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Abstract: Adaptive pointwise estimation of an unknown regression func-
tion f(x), x ∈ R corrupted by additive Gaussian noise is considered in
the equidistant design setting. The functionf is assumed to belong to the
classA(α) of functions whose Fourier transform are rapidly decreasing in
the weightedL2-sense. The rate of decrease is described by a weight func-
tion that depends on the vector of parametersα which, in the adaptive set-
ting, is typically unknown. For any of the classesA(α), α fixed, we de-
scribe minimax estimators up to a constant as the bin-width goes to zero.
Conditions under which an adaptive study is suitable are presented and a no-
tion of adaptive asymptotic optimality is introduced based on distinguishing,
among all possible functional scales, between the so-called non-parametric
(NP) and pseudo-parametric (PP) scales. We propose adaptive estimators
which ‘tune up’ point-wisely to the unknown smoothness off . We prove
them to be asymptotically adaptively minimax for large collections of NP
functional scales, subject to being rate efficient for any of the PP functional
scales.

Keywords: Non-parametric Statistics, Minimax Estimation, Adaptive Esti-
mation, Fourier Transformations.

1 Introduction

During the last two decades adaptive estimation has become one of the most active areas
of research in non-parametric statistics. The introduction of different models of adap-
tive estimation reflects the existing practical needs for more realistic models and flexible
methods of estimation. Study of these models brought with it new challenging problems
which required creation of new statistical methods and approaches.

In this paper we study non-parametric adaptive regression in a fixed design model in
which an unknown regression functionf(x) can be observed on an equidistant grid of the
whole real line. More precisely, for a given bin-widthh > 0, we consider the additive
model of observations given by

y` = f(`h) + ξ`, ` = 0,±1,±2, . . . (1)

whereξ` are independent centered Gaussian random variablesN (0, σ2), with a given
varianceσ2 > 0. Often in the statistical literature more advanced results are obtained in
the white noise model

dV (x) = f(x) dx + ε dW (x), −∞ < x < ∞, (2)
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which is just an approximation to the model (1), withε =
√

σ2h. HereV is the noisy
observation of an unknown regression functionf , ε is the resolving noise andW (x)
represents a standard Wiener process.

There exists a huge literature on the equivalence between these two models, cf. e.g.
Brown and Low (1996) and Nussbaum (1996), but this does not cover our main problem
here, namely adaptive non-parametric estimation. Our approach is greatly influenced by
a recent paper, Lepski and Levit (1998), which was a milestone in adaptive estimation of
infinitely differentiable functions, in the white noise model (2). Below we will explain
main differences between our approach and that of Lepski and Levit (1998).

In non-parametric statistics, classes of functions are in general described by smooth-
ness parameters. In this paper we shall study classes of functions defined in terms of
positive parametersγ, β and r whose interpretation will be explained below. We will
study estimation off in (1), under the assumption thatf belongs to the functional class
A(γ, β, r) which is the collection of all continuous functions such that

‖f‖2
γ,β,r :=

∫ ∞

−∞

γ

β2
e2|γt|r |F [f ](t)|2dt ≤ 1. (3)

HereF [f ] represents the Fourier transform off . The collection of all such classes will
be calledfunctional scale. Note that when the parameters are assumed known, we are
dealing with the problem of non-parametric estimation much studied recently, especially
since the publications, Ibragimov and Has’miskii (1981, 1982, 1983), Stone (1982). The
situation in which neither of these parameters is knowna priori is much more realistic
and complex. A real progress in this problem which is usually referred to asadaptive
estimation, has been only achieved in the last decade, most notably since the publication
of Lepski (1990, 1991, 1992a, 1992b). Further progress was achieved in Lepski and Levit
(1998, 1999).

For all γ, β, r, the classA(γ, β, r) is a class of infinitely differentiable functions,
and each of the parameters affects the smoothness – and the accuracy of the best non-
parametric estimators – in its own way. The parameterγ is some kind of ‘scale’ param-
eter: one can verify thatf(·) ∈ A(1, β, r) if and only if 1

γ
f( ·

γ
) ∈ A(γ, β, r). Therefore,

of all parameters, it affects the smoothness off most dramatically. The bigger isγ, the
smoother are the functions of the class.

The parameterβ can be interpreted as a ‘size’ parameter and represents the radius of
the correspondingL2-ellipsoid defined by (3). Note thatf(·) ∈ A(γ, 1, r) if and only if
βf(·) ∈ A(γ, β, r). Therefore the bigger isβ, the less smooth are the functions of the
class.

Finally, r can be best described as a parameter responsible for the ‘type’ of smooth-
ness. It is well known that forr = 1 all functions in the classA(γ, β, r) admit bounded
analytic continuation into the strip{z = x + iy : |y| < γ} of the complex plane (Paley-
Wiener theorem), and therefore for allr > 1 the functions inA(γ, β, r) are entire func-
tions (i.e. functions admitting analytic continuation into the whole complex plane). For
r < 1 these functions are ‘only’ infinitely differentiable, and their smoothness increases
together withr.

In the Gaussian white noise model Lepski and Levit (1998) studied adaptive esti-
mation for even broader classes of functions with rapidly vanishing Fourier transforms
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F [f ](t). However, their main conclusions are readily interpretable in the special example
of functional classesA′(γ, γ, r) = {f continuous, |F [f ](t)| ≤ γ exp−(γt)r} which are
quite similar to our classesA(γ, γ, r). Let us remind some of these conclusions here, as a
starting point for outlining our main results. For simplicity, we will assume, after Lepski
and Levit (1998), that0 < r− < r < r+ < ∞.

In the adaptive estimation, when the parameters such asγ, β, r are unknown, one is
looking for statistical procedures which can ‘adapt’ to the largest possible scope of these
parameters. As the smoothness of the underlying functions is most notably affected by
the ‘scale’ parameterγ, we will mainly refer to the ensuing uncertainty in the value of
this parameter. More specifically, the accuracy of the best methods of estimation will
be determined by the ‘effective noise’ε2/γ, whereε is the average noise intensity in the
observation model (1).

To realize the whole scope of the problem, it is useful to look at the extreme cases. On
one hand, the situation could be so ‘bad’, that no consistent estimation of the unknown
function would be possible at all, even if the parameterγ was completely known. On
an intuitive level, it is quite clear that such a situation occurs whenε2/γ 6→ 0. We can
exclude this case from consideration on the ground that “nothing can be done” in such an
extreme situation. Thus one can restrict attention to the caseγ À ε2. The situation dete-
riorates further in the adaptive setting, due to the uncertainty in parameterγ. According
to Lepski and Levit (1998), adaptive methods can only work efficiently ifγ À ε2−τ , for
some0 < τ < 2. On the other hand, ifγ becomes too big, the underlying functions be-
come unrealistically smooth and can be estimated with accuracyO(ε), i.e. with the same
accuracy which could be achieved if all underlying functions were either constant, or just
included a few unknown parameters. According to Lepski and Levit (1998), such an off-
beat situation occurs only whenγ becomes of orderlog1/r ε−1. Therefore one can restrict
attention to thoseγ for which ε2−τ ¿ γ ¿ log1/r ε−1, which, in a sense, is the largest
possible range for which adaptive procedure can exist. For allγ in this range, an efficient
adaptive non-parametric procedure has been proposed in Lepski and Levit (1998). Note
that this discussion led us, by the very nature of the statistical problem of adaptation, to
a situation in which the unknown parameter of the scaleγ belonged to a regionΓ = Γε

depending on the indexε of the model. In other words, our adaptive setting leads us to a
natural assumption that the unknown scale parameterγ may itself depend on the indexε.

Now, in the model we have just discussed the essential role was played by the noise
intensity ε and the scale parameterγ. Our model of discrete regression is more realis-
tic and also contains more parameters:σ, h, γ, β, r. Since the white noise model (2) is
known to approximate the discrete regression model (1), one can expect some similarity
between the ensuing results, namely that similar procedure could lead to an efficient adap-
tive method of estimation in the discrete regression. Without aiming at precise definitions,
one could speak in this case of a “weak” equivalence between the white noise and discrete
time adaptive regression schemes.

However, just as the relation between the two parameters involved played an important
role in the above discussion, a more complicated relation between all involved parameters
affects the quality of the optimal adaptive procedure in the discrete models. In fact, such
relations become more complex in the discrete case, not only because of additional pa-
rameters, all of which may be unknown and, therefore vary together withε, but also due to
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the limitations to which the continuous time model (2) captures the underlying properties
of the discrete model (1). In particular, the obvious naive recipe of just replacingε in all
the above restrictions by

√
σ2h does not provide a correct answer.

