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Abstract: Adaptive pointwise estimation of an unknown regression func-
tion f(z), + € R corrupted by additive Gaussian noise is considered in
the equidistant design setting. The functipns assumed to belong to the
class.A(«) of functions whose Fourier transform are rapidly decreasing in
the weightedZ?-sense. The rate of decrease is described by a weight func-
tion that depends on the vector of parametenshich, in the adaptive set-

ting, is typically unknown. For any of the classgg«), « fixed, we de-
scribe minimax estimators up to a constant as the bin-width goes to zero.
Conditions under which an adaptive study is suitable are presented and a no-
tion of adaptive asymptotic optimality is introduced based on distinguishing,
among all possible functional scales, between the so-called non-parametric
(NP) and pseudo-parametric (PP) scales. We propose adaptive estimators
which ‘tune up’ point-wisely to the unknown smoothnessfof We prove

them to be asymptotically adaptively minimax for large collections of NP
functional scales, subject to being rate efficient for any of the PP functional
scales.

Keywords: Non-parametric Statistics, Minimax Estimation, Adaptive Esti-
mation, Fourier Transformations.

1 Introduction

During the last two decades adaptive estimation has become one of the most active areas
of research in non-parametric statistics. The introduction of different models of adap-
tive estimation reflects the existing practical needs for more realistic models and flexible
methods of estimation. Study of these models brought with it new challenging problems
which required creation of new statistical methods and approaches.

In this paper we study non-parametric adaptive regression in a fixed design model in
which an unknown regression functigiiz) can be observed on an equidistant grid of the
whole real line. More precisely, for a given bin-width> 0, we consider the additive
model of observations given by

yo=f(Lh) + &,  €=0,+1,£2,... (1)

where&, are independent centered Gaussian random variabl@so?), with a given
variances? > 0. Often in the statistical literature more advanced results are obtained in
the white noise model

dV(z) = f(z)de + edW(x), —oo <z <00, (2)
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which is just an approximation to the model (1), with= v/o2h. HereV is the noisy
observation of an unknown regression functipne is the resolving noise antd’(x)
represents a standard Wiener process.

There exists a huge literature on the equivalence between these two models, cf. e.g.
Brown and Low (1996) and Nussbaum (1996), but this does not cover our main problem
here, namely adaptive non-parametric estimation. Our approach is greatly influenced by
a recent paper, Lepski and Levit (1998), which was a milestone in adaptive estimation of
infinitely differentiable functions, in the white noise model (2). Below we will explain
main differences between our approach and that of Lepski and Levit (1998).

In non-parametric statistics, classes of functions are in general described by smooth-
ness parameters. In this paper we shall study classes of functions defined in terms of
positive parameters, 5 andr whose interpretation will be explained below. We will
study estimation of in (1), under the assumption thAtbelongs to the functional class
A(~, 8,7) which is the collection of all continuous functions such that

112, = / 0Pt < 1. 3)

Here F[f] represents the Fourier transform jaf The collection of all such classes will

be calledfunctional scale Note that when the parameters are assumed known, we are
dealing with the problem of non-parametric estimation much studied recently, especially
since the publications, Ibragimov and Has'miskii (1981, 1982, 1983), Stone (1982). The
situation in which neither of these parameters is kn@aapriori is much more realistic

and complex. A real progress in this problem which is usually referred talaptive
estimation, has been only achieved in the last decade, most notably since the publication
of Lepski (1990, 1991, 1992a, 1992hb). Further progress was achieved in Lepski and Levit
(1998, 1999).

For all +, 3, r, the classA(~, 3,r) is a class of infinitely differentiable functions,
and each of the parameters affects the smoothness — and the accuracy of the best non-
parametric estimators — in its own way. The parameter some kind of ‘scale’ param-
eter: one can verify thaf(-) € A(1, 5, r) if and only if %f(;) € A(v, 8,r). Therefore,
of all parameters, it affects the smoothnesg ehost dramatically. The bigger igs the
smoother are the functions of the class.

The parametef can be interpreted as a ‘size’ parameter and represents the radius of
the corresponding.?-ellipsoid defined by (3). Note that(-) € A(v, 1,r) if and only if
Bf(-) € A(v,3,r). Therefore the bigger ig, the less smooth are the functions of the
class.

Finally, » can be best described as a parameter responsible for the ‘type’ of smooth-
ness. It is well known that for = 1 all functions in the classi(~, 3, ) admit bounded
analytic continuation into the stripz = x + iy : |y| < v} of the complex plane (Paley-
Wiener theorem), and therefore for alt> 1 the functions inA(~, 3, r) are entire func-
tions (i.e. functions admitting analytic continuation into the whole complex plane). For
r < 1 these functions are ‘only’ infinitely differentiable, and their smoothness increases
together withr.

In the Gaussian white noise model Lepski and Levit (1998) studied adaptive esti-
mation for even broader classes of functions with rapidly vanishing Fourier transforms
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F[f](t). However, their main conclusions are readily interpretable in the special example
of functional classes!'(v,v,r) = {f continuous, |F[f](t)| < yexp —(yt)"} which are

quite similar to our classed(+, v, r). Let us remind some of these conclusions here, as a
starting point for outlining our main results. For simplicity, we will assume, after Lepski
and Levit (1998), thad < r_ <r <r, < oc.

In the adaptive estimation, when the parameters sueh /@s- are unknown, one is
looking for statistical procedures which can ‘adapt’ to the largest possible scope of these
parameters. As the smoothness of the underlying functions is most notably affected by
the ‘scale’ parametey, we will mainly refer to the ensuing uncertainty in the value of
this parameter. More specifically, the accuracy of the best methods of estimation will
be determined by the ‘effective nois€'/~, wheree is the average noise intensity in the
observation model (1).

To realize the whole scope of the problem, it is useful to look at the extreme cases. On
one hand, the situation could be so ‘bad’, that no consistent estimation of the unknown
function would be possible at all, even if the parametewvas completely known. On
an intuitive level, it is quite clear that such a situation occurs witén 4 0. We can
exclude this case from consideration on the ground that “nothing can be done” in such an
extreme situation. Thus one can restrict attention to the ¢asee?. The situation dete-
riorates further in the adaptive setting, due to the uncertainty in paramefecording
to Lepski and Levit (1998), adaptive methods can only work efficiently i -7, for
somel < 7 < 2. On the other hand,  becomes too big, the underlying functions be-
come unrealistically smooth and can be estimated with acc@écy i.e. with the same
accuracy which could be achieved if all underlying functions were either constant, or just
included a few unknown parameters. According to Lepski and Levit (1998), such an off-
beat situation occurs only whenbecomes of orddpg!/” ¢~!. Therefore one can restrict
attention to those for which €27 <« v < log!/" ¢!, which, in a sense, is the largest
possible range for which adaptive procedure can exist. Farialthis range, an efficient
adaptive non-parametric procedure has been proposed in Lepski and Levit (1998). Note
that this discussion led us, by the very nature of the statistical problem of adaptation, to
a situation in which the unknown parameter of the seakelonged to a regioh = T',
depending on the indexof the model. In other words, our adaptive setting leads us to a
natural assumption that the unknown scale parameteay itself depend on the index

Now, in the model we have just discussed the essential role was played by the noise
intensity e and the scale parameter Our model of discrete regression is more realis-
tic and also contains more parametessh, v, 3, r. Since the white noise model (2) is
known to approximate the discrete regression model (1), one can expect some similarity
between the ensuing results, namely that similar procedure could lead to an efficient adap-
tive method of estimation in the discrete regression. Without aiming at precise definitions,
one could speak in this case of a “weak” equivalence between the white noise and discrete
time adaptive regression schemes.

