ha)| < W [ly — o (31)
e Si (120 — BZ(h)
limsup sup £==Lboin e =T, a.s. 32
n—»oop he[o};)m} vV2nloglogn (32)
where
7= sup o(h). (33)

he0,ho]
We will soon be applying the following straightforward corollary to Proposition 1.
Corollary 2. In addition to the assumptions of Proposition 1, assume that

lim Var(Z(k) = 2(0)) = 0. (34)

Then for any sequence of positive constants [0, ] converging to zero,

. En:1 {Zz’<hn> — EZi(hn)}
1 +=
lgl—»Sogp Vv2nloglogn

=0(0), a.s. (35)
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4.1 The Aim of All This

The aim of all this is to show, under suitable regularity conditions, that almost surely

. Vi{T(Fu) = T(f)} S {Zih) — EZi(hn)}
h{zn—?ogp + V2Toglogn B hin_)sogp + V2nloglogn B 0(0)(736)

where forh > 0, Z, (h), Zy (h), ..., areii.d.Z (h), with Z(h) as in (25), and?(0) =
o—J% (®,), wheneverh = h, is such thatk, = o (,/log logn/n) , a.s. Here are some
sufficient conditions that will permit us to apply Corollary 2 to give (36).

Example. Assume thatb, is Holder of ordel) < o < 1 andf satisfies the condition that
forsome) < g <landallz,y € R

[f(z+y) — fl@)] < g()|yl’, (37)
whereE (¢°(X))* < oo. Also assume that
/_O:O lul’ K (u)du < oc. (38)

To verify that (31) holds, observe that by two changes of variables

20) = [ @0 ([ 50X+ =) Kv)do) K(wdu
Therefore for some constagt > 0

|Z(h1) — Z(h2))|
< C/}R’/]R{f(XJrhl (=) = £ (X + ho (u— )} K (v)dv

Q

K(u)du,

which by concavity (| < « < 1) and (37) is for some constanit > 0
< Bg®(X) /IR ‘/IR (1l + [v]?) K (u) K (v)dudv| [y — ha|*® =: Ag®(X)[hy — ha|*”.

Therefore (31) holds withl” = Ag*(X) andy = af.

Remark 5. Assumption (37) is a generalization of a condition of Bickel and Ritov (1988).

5 Application to the Estimation of the Integrated Squared
Density
The functionall;, (f) serves as a basic quantity that appears in expressions for the asymp-

totic efficiency of the Wilcoxon signed rank statistic for location hypotheses and the
asymptotic variance of the Hodges-Lehmann location estimator. (Refer, for instance, to
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Randles and Wolfe, 1991). In our final section we apply our results to the estimation of
T5 (f). First we employ Theorem 1 with(u) = v anda = 1 to give for any densityf,

To(fn) — T (fn) —2/ Fun(@) (o (z) = fh())dx—l-Rn

where

logn 1
R, —O< o ) , a.s.and?, = O, <nh>

Now assume thaf is bounded. We see that whenewgr— 0 andnh,,/logn — oo, we
haveR, = o(1) a.s., which by Theorem 2, implies

To(fn) — To (f), as. (39)

Further, whenevek,, — 0 and./nh,, — oo, yielding R,, = o,(n~%/?), we get by Theo-
rem 2 that

Vi {Ta(fa) = T (fa)} —a N (0,03 (21)), (40)

2 () = 4 [/}R 3 () de — (/m f?(x)dxﬂ .

Moreover, whenevel,, — 0 and’ V" 1elen ”k’glog” 00, giving R,, = o (\/log log n/n) a.s.,
and both (37) and (38) hold for sorﬂe< 0 < 1 then by Proposition 1 and the Example
above,

where

o V(D) - B
linjogp Vv2loglogn

Remark 6. By taking advantage of th& —statistic structure of 5 ( fh), Nadaraya (1989)
establishes (39) in his Theorem 2.2 under the same assumptions that we imp@se on
but with our condition| || < oo replaced by the weaker assumption that /) < occ.
However, he requires a stronger condition‘gnnamely he substitutes ouf,, / logn —

oo by the more restrictive condition that:? / logn — oo. It is also interesting to com-
pare his Theorem 2.3 with our assumptions leading to (40). He shows that with more
smoothness assumptiofis( f;) can be replaced b¥s(f) in (40). Another approach to

the LIL for Tg(fh), which would require fewer regularity conditions on the density func-
tion, can be based on a moderate deviation resulf¥¢f,). For closely related details
consult Gire and Mason (2002).

=05 (9y), a.s. (42)
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