We comment next that the classes similar to (3) are well known in statistics. Appar-
ently they have been introduced first (forr = 1) in Ibragimov and Has’minskii (1983),
where optimal rates of convergence were found in estimating an unknown density func-
tion f ∈ A(γ, β, 1). Later Golubev and Levit (1996) showed (again forr = 1) that these
non-parametric classes are quite unique, in the sense that not only optimal rates, but exact
asymptotically minimax estimators, even point-wisely, can be explicitly constructed for
such classes. Asymptotically efficient non-parametric regression for the classesA(γ, β, 1)
was studied in Golubev, Levit and Tsybakov (1996). Here we consider more general
classesA(γ, β, r), use kernel-type estimators, different from Golubev, Levit and Tsy-
bakov (1996) and, more significantly, consider the problem of adaptive estimation.

In the Gaussian white noise model Lepski and Levit (1998) considered still more
general classes of infinitely differentiable functions, with rapidly vanishing Fourier trans-
forms. However, the restriction on the Fourier transform off in their paper was based on
theL∞-, rather than on theL2-norm, as in our case. They have not only proposed asymp-
totically minimax estimators for all of the corresponding classes, but have also constructed
asymptotically optimal adaptive estimators for the whole scale of such classes.

Since in most applications the information about an unknown function is typically
conveyed by discrete measurements, our model can be viewed as a more realistic approx-
imation, than the classical white noise model. Therefore our model contains an additional
“discretization” parameterh – the bin-width.

Our goal is to study, to what degree the method of the adaptive procedure proposed in
Lepski and Levit (1998) works in the discrete regression setting. More precisely, we are
seeking to find natural conditions under which our equidistant regression model is weakly
equivalent to the classical white noise model, in the sense that the asymptotically optimal
adaptive estimators proposed for the later model, are still asymptotically optimal in the
equidistant non-parametric regression models.

In the next section we introduce the model. In Section 3 we prove some auxiliary
lemmas. In Section 4, the problem of asymptotic minimax regression is studied first under
the assumption that the class of functions is completely determined by a fixed vector of
parameters(γ, β, r), these parameters being independent of the index of the modelh. At
the end of this section we give the first steps towards the adaptive framework by allowing
the parameters of the class depend on the index of the model. In Section 5 we consider
the functional scales which are collections of functional classes, see (40). We define the
optimality criteria based on the classification of the scales in pseudo-parametric (PP) and
non-parametric (NP) scales. We then prove optimality of the adaptive procedure. We
shall see that, compared to a given functional classA(γ, β, r), an additional logarithmic
factor in the exact rate of convergence has to be paid as a price for the uncertainty about
the actual class the regression function belongs to, see Theorem 3.



L.M. Artiles and B.Y. Levit 103

2 The Model

Let us formalize our model.

Definition 1 Let γ, β, r > 0 be given. We denote byA(γ, β, r) the class of continuous
functionsf : R→ R, whose Fourier transformsF [f ] satisfy

‖f‖γ,β,r :=

∫
γ

β2
e2|γt|r |F [f ](t)|2dt ≤ 1. (4)

In this study we use the following definition of the Fourier transform,

F [f ](t) =

∫
eitxf(x) dx. (5)

Note that the Fourier inversion formula

f(x) =
1

2π

∫
e−itxF [f ](t) dt (6)

certainly holds under assumption (4). It is easy to see that for allγ, β, r > 0, functions in
A(γ, β, r) are infinitely differentiable.

Now, let us consider the following observation model

y` = f(`h) + ξ`, ` = 0,±1,±2, . . . , (7)

whereξ` are i.i.d. Gaussian random variables,N (0, σ2), σ2 > 0. We assume that the
functionf belongs to the familyA(γ, β, r), for someγ, β, r > 0.

Our purpose is to estimate the unknown functionf(x) based on the vector of obser-
vationsy = (. . . , y−2, y−1, y0, y1, y2, . . .). We will choose our optimal estimator from the
family of kernel type estimators

f̂h,s(x,y) = h

∞∑

`=−∞
ks(x− `h) y` (8)

whereks, s ≥ 0, is the so-calledsinc-function

ks(x) =
sin sx

πx
, (9)

andks(0) = s
π
. This kernel has the property

F [ks](t) = [−s,s](t) (10)

and therefore, according to the convolution theorem,

F [f ∗ ks](t) = [−s,s](t)F [f ](t), (11)

where * represents the convolution operator.
The kernelks is just one of many possible, but its very tractable properties make it an

attractive tool: it helps significantly in the search of the most general possible results and



104 Austrian Journal of Statistics, Vol. 32 (2003), No. 1&2, 99-129

clarifies the underlying ideas. For practical purposes some other kernels, such asde la
Vallée Poussinkernel (cf. Nikol’skĭı, 1975, p. 301), may be more relevant and typically
would work better.

The parameters is called the bandwidth. As we shall see in Section 4, for any fixed
class there exists an optimum bandwidths. The optimum bandwidth will depend on
parametersγ, β, r, σ as well as the index of the modelh, called the bin-width, which in
our asymptotic study will tend to zero.

Denote byf̃h(x,y) an arbitrary estimator off(x) based on the observationsy. To
shorten the notation we will often writẽfh(x) instead off̃h(x,y). Let Pf be the distri-
bution of the vectory and letEf andVarf denote the expectation and the variance with
respect to this measure. When there is no possibility of confusion we will simply write
P, E andVar respectively.

LetW be the class of loss functionsw(x), x ∈ R, such that

w(x) = w(−x),

w(x) ≥ w(y) for |x| ≥ |y|, x, y ∈ R,

and for some0 < η < 1
2 ∫

e−ηx2

w(x) dx < ∞.

With an appropriate normalizing factorσh to be defined shortly, andw ∈ W, we will
consider the maximumrisk, over a fixed functional classA(γ, β, r), given by

sup
f∈A(γ,β,r)

Ef w
(
σ−1

h (f̃h(x,y)− f(x))
)

as a global measure of the error of the estimatorf̃h over the whole classA(γ, β, r). When
the classesA(γ, β, r) are considered fixed, our main goal is to find an estimator such that
the corresponding maximum risk is as small as possible, i.e. achieves (asymptotically)
theminimax risk

inf
f̃h

sup
f∈A(γ,β,r)

Ef w
(
σ−1

h (f̃h(x,y)− f(x))
)

wheref̃h is taken from the class of all possible estimators.
In the adaptive setting, we shall allow(γ, β, r) to vary freely inside large scalesK.

Conditions under which an adaptive study is suitable are presented and a notion of adap-
tive asymptotic optimality is introduced based on distinguishing, among all possible func-
tional scales, between the so-called non-parametric (NP) and pseudo-parametric (PP)
scales.

3 Auxiliary Results

In this section we present, for the reader’s convenience, two auxiliary results which will
be used in the subsequent sections. The aim of the first lemma is to approximate summa-
tion formulas by integrals, with a good approximation error in the case of very smooth
integrands. This result is a version of the celebratedPoisson summation formula. It
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has been used in a similar situation in Golubev, Levit and Tsybakov (1996). Below
A(γ, β, r), γ, β, r > 0 are the functional classes of infinitely differentiable functions pre-
viously defined andks(x) is the kernel (9).

Lemma 1 The following properties hold:

(a) Letf, g be continuous functions inL2(R) such thatF [f ],F [g] ∈ L1(R), then

h

∞∑

`=−∞
g(x− `h)f(`h− y) = 1

2π

∫
e−it(x−y)F [g](t)F [f ](t) dt +

1
2π

∑
` 6=0 ei 2π`

h
y
∫

e−it(x−y)F [g](t)F [f ]
(
t + 2π`

h

)
dt

=
∫∞
−∞ g(x− z)f(z − y) dz +

1
2π

∑
` 6=0 ei 2π`

h
y
∫

e−it(x−y)F [g](t)F [f ](t + 2π`
h

) dt.

(b) For arbitrary numberss1, s2 (0 ≤ s1 ≤ s2) denote∆(x) = ks2(x)−ks1(x).2 Then,
uniformly inγ, β, r, si ≥ 0, i = 1, 2, x ∈ R andf ∈ A(γ, β, r) ash → 0

h

∞∑

`=−∞
∆(x− `h)f(`h) =

1

2π

∫
e−itxF [∆](t)F [f ](t) dt +

O
(
e−(2π γ

h)
r
/cr

) (∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2

,

wherecr = max(1, 2r−1).