However, just as the relation between the two parameters involved played an important
role in the above discussion, a more complicated relation between all involved parameters
affects the quality of the optimal adaptive procedure in the discrete models. In fact, such
relations become more complex in the discrete case, not only because of additional pa-
rameters, all of which may be unknown and, therefore vary togetherybilt also due to
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the limitations to which the continuous time model (2) captures the underlying properties
of the discrete model (1). In particular, the obvious naive recipe of just replacmgll|
the above restrictions by o2h does not provide a correct answer.

We comment next that the classes similar to (3) are well known in statistics. Appar-
ently they have been introduced first (for= 1) in Ibragimov and Has’minskii (1983),
where optimal rates of convergence were found in estimating an unknown density func-
tion f € A(y, 5,1). Later Golubev and Levit (1996) showed (againifor 1) that these
non-parametric classes are quite unique, in the sense that not only optimal rates, but exact
asymptotically minimax estimators, even point-wisely, can be explicitly constructed for
such classes. Asymptotically efficient non-parametric regression for the cléSges 1)
was studied in Golubev, Levit and Tsybakov (1996). Here we consider more general
classesA(~, 3,7), use kernel-type estimators, different from Golubev, Levit and Tsy-
bakov (1996) and, more significantly, consider the problem of adaptive estimation.

In the Gaussian white noise model Lepski and Levit (1998) considered still more
general classes of infinitely differentiable functions, with rapidly vanishing Fourier trans-
forms. However, the restriction on the Fourier transfornf af their paper was based on
the L°°-, rather than on thé&2-norm, as in our case. They have not only proposed asymp-
totically minimax estimators for all of the corresponding classes, but have also constructed
asymptotically optimal adaptive estimators for the whole scale of such classes.

Since in most applications the information about an unknown function is typically
conveyed by discrete measurements, our model can be viewed as a more realistic approx-
imation, than the classical white noise model. Therefore our model contains an additional
“discretization” parametei — the bin-width.

Our goal is to study, to what degree the method of the adaptive procedure proposed in
Lepski and Levit (1998) works in the discrete regression setting. More precisely, we are
seeking to find natural conditions under which our equidistant regression model is weakly
equivalent to the classical white noise model, in the sense that the asymptotically optimal
adaptive estimators proposed for the later model, are still asymptotically optimal in the
equidistant non-parametric regression models.

In the next section we introduce the model. In Section 3 we prove some auxiliary
lemmas. In Section 4, the problem of asymptotic minimax regression is studied first under
the assumption that the class of functions is completely determined by a fixed vector of
parameters$y, 3, ), these parameters being independent of the index of the model
the end of this section we give the first steps towards the adaptive framework by allowing
the parameters of the class depend on the index of the model. In Section 5 we consider
the functional scales which are collections of functional classes, see (40). We define the
optimality criteria based on the classification of the scales in pseudo-parametric (PP) and
non-parametric (NP) scales. We then prove optimality of the adaptive procedure. We
shall see that, compared to a given functional cldgs, 5, r), an additional logarithmic
factor in the exact rate of convergence has to be paid as a price for the uncertainty about
the actual class the regression function belongs to, see Theorem 3.
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2 The Model

Let us formalize our model.

Definition 1 Let~, 5, > 0 be given. We denote b§(~v, 3, ) the class of continuous
functionsf : R — R, whose Fourier transform$&| f| satisfy

£llar = [ J5 e IF O < 1 @
In this study we use the following definition of the Fourier transform,
FUNO = [ ¢ o) do. ©)
Note that the Fourier inversion formula
flo) =5 [ A ©

certainly holds under assumption (4). It is easy to see that far, gl > 0, functions in
A(v, B,r) are infinitely differentiable.
Now, let us consider the following observation model

ye = f(lh) + &, 0=0,%+1,£2,..., (7)

where¢, are i.i.d. Gaussian random variable€(0, %), 0 > 0. We assume that the
function f belongs to the family4(~, 3, r), for somey, 3, > 0.

Our purpose is to estimate the unknown functitim) based on the vector of obser-
vationsy = (..., y_2,¥_1, %0, Y1, Y2, - - -). We will choose our optimal estimator from the
family of kernel type estimators

frs(wy) =h Y kox—th)y, (8)

{=—00

wherek,, s > 0, is the so-calledincfunction

sin sx
ks(x) = ; (9)
mwr
andk,(0) = 2. This kernel has the property
Flks(®) =1 -s.(t) (10)
and therefore, according to the convolution theorem,
FUf #kJ(t) = 1 (-s0(t) FLF1(), (11)

where * represents the convolution operator.
The kernelk, is just one of many possible, but its very tractable properties make it an
attractive tool: it helps significantly in the search of the most general possible results and
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clarifies the underlying ideas. For practical purposes some other kernels, sdeHaas
Vallée Poussirkernel (cf. Nikol'ski, 1975, p. 301), may be more relevant and typically
would work better.

The parametes is called the bandwidth. As we shall see in Section 4, for any fixed
class there exists an optimum bandwidth The optimum bandwidth will depend on
parameters, 3, r, 0 as well as the index of the modg] called the bin-width, which in
our asymptotic study will tend to zero.

Denote by/f,(z,y) an arbitrary estimator of (z) based on the observatiogs To
shorten the notation we will often writ, (z) instead off,(z,y). Let P, be the distri-
bution of the vectoy and letE; andVar; denote the expectation and the variance with
respect to this measure. When there is no possibility of confusion we will simply write
P, E andVar respectively.

Let W be the class of loss functions z), z € R, such that

w(z) = w(—x),
w(z) Zw(y) forlz] = Jyl, =z,yeR,
and for some) < 7 < 3
/e‘"“zw(x) dx < oo.

With an appropriate normalizing facter, to be defined shortly, and € W, we will
consider the maximumisk, over a fixed functional clasd(~, 5, ), given by

sup Epw (o (fulay) - /(@)

JEA(Y,B,r)

as a global measure of the error of the estim#taver the whole clasd (v, 5,r). When
the classesl(~, 3, r) are considered fixed, our main goal is to find an estimator such that
the corresponding maximum risk is as small as possible, i.e. achieves (asymptotically)
the minimax risk )

inf sup Byw (o (fulw,y) — f(2)))

fn fEA(v,B,r)
where, is taken from the class of all possible estimators.

In the adaptive setting, we shall allow, 5, ) to vary freely inside large scalds.
Conditions under which an adaptive study is suitable are presented and a notion of adap-
tive asymptotic optimality is introduced based on distinguishing, among all possible func-
tional scales, between the so-called non-parametric (NP) and pseudo-parametric (PP)
scales.

3 Auxiliary Results

In this section we present, for the reader’s convenience, two auxiliary results which will
be used in the subsequent sections. The aim of the first lemma is to approximate summa-
tion formulas by integrals, with a good approximation error in the case of very smooth
integrands. This result is a version of the celebra®edson summation formulalt
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has been used in a similar situation in Golubev, Levit and Tsybakov (1996). Below
A(v,B,7),v, 8, > 0 are the functional classes of infinitely differentiable functions pre-
viously defined and,(x) is the kernel (9).

Lemma 1 The following properties hold:

(a) Let f, g be continuous functions ih*(R) such thatF[f], Flg] € L*(R), then

h>  gla—th)f(th—y) = £ [e @) Flgj(t) Ff)(t) dt +

l=—o00

s2ml

o= Yoo @ 1Y [ e Flgl(t) FIf] (¢t + 3E) dt

= [T o9z —2)f(z—y)dz +
o S €Y [ e ) Fgl(t) FF(+ 2L) dt.

(b) For arbitrary numberss;, s, (0 < s; < s) denoteA(z) = k,,(x) — ks, (x).2 Then,
uniformly invy, 3,7, s; > 0,i = 1,2,z € Rand f € A(y,8,r)ash — 0

h > A(w—th)f(th) = 2i / e FIA(t) FIf1() dt +

T
. s 1/2
@) <ef(2”%) /CT> (/ : 5—262(7t)r dt) ;

s1 Y

1

{=—00

wherec, = max(1,2"1).
(c) Letsy, s andA(x) be as before. Then, uniformly i, s; andz € R, for h — 0,

WS Ax—tn) =22

{=—00

(1 + O(1) h(s2 — 51)>.

™

Proof. (a) The proof is based on the formula

o0

Yo = 3" sz —0), (12)

{=—o00 {=—00

known in the theory of distributions (cf. e.g. Antonsik et al., 1973, Ch. 9.6). Using the
Fourier inversion formula, the distributional formula (12) and with some algebra, one
obtains

Note thatA(z) = ks(z) for s; = 0 ands, = s.
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thEh (th—vy) =

f=—00 E—foo

= #// e itz f[g](t) eisyf'[f](s) Z e—i(s—t)éh dt ds

{=—00

_ #2}0 / / e F (gl (£) ¢V F[f](5) 6 (h<32; H —e> dt ds

:%%5;/6me@/zwfm@w<&%_%?)@ﬁ

—lt (z—Lh) )dt / —1s(€h—y)3r[f](s) ds

_ i - it i(t+25t )y 2_7T€
“ 5 X [ E ) (14750

= L [ e Fg o) FL )

géo 2 Z / l ) < h )

:/:g@—sz—ymZ

+ Qi Z Y / e Hz—y) Flgl(t) F[f] (t + 277%) dt.

T
040

(b) If f € A(v,8,r) thenf belongs taL?(R) according to the Parseval's formula. Also,

F[f] € L'(R) according to (4) and the Cauchy-Schwartz inequality. Thus we can apply

the previous result in (a), using= A andy = 0. Note thatF[A|(t) = (| (s,,5,1(|2])
Applying the Fourier inversion formula, the Cauchy-Schwartz inequality and the c
inequality, we obtain after a few transformations

RS Ale—em)f(eh) - % / e FIA] () FLFI(E) dt
<3| [ AR+ T at ‘

00

| A

i T2l ) < —QIW(HQT’[‘Z)I” )1/2
( S E P e #0 /|F it
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1
<
- 27

2 1/2
([ 1 vl - sy )
40 vy

]_ |27y e c 62 r 1/2
% € Sl /er (Q/ﬂ(shsz](t)?eZ(W) dt)

040

IN

1/2 oo

Ly [™ 3 200 qgp) Y ety e
= — —e e "
™

S =1

1 S2 62 - 1/2 Y © R
- (2 2 o201 dt) <€—(27rh) fer +/ e~ (2m32) /Cde>
™ S1 ,y 1

s2 ﬂQ 1/2
=0 (67(271_%)76”“) (/ P 200" dt) , (h — 0),

where the last asymptotic can be easily derived by partial integration.

IN

(c) Applying (a) and taking = ¢ = A andx = y, we see that

h i A*(x —th) = h i A(x — th) A(Lh — x)

I=—00 l=—00
= % (FIA](t))? dt + % ;e / F[A](t) F[A] (t + 2—?) dt.
Therefore
N N R 2nt
hg_:ooA (o —th) — B < %;/HA]@)HA] (t+ d ) dt

IN

RS 2m/
;;/ﬂ (51,52](|t|)ﬂ (s1,82] <‘t+ T‘) dt

< 5h(82 - 81)2
- 272

which completes the proof of the lemma.

= O(].) h(82 — 81)2,
O
The following elementary properties will be used below. They will help in bounding
the bias and the approximation errors.

Lemma 2 For any positivey andr the following inequality holds

00 —2(ys)"
/ e 20" gt < ﬁ (13)
. — or(ys)
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for all s > t, wheret, satisfies(vty)" = 1 and

/8 200" g = 2 ind (1+0(1)) (14)
0 2r(ys)"

uniformly inr_ < r < r, for vs — oo, wherer_,r, > 0 are arbitrary fixed numbers.

For the first inequality see e.g. Lepski and Levit (1998), egs. (2.8), (2.10). The second
property can be easily proven by partial integration.

4 Minimax Regression inA(vy, 5, r)

4.1 Optimality in the Case of Fixed Classes

The first result we present in this section is obtained in the classical framework, i.e. in a
situation where the functioyi(x) although unknown belongs to a given class. In other
words, the parameter = (v, 3,r) of the class is known and fixed. Denote for short-
nessA(a) = A(y,3,r). We will prove that asymptotically minimax estimators can be
found among kernel estimators using a specified bandwidth and we will also calculate to
a constant their maximal asymptotic risk, for a variety of loss functions.

Theorem 1 Leta > 0 andw € W. Then for any: € R, the kernel estimatof, = f.., ,
in (8) with the bandwidth

1 1 62 1/r
_ 2y
Sh = Sh(aaa ) - ; (5 10g 7T’)/O'2h> ) (15)
satisfies
lim sup E;w T (fulz) — f(z) ] =
h—0 fE.AFa) ! O'QhSh N

i int sup B ((/E (o)~ 1(0)) = Bulg

h=0 " f, feA(o) o*hsy

where f, is taken from the class of all possible estimatorg @ihd¢ ~ N(0,1).