(c) Lets1, s2 and∆(x) be as before. Then, uniformly ins1, s2 andx ∈ R, for h → 0,

h

∞∑

`=−∞
∆2(x− `h) =

s2 − s1

π

(
1 + O(1) h(s2 − s1)

)
.

Proof. (a) The proof is based on the formula

∞∑

`=−∞
e2πi `x =

∞∑

`=−∞
δ(x− `), (12)

known in the theory of distributions (cf. e.g. Antonsik et al., 1973, Ch. 9.6). Using the
Fourier inversion formula, the distributional formula (12) and with some algebra, one
obtains

2Note that∆(x) = ks(x) for s1 = 0 ands2 = s.
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h

∞∑

`=−∞
g(x− `h)f(`h−y) =

h

(2π)2

∞∑

`=−∞

∫
e−it(x−`h)F [g](t) dt

∫
e−is(`h−y)F [f ](s) ds

=
h

(2π)2

∫ ∫
e−itxF [g](t) eisyF [f ](s)

∞∑

`=−∞
e−i(s−t)`h dt ds

=
h

(2π)2

∞∑

`=−∞

∫ ∫
e−itxF [g](t) eisyF [f ](s) δ

(
h(s− t)

2π
− `

)
dt ds

=
1

2π

∞∑

`=−∞

∫
e−itxF [g](t)

∫
eisyF [f ](s) δ

(
s− t− 2π`

h

)
ds dt

=
1

2π

∞∑

`=−∞

∫
e−itxF [g](t) ei(t+ 2π`

h
)yF [f ]

(
t +

2π`

h

)
dt

=
1

2π

∫
e−it(x−y)F [g](t)F [f ](t) dt

+
1

2π

∑

` 6=0

ei 2π`
h

y

∫
e−it(x−y)F [g](t)F [f ]

(
t +

2π`

h

)
dt

=

∫ ∞

−∞
g(x− z)f(z − y) dz

+
1

2π

∑

` 6=0

ei 2π`
h

y

∫
e−it(x−y)F [g](t)F [f ]

(
t +

2π`

h

)
dt.

(b) If f ∈ A(γ, β, r) thenf belongs toL2(R) according to the Parseval’s formula. Also,
F [f ] ∈ L1(R) according to (4) and the Cauchy-Schwartz inequality. Thus we can apply
the previous result in (a), usingg = ∆ andy = 0. Note thatF [∆](t) = (s1,s2](|t|).

Applying the Fourier inversion formula, the Cauchy-Schwartz inequality and the cr-
inequality, we obtain after a few transformations
∣∣∣∣∣h

∞∑

`=−∞
∆(x− `h)f(`h)− 1

2π

∫
e−itxF [∆](t)F [f ](t) dt

∣∣∣∣∣

≤ 1

2π

∑

` 6=0

∣∣∣∣
∫

e−itxF [∆](t)F [f ](t +
2π`

h
) dt

∣∣∣∣

≤ 1

2π

(∫
γ

β2
e2|γt|r |F [f ](t)|2 dt

)1/2 ∑

` 6=0

( ∫
|F [∆](t)|2 β2

γ
e−2|γ (t+ 2π`

h )|rdt

)1/2
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≤ 1

2π

∑

` 6=0

( ∫
(s1,s2](|t|) β2

γ
e2|γt|re−2| 2π`γ

h
|r/crdt

)1/2

≤ 1

2π

∑

` 6=0

e−|
2π`γ

h
|r/cr

(
2

∫
(s1,s2](t)

β2

γ
e2(γt)r

dt

)1/2

=
1

π

(
2

∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2 ∞∑

`=1

e−(2π` γ
h
)r/cr

≤ 1

π

(
2

∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2 (
e−(2π γ

h
)r/cr +

∫ ∞

1

e−(2π γ
h

x)r/crdx

)

= O
(
e−(2π γ

h
)r/cr

) (∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2

, (h → 0),

where the last asymptotic can be easily derived by partial integration.

(c) Applying (a) and takingf = g = ∆ andx = y, we see that

h

∞∑

`=−∞
∆2(x− `h) = h

∞∑

`=−∞
∆(x− `h) ∆(`h− x)

=
1

2π

∫
(F [∆](t))2 dt +

1

2π

∑

` 6=0

ei 2π`
h

x

∫
F [∆](t)F [∆]

(
t +

2π`

h

)
dt.

Therefore∣∣∣∣∣ h

∞∑

`=−∞
∆2(x− `h)− sj − si

π

∣∣∣∣∣ ≤
1

2π

∑

` 6=0

∫
F [∆](t)F [∆]

(
t +

2π`

h

)
dt

≤ 1

π

∞∑

`=1

∫
(s1,s2](|t|) (s1,s2]

(∣∣∣t +
2π`

h

∣∣∣
)

dt

≤ 5h(s2 − s1)
2

2π2
= O(1) h(s2 − s1)

2,

which completes the proof of the lemma. 2

The following elementary properties will be used below. They will help in bounding
the bias and the approximation errors.

Lemma 2 For any positiveγ andr the following inequality holds
∫ ∞

s

e−2(γt)r

dt ≤ s e−2(γs)r

r(γs)r
(13)
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for all s > t0 wheret0 satisfiesr(γt0)
r = 1 and

∫ s

0

e2(γt)r

dt =
s e2(γs)r

2r(γs)r
(1 + o(1)) (14)

uniformly inr− < r < r+ for γs →∞, wherer−, r+ > 0 are arbitrary fixed numbers.

For the first inequality see e.g. Lepski and Levit (1998), eqs. (2.8), (2.10). The second
property can be easily proven by partial integration.

4 Minimax Regression inA(γ, β, r)

4.1 Optimality in the Case of Fixed Classes

The first result we present in this section is obtained in the classical framework, i.e. in a
situation where the functionf(x) although unknown belongs to a given class. In other
words, the parameterα = (γ, β, r) of the class is known and fixed. Denote for short-
nessA(α) = A(γ, β, r). We will prove that asymptotically minimax estimators can be
found among kernel estimators using a specified bandwidth and we will also calculate to
a constant their maximal asymptotic risk, for a variety of loss functions.

Theorem 1 Letα > 0 andω ∈ W. Then for anyx ∈ R, the kernel estimator̂fh = f̂h,sh
,

in (8) with the bandwidth

sh = sh(α, σ2) =
1

γ

(
1

2
log

β2

π γσ2h

)1/r

, (15)

satisfies

lim
h→0

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(f̂h(x)− f(x))

)
=

lim
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(f̃h(x)− f(x))

)
= Ew(ξ)

wheref̃h is taken from the class of all possible estimators off andξ ∼ N (0, 1).

Proof. Upper bound for the risk. Let us first study the sample properties of the
family of estimators we use. According to the model for the observations (7) and the
formula for the estimator (8) one can split the error term as follows,

f̂h,s(x)− f(x) =
(
h

∞∑

`=−∞
ks(x− `h)f(`h)− f(x)

)
+

(
h

∞∑

`=−∞
ks(x− `h)ξ`

)

:= b(f, x, s, h) + v(σ, x, s, h).
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For simplicity we shall write belowbs = b(f, x, s, h), vs = v(σ, x, s, h). The mean square
error can be decomposed as

E (f̂h,s(x)− f(x))2 = b2
s + Var vs, (16)

wherebs is the bias andvs is a normally distributed zero mean stochastic term.
First, let us consider the bias. In order to apply Lemma 1 we takes1 = 0 ands2 = s.