Proof. Upper bound for the risk. Let us first study the sample properties of the
family of estimators we use. According to the model for the observations (7) and the
formula for the estimator (8) one can split the error term as follows,

o) = 110 = (1 3 o= ) f100) = 1) + (3 il th)e)

{=—00

= b(f,z,s,h) +v(o,z,s,h).
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For simplicity we shall write below, = b(f, z, s, h), vs = v(0o, z, s, h). The mean square
error can be decomposed as

E (fns(z) — f(x))® = b2+ Varu,, (16)

whereb; is the bias and, is a normally distributed zero mean stochastic term.

First, let us consider the bias. In order to apply Lemma 1 we take 0 ands, = s.
In this caseA = k.. Now, applying Lemma 1(b) and the Fourier inversion formula for
f(z) we see that uniformly irf € A(«a)

1
o

s 1/2
b= 5 [ RN - A0+ 0 (i) ([ R a)
0

for h — 0. Furthermore, applying Cauchy-Schwartz inequality, property (10), and defi-
nition of the class4(~, 3, r) we get

b2 <2 —
- 2

2 S ﬁ2
L0 (6—2<2w%>"/w> / P~ 2607 g
o 7

! / e (Fl) (1) — DF)() dt

2 s 22
< 1 6_6—2|7t\"'dt +0 <6_2(2”%)T/Cr> / 6_62(%)7' dt
- 272 |t|>s Yy o 7

oo 32 s 22
< 1 5—6_2(7t)rdt +0 (6_2(2”%)”“) / 6—62(7t)r dt. (17)
N Y o 7

2
m s

Second, let us consider the variance term. From Lemma 1(c) swith0 ands, = s, we
see that

> ’h's
Varv, = o202 S K2z —th) = 22201 1 0(1) h 18
arv, = o ;OO S@ = th) = ——(1+0(1) hs), (18)
whenh — 0. For anys denote
2h
o2 =2 (19)
’ T
and for the chosen bandwidth= s, denote the resulting variance
2
h
or = o (a,0%) = 7 5h, (20)

™

From equations (16)—(18) we see that the mean square error of the es’tfqmaltisfies

A

E (fuao) ~ f(@))" = oF.] < of. (O(hs) + (o) * | OO %Qe—wdt

s 02
et (i) [ Eoera). s
¥ o 7

Now we shall verify that, taking = s; as defined in (15), the term of the right hand side
of the previous equation is equal4g o(1). Before going into details, let us remark that
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the bandwidths,, is precisely the bandwidth that balances the main terms of the bias and
the variance in the mean square error, i.e. it minimizes

2 oo Q2
o hs + 7r_2/ ﬁ—e_wadt
s

™

(with respect ta), since by (15)

2
(2 — P (22)
wyo2h

Let us return to equation (21). Note first that
hsy, — 0, when h — 0. (23)

Second, applying the identity (22) and Lemma 2, we see that

0o 172 2 ® =2(7t)" 0 ,=2(t)"
o [ Erir - B e
sn Y

Tyo2h Sp spe—2(vsn)"
1 r 3? !
< — = | =-log—— = o(1 24

whenh — 0. Finally, applying the identity (22) and trivial inequality

s 2 2
0_;26—2(2’777)r/cr / h ﬁ_ 200" gt < Wﬁ—Q 6—2(2%)’"/%4—2(7%)’)
o 7 - yo*h

. 3 ’ —2(202) Jer _
= <702h> e~2(27%) =o(1), (25)

whenh — 0. Thus, from (21) and (23)—(25) we have that
E (fu(z) = f(2))* =0} (1 +0(1)),  (h—0).

Note that when we normalize the error of our estimatorpythe normalized error term
(fu(x) — f(x))/on has a normal distribution, with mean of ordgi) and variance equal
to 1 + o(1) where the terms(1) are small uniformly inf € A(«) whenh goes to zero.
Because the loss functian has only countably many discontinuity points, applying the
dominated convergence theorem

lim sup By (0 (fal) = £(2))) = Buw (©). (26)
Lower bound for the risk. Consider the parametric family of functions

fol2) = 69(2), () = k(e — ).
These functions satisffj(z) = 6, and if we assume th#d| < 0(h) where

S —1
o2 (ny = S ([ 20 gy (27)
22 \Jo P
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then

M F@ P = 0 ”2 7 [ e Tk

<

6?(h)m? y ,
<2) / @62‘“' 1 mspsn () dt < 1

Sh

Thus fy € A(«a) for all # such thatd| < 6(h).
Now, we can apply Kakutani’s theorem using the fact thgt. __ ¢*(¢h) < oo ac-
cording to Lemma 1(c), and see that

?fh)b’) = exp {@ Z (20 ye g(€h) — 9292(%»}’ (28)
0

{=—o00

whereP, = Py, (cf. e.g. Hui-Hsiung, 1975, Sect. 11.2). The statistic

> e oo Yeg(th)
D e oo 93 (Lh)

is sufficient for the parametérof the family of distribution®,. ObviouslyT is normally
distributed. Givenf,(¢h) = 0g(¢h), we can easily verify that

0.2
TN (9’ = g?(fh))’ (30)

and applying Lemma 1(c), witky = 0 ands,; = s, we see that

T = (29)

% S g(th) = 2hs ( Z 2 x—€h> - 02hsh (1+0(1) hs),

{=—00

whenh goes to zero. Thug, can be represented as
T=0+p& where £~ N(0,1) (31)

and, according to the previous arguments,

2
2 O-

S (1)

To derive the required lower bound, let us assume the unknown parafredsra prior
density\(6); a convenient choice is

= a7 (1+o(1)). (32)

1 , mo
~0(h) 20(h)’

0] < 0(h).
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We obtain then, due to the sufficiency of the statigtjc

’ﬂ' ~
inf sup E w( —fx—f:v)
of sup B \/a%sh( n(z) — f(z))
> inf sup Erw
TR \9|<9p (V UQhSh ~ Jol )))
inf sup Egw
o \e|<9p ’ ( UQhSh )

0(h)
mf ng < 02hsh ) )db

~ Buw (0%5) - ef(;)%/(ﬁ — Dw(@)e T dx (1+ o(1)).

Here the last equation follows from Levit (1980). According to (32),= 1 + o(1),
(h — 0), while applying identity (22) and Lemma 2 we see that

Y

v

o? B 27T’702h fosh et qt B 2f75h 2t dt - 1
0%(h) a 32 YSh C yspe2se)T r(ysp)"

whenh — 0. Thus we have that, according to the dominated convergence theorem,

-0, (33)

7T ~
h%njélf f:j%)a) E;w ( o2hs) (fu(z) — f(ﬁ))) 2

e
lim inf %ffzﬁf’)Efw( Ughsh(fh(x)—f(x))> > Ew((). (34)

Together the relations (26) and (34) prove the theorem. O

4.2 An Extension to Non-fixed Classes

Up till now we assumed that the classééx) were fixed, i.e. not depending on the pa-
rameterh, though the function we wanted to estimate could vary freely within the given
class.A(«) and, in particular, could depend @n The possible dependency ¢fon i
implies that the estimated function could be as ‘bad’ as our model allowed it to be which
justified the minimax approach of Theorem 1. To summarize, the assumption that our
functional class4(«) is fixed implies that the smoothness properties of the elements of
the class are fixed. However, we might want to further relax this restriction by allowing
the class itself depend on Indeed, there is neither practical justification, nor a logical
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requirement, that the smoothness of the underlying function remains the same while the
level of noise decreases and consequently the resolution of the available statistical proce-
dures increases. This will become even more natural in the adaptive setting of Section 5
where the smoothness of the underlying function is not known beforehand.

Thus, as a first step towards introducing the adaptive framework, we let the parameters
of the modely, 5 andr depend om. Even so, they still be assumed to be known to
the statistician — this assumption will be abolished later in the adaptive framework of
Section 5. This approach will allow us to explore the ‘limits’ of the model where its
parameters are allowed to change freely. {ebe as defined in Theorem 1. Note that
now the optimum bandwidthk, depends ork also through the parametets 3 andr.
Nevertheless the statement of Theorem 1 still holds, as we shall see, under corresponding
assumptions.

Theorem 2 Letw € W, and let the parameters = 3, r = r,, v = v, ando = o, be
all positive and such that

0 < liminf » <limsup r < oo, (35)
h—0 h—0
2
hlgljglf ~o%h = 00, (36)
h 2 1/r
lim sup — (log 5_2) = 0. (37)
h—0 Y yo*h

Then
i o, (7RO 1) -
limp o inf; sup e ) Efw (1 /ﬁ(fh(x) - f(x))) = Ew(¢)
wheres;,, fh and fh are the same as in Theorem 1.

Remark 1 Note that the conditions (35) and (37) imply, — 0 whenh — 0. As a
direct consequence of this, we obtain consistency, provideid bounded, since then
"2% — 0. However, our asymptotic optimality result doesn't requifeto be bounded;
in other words they apply even when there is no consistency!

Proof. We prove this theorem following the same proof of Theorem 1. It is sufficient
to see that relations (23)—(25) and (33) still hold for the cla&s,, 55, ). The limit (23)
follows from (35) and (37), the limits (24) and (33) follow from (35) and (36). Finally
(25) follows from the identity

coe e e { = (r) (1 G (G (e ) ) )} o9

and conditions (35)—(37). Note thafy — 0, by (36) and (37). The rest of the proof
remains the same. O
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The important conclusion which can be drawn from the last result is that in order to
prove asymptotic optimality of our estimation procedure, we do not have to invoke the
assumption — not always realistic — that the smoothness of the estimated function remains
the same, even when the level of noise decreases and, as a consequence, the resolution
of available statistical methods increases. Note that in this more general situation the
corresponding optimal rate of convergence

o2h (1 32 \*
0121(@,02):#—7 <§log 7r702h) ; (39)

can be of any order, with respect to any of the parameters,o2h, varying from ex-
tremely fast, parametric rates, to extremely slow, non-parametric ones, and even all the
way down to no consistency at all. The problem which we will face in next section, is that
in practice we often do not know the real class at all.

5 Adaptive Minimax Regression

5.1 Adaptive Estimation in Functional Scales

As a transition from the classical minimax setting, studied in the previous sections, to the
adaptive setting we introdudenctional scales

Ag = {A(a) la € /c}, (40)

corresponding to a subsktC R? in the underlying parameter space. As our scalgs

can be identified with corresponding subsktswe will speak sometimes about a scale
IC, instead of4,., when there is no risk that could lead to a confusion. Sometimes we can
think of the scaledy as the collection of functions

{feA(a)|aeIC}.

We will say that some limit exists uniformly sl to express that it exists uniformly in
f € A(«) for everya and they converge uniformly in € K.

Our goal is to estimate a function which belongsii@y) for somen € K. So, we must
find an estimator, which does not dependroand such that it performs “optimally” well
over the whole scal&. For this new setting a new definition of optimality is necessary.
We use the following definition which was used in Lepski and Levit (1998). From now on
we will restrict ourselves to the loss functiom$z) = |z|?, p > 0. Let A, be a functional
scale andF a class of estimatorg,.

Definition 2 An estimatorf, € F is called (p, K, F)-adaptively minimax, at a point
x € R, if for any other estimatoff;, € F

su Elf (z) — f(z)?
i sup sup Drea(a) Eflfa(z) — f(2)] -1

=0 aek SUP e ) Byl fu(@) = f(@)P ~
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The simplest example of a scale: can be obtained whek is a fixed compact subset

of R3. Our results below cover a much broader setting in which theCsiself can
depend on the parameter In our approach, such results serve two goals. First of all,
they allow a better understanding of the true scope of adaptivity of statistical procedures,
since they describe the ‘extreme’ situation in which an adaptation is still possible. In fact
all what is needed below is that the assumptions of our ‘non-adaptive’ Theorem 2 hold
uniformly on the scaldC; below we formulate these assumptions more explicitly.

Definition 3 A functional scaledy, (or the corresponding scalk},) is called a regular,
or an R-scale if the following conditions are satisfied:

0 < liminf inf r <limsup sup r < oo, (41)
h—0 ackp h—0 ek
62
liminf inf 5 = 00, (42)
h—0 aEly Yo h
and
p1-6 ﬁQ 1/r
limsup sup <log —2) =0 (43)
h—0 ack, 7 Yo h

for some) < 6 < 1.

The second goal that can be achieved by considering more general Kgakes$o
introduce the notion of optimality in adaptive estimation, by specifying a natural set of
estimators¥ in the above Definition 2. Note that within a large scalg,, unknown
functions f can vary from extremely smooth ones, allowing parametric #ate(h?), to
much less smooth functions, allowing slower ra#é®(h%), § < 1, or even extremely
slow ratess?>O(log~*(1/h)). The first possibility is not typical in non-parametric esti-
mation and only can happen in some extreme cases. These ideas are made more precise
by introducing the following terminology classifying functional scalgs, into pseudo-
parametric(PP) andnon-parametrigNP) scales depending of their global rates of con-
vergence.

Definition 4 A functional scaledy, (or the corresponding parameter scé(®) is called
(a) pseudo-parametric, or a PP scale if

lim sup sup s,(a) < oo,
h—0 «a€eky

(b) non-parametric, or an NP-scale if

lim inf sp(a) = co.
h—0 aely,

We shall call regular pseudo-parametric and regular non-parametric scales respectively
RPP and RNP scales.

Since pseudo-parametric scales are not typical, in non-parametric estimation and can
only happen in some extreme cases, we will only require our statistical procedure to
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achieve the optimal rate*?O(h?) for such scales; cf. the Definition of the corresponding
classesF, below. Note that even with such procedures, a better rate will be achieved,
in estimating functions in any pseudo-parametric scale than in any of the non-parametric
scales. Further a strong evidence suggests that there is hardly much more one can do than
require rate optimality, for any of the pseudo-parametric scales. On the other hand, such
an approach allows to develop natural optimality criteria, for any adaptive procedure in
the classed in the case of non-parametric scales.