In this case∆ = ks. Now, applying Lemma 1(b) and the Fourier inversion formula for
f(x) we see that uniformly inf ∈ A(α)

bs =
1

2π

∫
e−itx(F [ks](t)− 1)F [f ](t)dt + O

(
e−(2π γ

h
)r/cr

) (∫ s

0

β2

γ
e2(γt)r

dt

)1/2

,

for h → 0. Furthermore, applying Cauchy-Schwartz inequality, property (10), and defi-
nition of the classA(γ, β, r) we get

b2
s ≤ 2

∣∣∣∣
1

2π

∫
e−itx(F [ks](t)− 1)F [f ](t) dt

∣∣∣∣
2

+ O
(
e−2(2π γ

h
)r/cr

) ∫ s

0

β2

γ
e2(γt)r

dt

≤ 1

2π2

∫

|t|>s

β2

γ
e−2|γt|rdt + O

(
e−2(2π γ

h
)r/cr

) ∫ s

0

β2

γ
e2(γt)r

dt

≤ 1

π2

∫ ∞

s

β2

γ
e−2(γt)r

dt + O
(
e−2(2π γ

h
)r/cr

) ∫ s

0

β2

γ
e2(γt)r

dt. (17)

Second, let us consider the variance term. From Lemma 1(c), withs1 = 0 ands2 = s, we
see that

Var vs = σ2h2

∞∑

`=−∞
k2

s(x− `h) =
σ2h s

π
(1 + O(1) hs), (18)

whenh → 0. For anys denote

σ2
h,s =

σ2hs

π
(19)

and for the chosen bandwidths = sh denote the resulting variance

σ2
h = σ2

h(α, σ2) =
σ2hsh

π
. (20)

From equations (16)–(18) we see that the mean square error of the estimatorf̂h,s satisfies

∣∣∣E (f̂h,s(x)− f(x))2 − σ2
h,s

∣∣∣ ≤ σ2
h,s

(
O(hs) + (πσh,s)

−2

∫ ∞

s

β2

γ
e−2(γt)r

dt

+ σ−2
h,sO

(
e−2(2π γ

h
)r/cr

) ∫ s

0

β2

γ
e2(γt)r

dt
)
. (21)

Now we shall verify that, takings = sh as defined in (15), the term of the right hand side
of the previous equation is equal toσ2

h o(1). Before going into details, let us remark that
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the bandwidthsh is precisely the bandwidth that balances the main terms of the bias and
the variance in the mean square error, i.e. it minimizes

σ2hs

π
+ π−2

∫ ∞

s

β2

γ
e−2(γt)r

dt

(with respect tos), since by (15)

e2(γsh)r

=
β2

πγσ2h
. (22)

Let us return to equation (21). Note first that

hsh → 0, when h → 0. (23)

Second, applying the identity (22) and Lemma 2, we see that

(πσh)
−2

∫ ∞

sh

β2

γ
e−2(γt)r

dt =
β2

π γσ2h

∫∞
sh

e−2(γt)r
dt

sh

=

∫∞
sh

e−2(γt)r
dt

she−2(γsh)r

≤ 1

r(γsh)r
=

(
r

2
log

β2

πγ σ2h

)−1

= o(1), (24)

whenh → 0. Finally, applying the identity (22) and trivial inequality

σ−2
h e−2( 2πγ

h
)r/cr

∫ sh

0

β2

γ
e2(γt)r

dt ≤ π
β2

γ σ2h
e−2( 2πγ

h
)r/cr+2(γsh)r

=

(
β2

γ σ2h

)2

e−2(2π γ
h)

r
/cr = o(1), (25)

whenh → 0. Thus, from (21) and (23)–(25) we have that

E (f̂h(x)− f(x))2 = σ2
h (1 + o(1)), (h → 0).

Note that when we normalize the error of our estimator byσh, the normalized error term
(f̂h(x)− f(x))/σh has a normal distribution, with mean of ordero(1) and variance equal
to 1 + o(1) where the termso(1) are small uniformly inf ∈ A(α) whenh goes to zero.
Because the loss functionw has only countably many discontinuity points, applying the
dominated convergence theorem

lim
h→0

sup
f∈A(α)

Ef w
(
σ−1

h (f̂h(x)− f(x))
)

= Ew (ξ). (26)

Lower bound for the risk. Consider the parametric family of functions

fθ(z) = θg(z), g(z) =
π

sh

ksh
(z − x).

These functions satisfyfθ(x) = θ, and if we assume that|θ| ≤ θ(h) where

θ2(h) =
s2

h

2π2

(∫ sh

0

γ

β2
e2(γt)r

dt

)−1

(27)
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then

∫
γ

β2
e2|γt|r |F [fθ](t)|2dt = θ2 π2

s2
h

∫
γ

β2
e2|γt|r |F [ksh

](t)|2 dt

≤ θ2(h)π2

s2
h

∫
γ

β2
e2|γt|r

[−sh,sh](t) dt ≤ 1.

Thusfθ ∈ A(α) for all θ such that|θ| ≤ θ(h).
Now, we can apply Kakutani’s theorem using the fact that

∑∞
`=−∞ g2(`h) < ∞ ac-

cording to Lemma 1(c), and see that

dP
(h)
θ

dP
(h)
0

(y) = exp

{
1

2σ2

∞∑

`=−∞
(2θ y` g(`h)− θ2g2(`h))

}
, (28)

wherePθ = Pfθ
(cf. e.g. Hui-Hsiung, 1975, Sect. II.2). The statistic

T =

∑∞
`=−∞ y` g(`h)∑∞
`=−∞ g2(`h)

(29)

is sufficient for the parameterθ of the family of distributionsPθ. ObviouslyT is normally
distributed. Givenfθ(`h) = θg(`h), we can easily verify that

T ∼ N
(

θ ,
σ2

∑∞
`=−∞ g2(`h)

)
, (30)

and applying Lemma 1(c), withs1 = 0 ands2 = sh, we see that

1

σ2

∞∑

`=−∞
g2(`h) =

π2

σ2hs2
h

(
h

∞∑

`=−∞
k2

sh
(x− `h)

)
=

π

σ2hsh

(1 + O(1) hsh),

whenh goes to zero. Thus,T can be represented as

T = θ + ϕ ξ where ξ ∼ N (0, 1) (31)

and, according to the previous arguments,

ϕ2 =
σ2

∑∞
`=−∞ g2(`h)

= σ2
h(1 + o(1)). (32)

To derive the required lower bound, let us assume the unknown parameterθ has a prior
densityλ(θ); a convenient choice is

λ(θ) =
1

θ(h)
cos2 πθ

2θ(h)
, |θ| ≤ θ(h).
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We obtain then, due to the sufficiency of the statisticT ,

inf
f̃h

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(f̃h(x)− f(x))

)

≥ inf
f̃h

sup
|θ|<θ(h)

Ef w

(√
π

σ2hsh

(f̃h(x)− fθ(x))

)

≥ inf
θ̂

sup
|θ|<θ(h)

Eθw

(√
π

σ2hsh

(θ̂ − θ)

)

≥ inf
θ̂

∫ θ(h)

−θ(h)

Eθw

(√
π

σ2hsh

(θ̂ − θ)

)
λ(θ)dθ

= inf
θ̂(T )

∫ θ(h)

−θ(h)

Eθw

(√
π

σ2hsh

(θ̂(T )− θ)

)
λ(θ)dθ

= Ew

(
ϕ

σh

ξ

)
− ϕ2

θ2(h)

1√
2π

∫
(x2 − 1)w(x)e−

x2

2 dx (1 + o(1)).

Here the last equation follows from Levit (1980). According to (32),ϕ
σh

= 1 + o(1),
(h → 0), while applying identity (22) and Lemma 2 we see that

σ2
h

θ2(h)
= 2

πγσ2h

β2

∫ sh

0
γe2(γt)r

dt

γsh

=
2
∫ γsh

0
γe2trdt

γshe2(γsh)r ≤ 1

r(γsh)r
→ 0, (33)

whenh → 0. Thus we have that, according to the dominated convergence theorem,

lim inf
h→0

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(f̂h(x)− f(x))

)
≥

lim inf
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(f̃h(x)− f(x))

)
≥ Ew(ξ). (34)

Together the relations (26) and (34) prove the theorem. 2

4.2 An Extension to Non-fixed Classes

Up till now we assumed that the classesA(α) were fixed, i.e. not depending on the pa-
rameterh, though the function we wanted to estimate could vary freely within the given
classA(α) and, in particular, could depend onh. The possible dependency off on h
implies that the estimated function could be as ‘bad’ as our model allowed it to be which
justified the minimax approach of Theorem 1. To summarize, the assumption that our
functional classA(α) is fixed implies that the smoothness properties of the elements of
the class are fixed. However, we might want to further relax this restriction by allowing
the class itself depend onh. Indeed, there is neither practical justification, nor a logical
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requirement, that the smoothness of the underlying function remains the same while the
level of noise decreases and consequently the resolution of the available statistical proce-
dures increases. This will become even more natural in the adaptive setting of Section 5
where the smoothness of the underlying function is not known beforehand.

Thus, as a first step towards introducing the adaptive framework, we let the parameters
of the modelγ, β and r depend onh. Even so, they still be assumed to be known to
the statistician – this assumption will be abolished later in the adaptive framework of
Section 5. This approach will allow us to explore the ‘limits’ of the model where its
parameters are allowed to change freely. Letsh be as defined in Theorem 1. Note that
now the optimum bandwidthsh depends onh also through the parametersγ, β andr.
Nevertheless the statement of Theorem 1 still holds, as we shall see, under corresponding
assumptions.