Let F, = F,(z) be the class of all estimatogs that satisfy

limsup sup sup E;|(o?h)V2(fu(x) — f(2)) "<
h—0 ey feA(a)

for arbitrary RPP functional scale$,. Let 7)) = F)(x) denote the class of estimators
such that )
limsup Eo|(02h) ™2 fi(2) < oco.
h—0
It is easy to notice thak, C ]:19- In the next subsection we present an adaptive estimator

fh e F, and prove it to bep, K, F,)-adaptively minimax for arbitrary RNP functional
scales.

5.2 The Adaptive Estimator: Upper Bound

Section 5.1 outlined the general adaptive setting, introduced a notion of optimal adaptive
estimation and described regular non-parametric scales of infinitely differentiable func-
tions. Our first result describes accuracy which can be achieved for such scales. Its proof
starts with the construction of an adaptive estimator achieving this accuracy. In this, the
Lepski's method will be used, with the recent modification of Lepski and Levit (1998).
Note that the accuracy of our procedure loses a logarithmic factor compared to the non-
adaptive case where the parameters of the underlying classes are known. In Section 5.3
we will see that this is an unavoidable pay for not knowing the smoothmes®ri and

we will prove optimality of the proposed procedure in the sense of Definition 2.

Remark 2 In principle, one could also study adaptation to the unknown parameter
This however leads to entirely different problems, and is not considered in this thesis.
Therefore we always assume thdtis known, although it can vary with.

Denote
Ui = Yi(a) = p(log su(a)) oy ()
wheres;, () andeo?(«) were defined in (15) and (20).

Theorem 3 For anyp > 0 there exists an adaptive estimatﬁlrsuch that for anyr € R
and for any RNP functional scaléx,, f, € F,

p

limsup sup sup E; 2[),:1(fh($) - f(x))] <L
h—0 aelky feA(a)
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The adaptive estimator. First, let us choose parametetg2 < [ < 1,1/2 < 4 < 1,
p1 > 0,1, = 01, and define the sequence of bandwidths- 0, s; = exp(i!) fori =1,. ...
For each:, we take a subsequensg = {s, s1, . .. s, } where

I, = argmax {hs; < log™' 1/h}, (44)

h < 1. Our asymptotic study considelis— 0, thus, without loss of generality, we define
I, justforh < 1.
Now, let us denote

fil@) = frs (@), b =E;fi(z) — f(=),
o2 = Var f;(x), 67 = Ughsi,
™

~

o2, = Var (f;(z) - fi(z)), &} =—1—2

and define the thresholds
)\? =plogs; +p log® 5;.

Finally we define
P=min {1<i <o [fi0) = fi@)| < Noy ViE<i< L)) (48)
We will prove below that the estimator
fu(@) = fi(x)

satisfies both the statements contained in Theorem 3.

Let us get first some insight into the algorithm. The sequefcef bandwidths has
several important properties. First, it is increasing, thus the variance of the corresponding
estimators is also increasing.

Second, according to the definition of R-scales the bandwigttag, see eq. (43), are
such thatis;,(«) < k° uniformly in K, for somed < 1, andh small enough. Thus, is
large enough foh small enough, so that for each the optimum bandwidthy, («) corre-
sponding ta4(«a), can be sandwiched between two consecutive elements of the sequence
Sh, i.e. there exist$(«) = i(«, h) such that

Sita)—1 < Sn() < Si(a)-
The sequence is also dense enough so that

. Sit1
lim === = 1.

1—00 S;

This guarantees thaj,(«) ands;,) are asymptotically equivalent sineg(a)) — oo for
h — 0in NP scales.
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The sequence of thresholds has been chosen in such a way that, for large
(i(a) <1 < j), the probability of the event

[fi(@) = fil@)] > X Var'2(fi(2) — fi(2)), (46)

is very small since, except for an event of a small probability, this can only occur if the
bias (b; — b;) > Var/?(f;(x) — f;(x)) which is not the case for bandwidths greater
than s, («) as we will see. Therefore, for any givérandj > i we rejects; in favor

of the subsequent elements of the sequehgdf the event (46) occurs. This pairwise
comparison is performed for eveiyand from all the accepteq we select the smallest,

i.e. we choose the estimator with the smallest variance. Note that according to the previous
argument no bandwidtk, i > i(«) will be rejected, with high probability. However it is
possible that a bandwidth, i < i(«) is chosen. In that case our procedure warrants that,
cf. (45),

[fi(@) = fiw (@)] < Xia) Var'2(fi(z) — fiey(2))(1 + o(1))

Thus in the worst case the accuracyfpidecreases by a factor- \(,) which is of order
log s, () asymptotically ag — 0. In the next subsection we prove that the accuracy of
this algorithm is asymptotically optimal in the adaptive setting, for all RNP scales subject
to certain mild additional assumptions; see Theorems 1 and 6.

Now, let us turn to the proof of the theorem. We start with an auxiliary result needed
in the proof where we use the same notations as those used in describing the estimation
procedure.

Lemma 3 For & — 0, uniformly with respect te, j (1 < ¢,5 < I;) and with respect to
a varying in a regular scale,

(@) b5 = o(1)57 for all j such thati(a) < j < I,.
(b) 032- = 6]2-(1 + O(log ' (1/h))).

(©) (bj —b:)* < (14 0(1))57; for all 4, j such thati(a) <i < j < I,.
(d) 02, = 67,(1+ O(log™'(1/h))).

Proof. (a) Using the bound for the bias given in (17), equation (22), and Lemma 2
we see, with some algebra, that

0o 32 s,
B < / T 200 gt 4 0 (e—2<2ﬂ%>’“/0r> / " By g
™ Jo v ;
J

<02hsj B2 e 208"

m  wyo?h r(ys;)"

2 2

40 <672<2w%>r/cr> 07hsj B a(ysyr
w  wyo?h

s (GQ(WSh)T—Q(“/Sj)T

i

Lo <6—(27FZ)"/Cr+2(75h)"€—(27r2)"/Cr+2(WSj)’">) .
r(ysn)"
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Now, givens; > s, («) and using conditions (44) in the definition of the sequence of band-
widths S, and conditions (41)—(43) in the definition of R scales, we obltgsliﬁ: 0(1)6]2.
whenh — 0, uniformly with respect tg (i(«) < j < I;,) and with respect te in /Cy,.

(b) Thisis just a reformulation of the asymptotic relation (18) using the fact that, accord-
ing to (44),hs; < log '(1/h).

(c) Applying Lemma 1(b) taking; = s; ands, = s;, and arguing as in (17) and in the
proof (a), we see that

2

b= < 2|5 [T 0RO @ +

0 (e2eirie) [ E o gy

S:

i /7
S; 32
6 2(~t) dt—i-O( —2(27r /C», / 6 2('yt dt
’7

S4

_71'2

< O'Qh(Sj — Si) 52 6—2(751')T +
- T ™y o?h
0 <€_2(2w%)r/cr> ‘72h(5j —si) B e2(rs5)"
T 7wy o2h

Z7J

_ 42 (62(%” 2(ysi)" +0( ;)r/crwmshr€—<2w%>r/cr+2(vsjr))

=67,(1+0(1)), (h — 0).

(d) It follows directly from Lemma 1(c), taking; = s; ands, = s;. Here, as in (18),
we can verify that

02, = ?h2 3070 (ks (x — Ch) — Ky, (z — (R))?

27]

= TR (1L O(1) h(s; — s1)). (47)

and thus, using (44), this completes the proof of the lemma. O

We now proceed with proving Theorem 3. For arbitréip any R-functional scalely, ,

Ralf) == BIf(@) = f@)F = Ry (f)+ i)
where )
B () = {1l esian @) = @) |

and

Ry(f)=E {ﬂ ieplfi(@) - f<”“">|p}'
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Let us examingz, (f) first. We have
{i<i@} c {I£@) ~ fiw@)] < N }

- { fi(@) = fi) (@)] < Ny Fica) }
therefore

i () < B(1 iy (1 5@ = i@ +1 fia @) = F@)1)")

VAN

E ()\i(a)@(a) + | fi(a)(x) — f(z)] )p

(VAN

p
E<)\i(a)0i(a) + |bi)| + Ti [€] )

where¢ ~ N(0,1). Now according to Lemma 3, (a) and (b), uniformly with respect to
in any regular scale

Ti(a) = Oi(e) (1 +0(1)) and  |big)| = 0(1)5i(a), (h —0).
It follows that for h — 0 uniformly with respect to any RPP scale
Ry (f) = O(h*"), (48)
while by the dominated convergence theorem, uniformly in any RNP scale
Ry (f) < ¢¥h(@)(1 +0o(1)). (49)
Now let us examing?, (f). Consider the auxiliary events
A ={w: | filw) = @) < VIS

Applying Holder’s inequality we obtain

B () = E (1l oiian 1Fi@) = f@)) = > 6 (1 oy Vi) = f@I)
i=i(c)+1
= IZ} E ( |filz) = fF@)P (1 =iyna, +1 (i=i}nAg ))

i=i(a)+1

< Ry (f) + Ro(f),

where
Iy,

RAL(f) = ), @N&})PP(i=1)

i=i(a)+1
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and ,
Riaf) = 3 B [fw) - s P
i=i(a)+1
We have
=)< 3 P(Ifa@) = fa@)] > G h ) (50)
j=it+1

By writing f;(z) — fi(z) = 0:;€ + b; — b;, where¢ ~ N(0,1), applying Lemma 3(d),
and using the well known bound on the tails of the normal distribution (cf. Feller, 1968,
Lemma 2), we find for somé&' > 0 and alli small enough

|b; — byl
)

4,J %,J

P(If;(x) = fi@) > Nis ) < P(J] > A

< exp{—%()\j&i’j —C>2} < exp{ ——)\2 Z’J +C\; o”}

(2] 2]

~2
< exp{——/\2+0)\ T + )\2( Zz >} .
045 ij

Since by Lemma 3(c) and (44)

o2 — 62,

N = X2 0(log ™} (1/h)) = o(1), (h —0),

l?j

it follows from the last inequality that for sontg, > 0

P(\fj( ) — fi(2)] >)“0'i,j) < CleXp{—%)\?+20)\j}

forall o, 7 >4 > i(«) and all sufficiently smalk.
Returning to (50) we obtain that

. - 1 - 1
Pi=1i) <4 E exp {_5/\§_1 + QC')\j_l} = E exp {—5)5 + QCAJ}
J=i+1 J=i

-] -]
+ ! ; ;
_M + 2C /pjl +p1jl1}

2

I
Q
]
@D
z
—N

2 _ —
Cadien (<P < oten{ <)
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for someC, > 0 and alli > i(«), whenh is sufficiently small. Therefore uniformly in
Ak,

RE(f) = O Y i exp{ —p1¢l1/4} — O(*?),  (h—0).

=1

In order to obtain a bound oRIQ(f) we write againf; — f(z) = b; + 0:§ , & ~
N(0,1). Applying Lemma 3, (a) and (b), in the same way as before, we have

Mﬂ<ﬁw>f i—%5<PQﬂ>fw__f)

7

1 5 2
exp{—a(\/i/\iﬁ_\/?) } < C’gexp{—/\§+2/\,}
)

< Cgexp{ —pil —plill/Q} = C’gsi_pexp{ —p1ill/2}>

for someCs, all i > i(«) and alla providedh is small enough. Thus,

IN

Iy,

Ri ()= > EV|fix) - fa)[ P4

i=i(a)+1
Ih
< Y GTEYo(1) + (1+0(1)¢ [T PY2(AS)
i=i(a)+1
21\ P/2 &
o) (i)
=O0("?),  (h—0), (52)

uniformly in Ay, .
We can thus conclude that, uniformly in any RPP séaleour estimator satisfies

~ p
sup sup B 2(fu(x) - f(@)| = 0(),
a€ky feA(a)
while for any RNP scalé&,
~ p
sup sup B[y (@) (fulw) = f@)] <1+ 0(1),
€K, feA()
whenh — 0. O

5.3 Lower Bound: Optimality Results

In Section 5.2 we have established an upper bound for the risk of adaptive procedures, by
evaluating the quality of a proposed adaptive estimator. In this section we will establish
a lower bound for arbitrary such estimator, which will allow us to establish optimality of
the proposed procedure in the sense of Definition 2.
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Theorem 4 Letp > 0. Let Ak, be an arbitrary RNP scale such that quantitigs =
Sp(a), 8, < sp(a), andey () can be defined in such a way that for all sufficiently small
handa € ),

= ¢} () < min(plog &y, (73,)"/2) (53)
and
i Jaf, 0n = oo 9
Denote
~ ~ o2h
U2 =P2(a) = ’%ﬁh

Then for any estimatof), € F9(x)

minf inf E( > 1.
LR 2, B ) = ] 2

Proof. Lettingd = dSh - \/éh consider the following pair of functions:

fo(Z) = O,
£ = 03(2), 3(2) = \| ks o = 2) (55
Note thatf; satisfies
T
fi(z) =01/ 2 Z‘Sh.