Theorem 2 Let w ∈ W , and let the parametersβ = βh, r = rh, γ = γh andσ = σh be
all positive and such that

0 < lim inf
h→0

r ≤ lim sup
h→0

r < ∞, (35)

lim inf
h→0

β2

γ σ2h
= ∞, (36)

lim sup
h→0

h

γ

(
log

β2

γ σ2h

)1/r

= 0. (37)

Then

lim
h→0

sup
f∈A(α)

Ef w
(√

π
σ2hsh

(f̂h(x)− f(x))
)

=

limh→0 inf f̃h
supf∈A(α) Ef w

(√
π

σ2hsh
(f̃h(x)− f(x))

)
= Ew(ξ)

wheresh, f̃h and f̂h are the same as in Theorem 1.

Remark 1 Note that the conditions (35) and (37) implyhsh → 0 whenh → 0. As a
direct consequence of this, we obtain consistency, providedσ2 is bounded, since then
σ2hsh

π
→ 0. However, our asymptotic optimality result doesn’t requireσ2 to be bounded;

in other words they apply even when there is no consistency!

Proof. We prove this theorem following the same proof of Theorem 1. It is sufficient
to see that relations (23)–(25) and (33) still hold for the classA(γh, βh, rh). The limit (23)
follows from (35) and (37), the limits (24) and (33) follow from (35) and (36). Finally
(25) follows from the identity

β2

γ σ2h
e−(2π γ

h
)

r
/cr = exp

{
− c−1

r

(
2π

γ

h

)r(
1− cr

(2π)r

(h

γ

(
log

β2

γ σ2h

)1/r)r)}
(38)

and conditions (35)–(37). Note thath/γ → 0, by (36) and (37). The rest of the proof
remains the same. 2
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The important conclusion which can be drawn from the last result is that in order to
prove asymptotic optimality of our estimation procedure, we do not have to invoke the
assumption – not always realistic – that the smoothness of the estimated function remains
the same, even when the level of noise decreases and, as a consequence, the resolution
of available statistical methods increases. Note that in this more general situation the
corresponding optimal rate of convergence

σ2
h(α, σ2) =

σ2h

πγ

(
1

2
log

β2

πγ σ2h

) 1
r

, (39)

can be of any order, with respect to any of the parameters,h or σ2h, varying from ex-
tremely fast, parametric rates, to extremely slow, non-parametric ones, and even all the
way down to no consistency at all. The problem which we will face in next section, is that
in practice we often do not know the real class at all.

5 Adaptive Minimax Regression

5.1 Adaptive Estimation in Functional Scales

As a transition from the classical minimax setting, studied in the previous sections, to the
adaptive setting we introducefunctional scales

AK =
{
A(α) | α ∈ K

}
, (40)

corresponding to a subsetK ⊂ R3
+ in the underlying parameter space. As our scalesAK

can be identified with corresponding subsetsK, we will speak sometimes about a scale
K, instead ofAK, when there is no risk that could lead to a confusion. Sometimes we can
think of the scaleAK as the collection of functions

{
f ∈ A(α) | α ∈ K

}
.

We will say that some limit exists uniformly inAK to express that it exists uniformly in
f ∈ A(α) for everyα and they converge uniformly inα ∈ K.

Our goal is to estimate a function which belongs toA(α) for someα ∈ K. So, we must
find an estimator, which does not depend onα and such that it performs “optimally” well
over the whole scaleK. For this new setting a new definition of optimality is necessary.
We use the following definition which was used in Lepski and Levit (1998). From now on
we will restrict ourselves to the loss functionsw(x) = |x|p, p > 0. LetAK be a functional
scale andF a class of estimators̃fh.

Definition 2 An estimatorf̂h ∈ F is called (p,K,F)-adaptively minimax, at a point
x ∈ R, if for any other estimator̃fh ∈ F

lim sup
h→0

sup
α∈K

supf∈A(α) Ef |f̂h(x)− f(x)|p
supf∈A(α) Ef |f̃h(x)− f(x)|p ≤ 1.
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The simplest example of a scaleAK can be obtained whenK is a fixed compact subset
of R3

+. Our results below cover a much broader setting in which the setK itself can
depend on the parameterh. In our approach, such results serve two goals. First of all,
they allow a better understanding of the true scope of adaptivity of statistical procedures,
since they describe the ‘extreme’ situation in which an adaptation is still possible. In fact
all what is needed below is that the assumptions of our ‘non-adaptive’ Theorem 2 hold
uniformly on the scaleK; below we formulate these assumptions more explicitly.

Definition 3 A functional scaleAKh
(or the corresponding scaleKh) is called a regular,

or an R-scale if the following conditions are satisfied:

0 < lim inf
h→0

inf
α∈Kh

r ≤ lim sup
h→0

sup
α∈Kh

r < ∞, (41)

lim inf
h→0

inf
α∈Kh

β2

γ σ2h
= ∞, (42)

and

lim sup
h→0

sup
α∈Kh

h1−δ

γ

(
log

β2

γ σ2h

)1/r

= 0 (43)

for some0 < δ < 1.

The second goal that can be achieved by considering more general scalesKh is to
introduce the notion of optimality in adaptive estimation, by specifying a natural set of
estimatorsF in the above Definition 2. Note that within a large scaleAKh

, unknown
functionsf can vary from extremely smooth ones, allowing parametric rateσ2O(h2), to
much less smooth functions, allowing slower ratesσ2O(h2δ), δ < 1, or even extremely
slow ratesσ2O(log−1(1/h)). The first possibility is not typical in non-parametric esti-
mation and only can happen in some extreme cases. These ideas are made more precise
by introducing the following terminology classifying functional scalesAKh

into pseudo-
parametric(PP) andnon-parametric(NP) scales depending of their global rates of con-
vergence.

Definition 4 A functional scaleAKh
(or the corresponding parameter scaleKh) is called

(a) pseudo-parametric, or a PP scale if

lim sup
h→0

sup
α∈Kh

sh(α) < ∞,

(b) non-parametric, or an NP-scale if

lim
h→0

inf
α∈Kh

sh(α) = ∞.

We shall call regular pseudo-parametric and regular non-parametric scales respectively
RPP and RNP scales.

Since pseudo-parametric scales are not typical, in non-parametric estimation and can
only happen in some extreme cases, we will only require our statistical procedure to
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achieve the optimal rateσ2O(h2) for such scales; cf. the Definition of the corresponding
classesFp below. Note that even with such procedures, a better rate will be achieved,
in estimating functions in any pseudo-parametric scale than in any of the non-parametric
scales. Further a strong evidence suggests that there is hardly much more one can do than
require rate optimality, for any of the pseudo-parametric scales. On the other hand, such
an approach allows to develop natural optimality criteria, for any adaptive procedure in
the classesF in the case of non-parametric scales.

LetFp = Fp(x) be the class of all estimators̃fh that satisfy

lim sup
h→0

sup
α∈Kh

sup
f∈A(α)

Ef

∣∣∣(σ2h)−1/2(f̃h(x)− f(x))
∣∣∣
p

< ∞

for arbitrary RPP functional scalesAKh
. LetF0

p = F0
p (x) denote the class of estimators

such that
lim sup

h→0
E0|(σ2h)−1/2 f̃h(x)|p < ∞.

It is easy to notice thatFp ⊂ F0
p . In the next subsection we present an adaptive estimator

f̂h ∈ Fp and prove it to be(p,K,Fp)-adaptively minimax for arbitrary RNP functional
scales.

5.2 The Adaptive Estimator: Upper Bound

Section 5.1 outlined the general adaptive setting, introduced a notion of optimal adaptive
estimation and described regular non-parametric scales of infinitely differentiable func-
tions. Our first result describes accuracy which can be achieved for such scales. Its proof
starts with the construction of an adaptive estimator achieving this accuracy. In this, the
Lepski’s method will be used, with the recent modification of Lepski and Levit (1998).
Note that the accuracy of our procedure loses a logarithmic factor compared to the non-
adaptive case where the parameters of the underlying classes are known. In Section 5.3
we will see that this is an unavoidable pay for not knowing the smoothnessa priori and
we will prove optimality of the proposed procedure in the sense of Definition 2.

Remark 2 In principle, one could also study adaptation to the unknown parameterσ2.
This however leads to entirely different problems, and is not considered in this thesis.
Therefore we always assume thatσ2 is known, although it can vary withh.

Denote
ψ2

h = ψ2
h(α) = p(log sh(α)) σ2

h(α)

wheresh(α) andσ2
h(α) were defined in (15) and (20).

Theorem 3 For anyp > 0 there exists an adaptive estimatorf̂h such that for anyx ∈ R
and for any RNP functional scaleAKh

, f̂h ∈ Fp

lim sup
h→0

sup
α∈Kh

sup
f∈A(α)

Ef

∣∣∣ψ−1
h (f̂h(x)− f(x))

∣∣∣
p

≤ 1.
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The adaptive estimator. First, let us choose parameters,1/2 < l < 1, 1/2 < δ < 1,
p1 > 0, l1 = δl, and define the sequence of bandwidthss0 = 0, si = exp(il) for i = 1, . . ..
For eachh, we take a subsequenceSh = {s0, s1, . . . sIh

} where

Ih = arg max
i
{hsi ≤ log−1 1/h}, (44)

h < 1. Our asymptotic study considersh → 0, thus, without loss of generality, we define
Ih just forh < 1.

Now, let us denote

f̂i(x) = f̂h,si
(x), bi = Ef f̂i(x)− f(x),

σ2
i = Var f̂i(x), σ̂2

i =
σ2h si

π
,

σ2
i,j = Var (f̂j(x)− f̂i(x)), σ̂2

i,j =
σ2h (sj − si)

π
,

and define the thresholds
λ2

j = p log sj + p1 logδ sj.

Finally we define

î = min
{

1 ≤ i ≤ Ih : |f̂j(x)− f̂i(x)| ≤ λj σ̂i,j ∀j (i ≤ j ≤ Ih)
}

. (45)

We will prove below that the estimator

f̂h(x) = f̂î(x)

satisfies both the statements contained in Theorem 3.
Let us get first some insight into the algorithm. The sequenceSh of bandwidths has

several important properties. First, it is increasing, thus the variance of the corresponding
estimators is also increasing.

Second, according to the definition of R-scales the bandwidthssh(α), see eq. (43), are
such thathsh(α) ≤ hδ uniformly inKh for someδ < 1, andh small enough. Thus,sIh

is
large enough forh small enough, so that for eachα, the optimum bandwidthsh(α) corre-
sponding toA(α), can be sandwiched between two consecutive elements of the sequence
Sh, i.e. there existsi(α) = i(α, h) such that

si(α)−1 < sh(α) ≤ si(α).

The sequence is also dense enough so that

lim
i→∞

si+1

si

= 1.

This guarantees thatsh(α) andsi(α) are asymptotically equivalent sincesh(α) → ∞ for
h → 0 in NP scales.
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The sequence of thresholdsλj has been chosen in such a way that, for largei, j
(i(α) ≤ i ≤ j), the probability of the event

|f̂j(x)− f̂i(x)| > λj Var1/2(f̂j(x)− f̂i(x)), (46)

is very small since, except for an event of a small probability, this can only occur if the
bias (bj − bi) À Var1/2(f̂j(x) − f̂i(x)) which is not the case for bandwidths greater
thansh(α) as we will see. Therefore, for any giveni and j > i we rejectsi in favor
of the subsequent elements of the sequenceSh, if the event (46) occurs. This pairwise
comparison is performed for everyi, and from all the acceptedsi we select the smallest,
i.e. we choose the estimator with the smallest variance. Note that according to the previous
argument no bandwidthsi, i ≥ i(α) will be rejected, with high probability. However it is
possible that a bandwidthsi, i < i(α) is chosen. In that case our procedure warrants that,
cf. (45),

|f̂î(x)− f̂i(α)(x)| ≤ λi(α) Var1/2(f̂î(x)− f̂i(α)(x))(1 + o(1))

Thus in the worst case the accuracy off̂h decreases by a factor1 + λi(α) which is of order
log sh(α) asymptotically ash → 0. In the next subsection we prove that the accuracy of
this algorithm is asymptotically optimal in the adaptive setting, for all RNP scales subject
to certain mild additional assumptions; see Theorems 1 and 6.

Now, let us turn to the proof of the theorem. We start with an auxiliary result needed
in the proof where we use the same notations as those used in describing the estimation
procedure.

Lemma 3 For h → 0, uniformly with respect toi, j (1 ≤ i, j ≤ Ih) and with respect to
α varying in a regular scale,

(a) b2
j = o(1)σ̂2

j for all j such thati(α) ≤ j ≤ Ih.

(b) σ2
j = σ̂2

j (1 + O(log−1(1/h))).

(c) (bj − bi)
2 ≤ (1 + o(1))σ̂2

i,j for all i, j such thati(α) ≤ i ≤ j ≤ Ih.

(d) σ2
i,j = σ̂2

i,j(1 + O(log−1(1/h))).

Proof. (a) Using the bound for the bias given in (17), equation (22), and Lemma 2
we see, with some algebra, that

b2
j ≤

1

π2

∫ ∞

sj

β2

γ
e−2(γt)r

dt + O
(
e−2(2π γ

h
)r/cr

) ∫ sj

0

βγe2(γt)r

dt

≤ σ2hsj

π

β2

πγ σ2h

e−2(γsj)
r

r(γsj)r
+ O

(
e−2(2π γ

h
)r/cr

) σ2hsj

π

β2

πγ σ2h
e2(γsj)

r

= σ̂2
j

(
e2(γsh)r−2(γsj)

r

r(γsh)r
+ O

(
e−(2π γ

h
)r/cr+2(γsh)r

e−(2π γ
h
)r/cr+2(γsj)

r
))

.
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Now, givensj ≥ sh(α) and using conditions (44) in the definition of the sequence of band-
widthsSh and conditions (41)–(43) in the definition of R scales, we obtainb2

j = o(1)σ̂2
j

whenh → 0, uniformly with respect toj (i(α) ≤ j ≤ Ih) and with respect toα in Kh.

(b) This is just a reformulation of the asymptotic relation (18) using the fact that, accord-
ing to (44),hsj ≤ log−1(1/h).

(c) Applying Lemma 1(b) takings1 = si ands2 = sj, and arguing as in (17) and in the
proof (a), we see that

(bj − bi)
2 ≤ 2

∣∣∣∣
1

2π

∫
e−itxF [∆i,j](t)F [f ](t) dt

∣∣∣∣
2

+

O
(
e−2(2π γ

h
)r/cr

) ∫ sj

si

β2

γ
e2(γt)r

dt

≤ 1

π2

∫ sj

si

β2

γ
e−2(γt)r

dt + O
(
e−2(2π γ

h)
r
/cr

) ∫ sj

si

β2

γ
e2(γt)r

dt

≤ σ2h(sj − si)

π

β2

πγ σ2h
e−2(γsi)

r

+

O
(
e−2(2π γ

h
)r/cr

) σ2h(sj − si)

π

β2

πγ σ2h
e2(γsj)

r

= σ̂2
i,j

(
e2(γsh)r−2(γsi)

r

+ O
(
e−(2π γ

h
)r/cr+2(γsh)r

e−(2π γ
h
)r/cr+2(γsj)

r
))

= σ̂2
i,j(1 + o(1)), (h → 0).

(d) It follows directly from Lemma 1(c), takings1 = si ands2 = sj. Here, as in (18),
we can verify that

σ2
i,j = σ2h2

∑∞
`=−∞ (ksj

(x− `h)− ksi
(x− `h))2

=
σ2h (sj−si)

π
(1 + O(1) h(sj − si)). (47)

and thus, using (44), this completes the proof of the lemma. 2

We now proceed with proving Theorem 3. For arbitraryf in any R-functional scaleAKh
,

Rh(f) := E |f̂î(x)− f(x)|p = R−
h (f) + R+

h (f)

where
R−

h (f) = E
{

{̂i≤i(α)}|f̂î(x)− f(x)|p
}

and
R+

h (f) = E
{

{̂i>i(α)}|f̂î(x)− f(x)|p
}

.
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Let us examineR−
h (f) first. We have

{
î ≤ i(α)

}
⊂

{
|f̂î(x)− f̂i(α)(x)| ≤ λi(α)σ̂î,i(α)

}

⊂
{
|f̂î(x)− f̂i(α)(x)| ≤ λi(α)σ̂i(α)

}
,

therefore

R−
h (f) ≤ E

(
{̂i≤i(α)}

(
| f̂î(x)− f̂i(α)(x) |+ | f̂i(α)(x)− f(x) |

)p )

≤ E
(
λi(α)σ̂i(α) + | f̂i(α)(x)− f(x) |

)p

≤ E
(
λi(α)σ̂i(α) + |bi(α)|+ σi(α)|ξ|

)p

whereξ ∼ N (0, 1). Now according to Lemma 3, (a) and (b), uniformly with respect toα
in any regular scale

σi(α) = σ̂i(α)(1 + o(1)) and |bi(α)| = o(1)σ̂i(α), (h → 0).