Obviously f; is a continuous function and using (10), definition (15)gfand Lemma 2,
we get

[ 20 FIANOP dt = 6220 [ el | Flk, ] (1) dt

_ g ppacthr [ dt g gy o) fot 2200 dt
= 32 o - ¥3n

2 Sp)"—2(vsp)" % 3,)"—2(vsp)"
= T(’Yegh)T€2('Y h)"—2(vsp) (1 _|_0(1)) S r(»yghh)v"ez(v )" —2(vsp) (1 +O(1)) (56)

< 2(1+40(1)) <1,

uniformly in IC;, for A small enough. Thug; € A(a) for all sufficiently smallh and
everya € Ky,
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Let f), € F2(z) be an arbitrary estimator and dengfe= 4, f,(z) andL = ¢, '6;
then

Ut (fu(@) = fi(@) = fi = fule) = fr— 6,0 = fr — L (57)

(@) = fole)) = \/ o Ful@) = \/ 5 £ (@)

2h 5, ~ ~
=\ O B @) =56 i)

log s,

whereas

= frexp {52 4 logn }. (58)
Denoteg = exp { — ¢,} so that by (54)g — 0 uniformly with respect tax for » — 0.
Now, with the thus defined; € A(a), for any f, € F)(z), uniformly in o € K as
h — 0, we have

Ry:i= sup By (4 17(e) = f@))" 2 Ex (45 1fule) = £i(@)])"

feA(a)

v

4Eo (\/%rfhm - fo<x>r)p + (1= B (31fal@) = £i(@)]) + Ol0).
(59)

According to (53) and (57)—(59),

Ra > g exp {2 +plog dn } Bol i) + (1= ) B |f; (@) — LY + O(0)
> (1= ) Bq (215 @) + |fi(2) = L ) + Ola)
> (1-q) B inf <Z|x\p +l - L|p> +0(q) (60)

where

b N
Z =q exp {—hﬂ?logcbh} ).
dP§

2
For each value of consider the optimization problem of minimizing the function:
9(x) = Z|z[’ + |L — z/”.
As was shown in Lepski and Levit (1998),

min(Z,1)L? if p <1,

nlmlng(ﬂj) = 1 —(p—l) . (61)
(1+Z p—1> L ifp>1.
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Thus for anyp > 0 we can write
min g(z) = xL”, (62)
wherey is defined by (61) and satisfies< y < 1.

Now, let us consider the likelihood correspondingfgand f;. Using the same argu-
ments that we used in (28)—(32) we can see that

ap 1 <, i
I ) = =55 Y (8%G°(th) + 20y, g(th)) ¢ .
1

f=—0o0

= exp {(—95—%)(%h i k;gh(:c—em)}

{=—0c0

— exp { (—6c- %2> (1+ 0(1)h§h>}

where¢ ~ N(0,1) with respect toP;. Using the definition of), condition (53) and
definition (55) we can see that

2

(h)
Py (y) = (14 0(1)) exp {—% —95}, (h —0).

ap{"
Note that by (54)

~ 2 ~ ~ ~ ~ ~
Z = (1+o(1)) exp {—<z>h+ i plodn — (61— \Jan) — £ (9 - \/@2} P o0

whenh — 0, hencey PL1 AIsOL =1+ o(1), according to its definition. Therefore
according to equations (60)—(62), uniformlydne 1,

Ri > (1—q)L"Erx +O(q) = 1 + o(1), (h — 0).
O
Corollary 1 Let Ak, be an arbitrary RNP scale such that
liminf inf M = 00 (63)

h—0 aek, log sy

wheres;, is the optimum bandwidth defined in (15). Then for any 0 andz € R, the
estimatorf, of Theorem 3 igp, K}, F,(x))-adaptively minimax at.

Proof. This is a consequence of Theorems 3 and 4. In order to prove the lower bound
use the previous theorem takingin place ofs,. O

Now, we prove a version of Theorem 4 under a weaker condition. It will be used
below to provide an easily verifiable conditions for adaptive optimality of the estimator
proposed in Section 5.2.



126 Austrian Journal of Statistics, Vol. 32 (2003), No. 1&2, 99-129

Theorem 5 Let Ay, be an arbitrary RNP scale such that

liminf inf M =00 (64)

h—0 aeky loglog sy

where the optimum bandwidsf was defined in (15). Then for any estimafgre F(x),

p

liminf inf sup E;|vrt(fu(z) — f(z)] >1,
h—0 a€eky FEA()

where 2
a S
U2 = Pi(a) = p(log sp) ——.

Proof. We prove this theorem in the same way as Theorem 4 by chodﬁing
plog 5;, and subsequently definirig in such a way that

2plo—~g§h e2(rsn)"=2(vsn)" < (69)
r(v8n)"

for h small enough. The point here is that condition (65) was only needed in proving (56),
which now becomes (65). We construct an approptgtsymptotically equivalent tg,

that satisfies the previous inequality fborsmall enough. Let us first, for fixed, define

the auxiliary bandwidtls;, as the solution of the equation

2(ysn)" = 2(vsk)" + log r(ySh)" (66)

We know thatys;, goes to infinity ash goes to zero uniformly in regular scales. Thus
from the previous equation;s; goes to infinity too and we can see that

(S—h)r:1+wzl+o(1),

Sh 2(v5n)"

uniformly in K;, according to (64). Thus the auxiliary bandwidih is asymptotically
equivalent tos,. It also satisfies (64), see that

limint inf " i g O 14 001)) > liminf inf 05 _
h—0 aeky loglog sy, h—0 aeky loglog sy, h—0 aeky loglog sy,
Now, let us defines;, = s, whered (0 < ¢ < 1) is the closest solution td of the
equation
2r(ysn)"
log log 5y,
We can see that — 1 ash — 0 thus implying thats,, is asymptotically equivalent tg,
ands;,. Now, after few transformations,

¥ logy™! = 1.

Sh
—2(v8p)" = =2(7ysp)" + 2[ r(’yt)’”t’ldt

Sh
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5n
= —2(7ysp)" logr(vsy)" + 2/ r(yt)t 1t dt
Sh

Sh
> —2(ysp)" + logr(vys,)" + 2r(7§h)r/ t~tdt
Sh
= —2(ysp)" + log7(v54)" + 2r(y5,) 9" log 9!

= —2(ysp)" + logr(vs,)" + loglog sy,
and we see that

e 205" > 200 (75,,)" log 5y, = e 209" 208 2 (y5,) 7 /(2p)

7(¥5r)

> 672(75}L)T —2p10g Sh
= (8n)

for » small enough. The rest of the proof is the same as for Theorem 4. Finally, given
Uy, = plog 511% is asymptotically equivalent tg, we have the proof of the lemma.
O

Finally, we prove that the estimator we constructed in Theorem 3 is adaptively min-
imax, for any RNP scale satisfying a condition just a little stronger than condition (42)
used in the definition of a regular scale.

Theorem 6 LetC;, be a RNP scale such that

2
liminf inf 26 >C
h—0 €k YO hl g

for somes (0 < § < 1) andC > 0. Then for anyp > 0 andz € R, the estimatorf;, of
Theorem 3 isp, K, F,(x))-adaptively minimax at.

Proof. The upper bound result was proved in Theorem 3. To prove the lower bound
we notice that
ﬁ2

2h_2

while according to conditions (41)—(43) for R scales

r(ysp)" = r log log Ch™°

2

2

1 1 1/r
log log s, = log log — (5 log ) < loglogh™*
Y

myo?h

thus 10;1?5 goes to infinity whem — 0, uniformly with respect to the scal€,. The

desired Iower bound follows now from Theorem 5. O
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