It follows that forh → 0 uniformly with respect to any RPP scale

R−
h (f) = O(hp/2), (48)

while by the dominated convergence theorem, uniformly in any RNP scale

R−
h (f) ≤ ψp

h(α)(1 + o(1)). (49)

Now let us examineR+
h (f). Consider the auxiliary events

Ai =
{

ω : | f̂i(x)− f(x) | ≤
√

2 λiσ̂i

}
.

Applying Hölder’s inequality we obtain

R+
h (f) = E

(
{̂i>i(α)} |f̂î(x)− f(x)|p

)
=

Ih∑

i=i(α)+1

E
(

{̂i=i} |f̂i(x)− f(x)|p
)

=

Ih∑

i=i(α)+1

E
(
|f̂i(x)− f(x)|p ( {̂i=i}∩Ai

+ {̂i=i}∩Ac
i
)
)

≤ R+
h,1(f) + R+

h,2(f),

where

R+
h,1(f) =

Ih∑

i=i(α)+1

(2λ2
i σ̂

2
i )

p/2 P(̂i = i)
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and

R+
h,2(f) =

Ih∑

i=i(α)+1

E1/2
∣∣∣f̂i(x)− f(x)

∣∣∣
2p

P1/2(Ac
i).

We have

P(̂i = i) ≤
∞∑

j=i+1

P
(
|f̂j−1(x)− f̂i−1(x)| > σ̂i−1,j−1 λj−1

)
. (50)

By writing f̂j(x) − f̂i(x) = σi,jξ + bj − bi, whereξ ∼ N (0, 1), applying Lemma 3(d),
and using the well known bound on the tails of the normal distribution (cf. Feller, 1968,
Lemma 2), we find for someC > 0 and allh small enough

P
(
|f̂j(x)− f̂i(x)| > λjσ̂i,j

)
≤ P

(
|ξ| > λj

σ̂i,j

σi,j

− |bj − bi|
σi,j

)

≤ exp
{
− 1

2

(
λj

σ̂i,j

σi,j

− C
)2}

≤ exp
{
− 1

2
λ2

j

σ̂2
i,j

σ2
i j

+ Cλj
σ̂i,j

σi,j

}

≤ exp

{
−1

2
λ2

j + Cλj
σ̂i,j

σi,j

+
1

2
λ2

j

(
1− σ̂2

i,j

σ2
i j

)}
.

Since by Lemma 3(c) and (44)

λ2
j

σ2
i,j − σ̂2

i,j

σ2
i,j

= λ2
j O( log−1(1/h)) = o(1), (h → 0),

it follows from the last inequality that for someC1 > 0

P
(
|f̂j(x)− f̂i(x)| > λjσ̂i,j

)
≤ C1 exp

{
−1

2
λ2

j + 2Cλj

}

for all α, j ≥ i ≥ i(α) and all sufficiently smallh.
Returning to (50) we obtain that

P(̂i = i) ≤ C1

∞∑
j=i+1

exp

{
−1

2
λ2

j−1 + 2Cλj−1

}
= C1

∞∑
j=i

exp

{
−1

2
λ2

j + 2Cλj

}

= C1

∞∑
j=i

exp

{
−pjl + p1j

l1

2
+ 2C

√
pjl + p1jl1

}

≤ C1

∞∑
j=i

exp
{
− pjl

2
− p1j

l1

3

}
∼ C1

2

pl
i1−l exp

{
− pil

2
− p1i

l1

3

}

= C1
2

pl
i1−ls

−p/2
i exp

{
− p1i

l1

3

}
≤ C2s

−p/2
i exp

{
− p1i

l1

4

}
(51)
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for someC2 > 0 and alli ≥ i(α), whenh is sufficiently small. Therefore uniformly in
AKh

R+
h,1(f) = O(hp/2)

∞∑
i=1

ipl/2 exp
{
− p1i

l1/4
}

= O(hp/2), (h → 0).

In order to obtain a bound onR+
h,2(f) we write againf̂i − f(x) = bi + σiξ , ξ ∼

N (0, 1). Applying Lemma 3, (a) and (b), in the same way as before, we have

P(Ac
i) ≤ P

(
|ξ| >

√
2 λi

σ̂i

σi

− |bi|
σi

)
≤ P

(
|ξ| >

√
2 λi

σ̂i

σi

−
√

2

)

≤ exp

{
−1

2

(√
2 λi

σ̂i

σi

−
√

2

)2
}
≤ C3 exp

{
− λ2

i + 2 λi

}

≤ C3 exp
{
− pil − p1i

l1/2
}

= C3s
−p
i exp

{
− p1i

l1/2
}

,

for someC3, all i ≥ i(α) and allα providedh is small enough. Thus,

R+
h,2(f) =

Ih∑

i=i(α)+1

E1/2|f̂i(x)− f(x)|2p P1/2(Ac
i)

≤
Ih∑

i=i(α)+1

σ̂p
i E1/2| o(1) + (1 + o(1))ξ |2p P1/2(Ac

i)

= O
(σ2h

π

)p/2
∞∑
i=1

exp
{
− p1i

r1/4
}

= O(hp/2), (h → 0), (52)

uniformly inAKh
.

We can thus conclude that, uniformly in any RPP scaleKh, our estimator satisfies

sup
α∈Kh

sup
f∈A(α)

E
∣∣∣h−1/2(f̂h(x)− f(x))

∣∣∣
p

= O(1),

while for any RNP scaleKh

sup
α∈Kh

sup
f∈A(α)

E
∣∣∣ψ−1

h (α)(f̂h(x)− f(x))
∣∣∣
p

≤ 1 + o(1),

whenh → 0. 2

5.3 Lower Bound: Optimality Results

In Section 5.2 we have established an upper bound for the risk of adaptive procedures, by
evaluating the quality of a proposed adaptive estimator. In this section we will establish
a lower bound for arbitrary such estimator, which will allow us to establish optimality of
the proposed procedure in the sense of Definition 2.
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Theorem 4 Let p > 0. LetAKh
be an arbitrary RNP scale such that quantitiess̃h =

s̃h(α), s̃h ≤ sh(α), andφ̃h(α) can be defined in such a way that for all sufficiently small
h andα ∈ Kh

φ̃2
h = φ̃2

h(α) ≤ min( p log s̃h , r(γs̃h)
r/2 ) (53)

and

lim
h→0

inf
α∈Kh

φ̃h = ∞. (54)

Denote

ψ̃2
h = ψ̃2

h(α) =
σ2h s̃h

π
φ̃2

h.

Then for any estimator̃fh ∈ F0
p (x)

lim inf
h→0

inf
α∈Kh

sup
f∈A(α)

Ef

∣∣∣ψ̃−1
h (f̃h(x)− f(x))

∣∣∣
p

≥ 1.

Proof. Letting θ = φ̃h −
√

φ̃h consider the following pair of functions:

f0(z) ≡ 0,

f1(z) = θ g̃(z), g̃(z) =

√
σ2hπ

s̃h

ks̃h
(x− z). (55)

Note thatf1 satisfies

f1(x) = θ

√
σ2h s̃h

π
.

Obviouslyf1 is a continuous function and using (10), definition (15) ofsh, and Lemma 2,
we get

∫
γ
β2 e

2|γt|r | F [f1](t)|2 dt = θ2 σ2h π
s̃h

∫
γ
β2 e

2|γt|r |F [ks̃h
](t)|2 dt

= 2 θ2 γσ2h π
β2

R s̃h
0 γe2(γt)r dt

γs̃h
= 2 θ2 e−2(γsh)r

R s̃h
0 γe2(γt)r dt

γs̃h

= θ2

r(γs̃h)r e
2(γs̃h)r−2(γsh)r

(1 + o(1)) ≤ φ̃2
h

r(γs̃h)r e
2(γs̃h)r−2(γsh)r

(1 + o(1)) (56)

≤ 1
2
(1 + o(1)) ≤ 1,

uniformly in Kh for h small enough. Thusf1 ∈ A(α) for all sufficiently smallh and
everyα ∈ Kh.



124 Austrian Journal of Statistics, Vol. 32 (2003), No. 1&2, 99-129

Let f̃h ∈ F0
p (x) be an arbitrary estimator and denotef ∗h = ψ̃−1

h f̃h(x) andL = φ̃−1
h θ;

then
ψ−1

h (f̃h(x)− f1(x)) = f ∗h − ψ−1
h f1(x) = f ∗h − φ̃−1

h θ = f ∗h − L (57)

whereas
√

π

σ2h
(f̃h(x)− f0(x)) =

√
π

σ2h
f̃h(x) =

√
π

σ2h
ψ̃h f ∗h(x)

=

√
π

σ2h

√
σ2h s̃h

π
φ̃h f ∗h(x) = s̃

1/2
h φ̃h f ∗h(x)

= f ∗h exp
{ log s̃h

2
+ log φ̃h

}
. (58)

Denoteq = exp { − φ̃h} so that by (54),q → 0 uniformly with respect toα for h → 0.
Now, with the thus definedf1 ∈ A(α), for any f̃h ∈ F0

p (x), uniformly in α ∈ Kh as
h → 0, we have

Rh := sup
f∈A(α)

Ef

(
ψ̃−1

h |f̃h(x)− f(x)|
)p

≥ E1

(
ψ̃−1

h |f̃h(x)− f1(x)|
)p

≥ q E0

(√
π

σ2h
|f̃h(x)− f0(x)|

)p

+ (1− q)E1

(
ψ̃−1

h |f̃h(x)− f1(x)|
)p

+ O(q).

(59)

According to (53) and (57)–(59),

Rh ≥ q exp
{ φ̃h

2
+ p log φ̃h

}
E0 |f ∗h(x) |p + (1− q)E1 |f ∗h(x)− L|p + O(q)

≥ (1− q)E1

(
Z|f ∗h(x)|p + |f ∗h(x)− L|p

)
+ O(q)

≥ (1− q)E1 inf
x

(
Z|x|p + |x− L|p

)
+ O(q) (60)

where

Z = q exp
{ φ̃h

2
+ p log φ̃h

} dP
(h)
0

dP
(h)
1

(y).

For each value ofZ consider the optimization problem of minimizing the function:

g(x) = Z|x|p + |L− x|p.
As was shown in Lepski and Levit (1998),

min
x

g(x) =





min(Z, 1)Lp if p ≤ 1,

(
1 + Z− 1

p−1

)−(p−1)

Lp if p > 1.
(61)
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Thus for anyp > 0 we can write

min
x

g(x) = χLp, (62)

whereχ is defined by (61) and satisfies0 < χ ≤ 1.
Now, let us consider the likelihood corresponding tof0 andf1. Using the same argu-

ments that we used in (28)–(32) we can see that

dP
(h)
0

dP
(h)
1

(y) = exp

{
− 1

2σ2

∞∑

`=−∞
(θ2g̃2(`h) + 2θ y` g̃(`h))

}
,

= exp

{(
− θξ − θ2

2

)( π

s̃h

h

∞∑

`=−∞
k2

s̃h
(x− `h)

)}

= exp

{(
− θξ − θ2

2

)(
1 + O(1)hs̃h

)}

whereξ ∼ N (0, 1) with respect toP1. Using the definition ofθ, condition (53) and
definition (55) we can see that

dP
(h)
0

dP
(h)
1

(y) = (1 + o(1)) exp

{
−θ2

2
− θξ

}
, (h → 0).

Note that by (54)

Z = (1+ o(1)) exp

{
−φ̃h +

φ̃2
h

2
+ p log φ̃h − ( φ̃h −

√
φ̃h)ξ − 1

2
( φ̃h −

√
φ̃h)

2

}
P1→∞

whenh → 0, henceχ
P1→ 1. Also L = 1 + o(1), according to its definition. Therefore

according to equations (60)–(62), uniformly inα ∈ Kh,

Rh ≥ (1− q)LpE1χ + O(q) = 1 + o(1), (h → 0).

2

Corollary 1 LetAKh
be an arbitrary RNP scale such that

lim inf
h→0

inf
α∈Kh

r(γsh)
r

log sh

= ∞ (63)

wheresh is the optimum bandwidth defined in (15). Then for anyp > 0 andx ∈ R, the
estimatorf̂h of Theorem 3 is(p,Kh,Fp(x))-adaptively minimax atx.

Proof. This is a consequence of Theorems 3 and 4. In order to prove the lower bound
use the previous theorem takingsh in place ofs̃h. 2

Now, we prove a version of Theorem 4 under a weaker condition. It will be used
below to provide an easily verifiable conditions for adaptive optimality of the estimator
proposed in Section 5.2.
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Theorem 5 LetAKh
be an arbitrary RNP scale such that

lim inf
h→0

inf
α∈Kh

r(γsh)
r

log log sh

= ∞ (64)

where the optimum bandwidthsh was defined in (15). Then for any estimatorf̃h ∈ F0
p (x),

lim inf
h→0

inf
α∈Kh

sup
f∈A(α)

Ef

∣∣∣ψ−1
h (f̃h(x)− f(x))

∣∣∣
p

≥ 1,

where

ψ2
h = ψ2

h(α) = p (log sh)
σ2hsh

π
.

Proof. We prove this theorem in the same way as Theorem 4 by choosingφ̃2
h =

p log s̃h and subsequently defining̃sh in such a way that

2p log s̃h

r(γs̃h)r
e2(γs̃h)r−2(γsh)r ≤ 1 (65)

for h small enough. The point here is that condition (65) was only needed in proving (56),
which now becomes (65). We construct an appropriates̃h asymptotically equivalent tosh

that satisfies the previous inequality forh small enough. Let us first, for fixedα, define
the auxiliary bandwidth̄sh as the solution of the equation

2(γsh)
r = 2(γs̄h)

r + log r(γs̄h)
r. (66)

We know thatγsh goes to infinity ash goes to zero uniformly in regular scales. Thus
from the previous equation,γs̄h goes to infinity too and we can see that

(
sh

s̄h

)r

= 1 +
log r(γs̄h)

2(γs̄h)r
= 1 + o(1),

uniformly in Kh according to (64). Thus the auxiliary bandwidths̄h is asymptotically
equivalent tosh. It also satisfies (64), see that

lim inf
h→0

inf
α∈Kh

r(γs̄h)
r

log log s̄h

= lim inf
h→0

inf
α∈Kh

r(γsh)
r

log log s̄h

(1+o(1)) ≥ lim inf
h→0

inf
α∈Kh

r(γsh)
r

log log sh

= ∞.

Now, let us definẽsh = ϑs̄h whereϑ (0 < ϑ < 1) is the closest solution to1 of the
equation

2r(γs̄h)
r

log log s̄h

ϑr log ϑ−1 = 1.

We can see thatϑ → 1 ash → 0 thus implying that̃sh is asymptotically equivalent tōsh

andsh. Now, after few transformations,

−2(γs̃h)
r = −2(γs̄h)

r + 2

∫ s̄h

s̃h

r(γt)rt−1 dt
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= −2(γsh)
r log r(γs̄h)

r + 2

∫ s̄h

s̃h

r(γt)rt−1 dt

≥ −2(γsh)
r + log r(γs̄h)

r + 2r(γs̃h)
r

∫ s̄h

s̃h

t−1 dt

= −2(γsh)
r + log r(γs̄h)

r + 2r(γs̄h)
rϑr log ϑ−1

= −2(γsh)
r + log r(γs̄h)

r + log log s̄h

and we see that

e−2(γs̃h)r ≥ e−2(γsh)r
r(γs̄h)

r log s̄h = e−2(γsh)r 2p log s̃h

r(γs̃h)
ϑrr2(γs̄h)

2r/(2p)

≥ e−2(γsh)r 2p log s̃h

r(γs̃h)

for h small enough. The rest of the proof is the same as for Theorem 4. Finally, given
ψ̃h := p log s̃h

σ2hs̃h

π
is asymptotically equivalent toψh we have the proof of the lemma.

2

Finally, we prove that the estimator we constructed in Theorem 3 is adaptively min-
imax, for any RNP scale satisfying a condition just a little stronger than condition (42)
used in the definition of a regular scale.

Theorem 6 LetKh be a RNP scale such that

lim inf
h→0

inf
α∈Kh

β2

γσ2h1−δ
≥ C

for someδ (0 < δ < 1) andC > 0. Then for anyp > 0 andx ∈ R, the estimatorf̂h of
Theorem 3 is(p,Kh,Fp(x))-adaptively minimax atx.

Proof. The upper bound result was proved in Theorem 3. To prove the lower bound
we notice that

r(γsh)
r =

r

2
log

β2

πγσ2h
≥ r

2
log Ch−δ

while according to conditions (41)–(43) for R scales

log log sh = log log
1

γ

(
1

2
log

β2

πγσ2h

)1/r

< log log h−1

thus r(γsh)r

log log sh
goes to infinity whenh → 0, uniformly with respect to the scaleKh. The

desired lower bound follows now from Theorem 5. 2
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