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1 The Structural Distribution Function

Let the vectorX = (X1, . . . , XM) denote a mult(n, pM) distributed random vector, where
pM = (pM1, pM2, . . . , pMM) is the vector of cell probabilities. Hence, the components of
pM are nonnegative and satisfypM1 + . . . + pMM = 1.

We will consider situations whereM = Mn is large with respect ton, i.e.

M/n 6→ 0, asn →∞. (1)

In these casesX/n does not estimatepM accurately. For instance, for the average mean
squared error in estimatingMpMi, i = 1, . . . , M , we have

1

M
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pMi(1− pMi) =
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(
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n∑
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p2
Mi

)
6→ 0,

unless
∑M

i=1 p2
Mi → 1 holds, i.e. unless the vectorpM comes close to a unit vector

(0, . . . , 0, 1, 0, . . . , 0).
However, there are characteristics ofpM that can be estimated consistently. Here we

will study thestructural distribution functionof pM . This is a special case of the more
general concept of a structural function introduced in Khmaladze (1988) and Khmaladze
and Chitashvili (1989). The structural distribution function is defined as the empirical
distribution function of theMpMi, i = 1, . . . M , and it is given by

FM(x) = 1
M

M∑
i=1

1[MpMi≤x], x ∈ R.
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Our basic assumption will be thatFM converges weakly to a limit distribution function
F , i.e.

FM
w→ F, asn →∞. (2)

The basic estimation problem is how to estimateFM (or F ) from an observation ofX.
A rule of thumb in statistics is to replace unknown probabilities by sample fractions.

This yields the so callednatural estimator. This estimator, denoted bŷFM , is equal to the
empirical distribution function based onM times the cell fractionsXi/n, so

F̂M(x) =
1

M

M∑
i=1

1[M
n

Xi≤x], x ∈ R.

This estimator has often been used in linguistics, but turns out to be inconsistent for
estimatingF ; see Section 5.1, Khmaladze (1988), Khmaladze and Chitashvili (1989) and
Klaassen and Mnatsakanov (2000).

Our estimation problem is related to estimation in sparse multinomial tables. For
recent results on the estimation of cell probabilities in this context see Aerts et al. (2000).

In Section 2 we present a small simulation study of a typical multinomial sample and
the behavior of the natural estimator. It turns out that smoothing is required to obtain
weakly consistent estimators. An estimator based on grouping and an estimator based
on kernel smoothing are presented in Section 3. Section 4 deals with the technique of
Poissonization and with the relation between weak andL1 consistency. These basic results
are used in the weak consistency proofs in Section 5. Section 6 contains a discussion.

2 A Simulation

We have simulated a sample withM = 1000 andn = 2000. The cell probabilities are
generated via

pMi = G(i/M)−G((i− 1)/M), i = 1, . . . ,M.

The distribution functionG and its densityg have been chosen equal to the functions

g(x) = 30x2(1− x)2 and G(x) = 10x3 − 15x4 + 6x5, 0 ≤ x ≤ 1.

In Section 3 we show that for these cell probabilities, the limit structural distribution
functionF from (2) is equal to the distribution function ofg(U). Here it is given by

F (x) = 1−
√

1−
√

8
15

x, 0 ≤ x ≤ 15
8
.

These functions are drawn in Figure 1.
For this simulated sample we have plotted the cell counts, multiplied byM/n, and the

natural estimate in Figure 2. Comparison with the realF in Figure 1 clearly illustrates the
inconsistency of the natural estimator.
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Figure 1: The functiong and the corresponding structural distribution functionF .
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Figure 2: The functiong, M/n times the cell counts, and in the second figure the natural
estimator ofF .

3 Estimators Based on Smoothing Techniques

Up to now we have only assumed that the structural distribution functionFM converges
weakly to a limit distribution functionF .

From now on we will assume more structure.
Consider the function

gM(u) =
M∑
i=1

MpMi1( i−1
M

, i
M

](u), u ∈ R.

This step function is a density representing the cell probabilities and we shall call it the
parent density. The relation between this parent densitygM and the structural distribution
functionFM is given by the fact that ifU is a uniform(0,1) random variable thenFM is
the distribution function ofgM(U). Note that

EgM(U) =

∫ ∞

−∞
gM(u)du =

M∑
i=1

pMi = 1,

sogM is a probability density indeed.
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We will assume that there exists a limiting parent densityg on [0,1] such that, as
n →∞,

sup
0<u≤1

|gM(u)− g(u)| → 0. (3)

Consequently we havegM(U) → g(U), almost surely, and henceFM
w→ F .

The inconsistency of the natural estimator can be lifted by first smoothing the cell
countsXi. We consider two smoothing methods, grouping, which is actually some kind
of histogram smoothing, and a method based on kernel smoothing of the counts.

3.1 Grouping

Let m, kj, j = 0, 1, . . . , m, be integers, all depending onn, such that0 = k0 < k1 <
. . . < km = M . Define the group frequencies̄Xj as

X̄j =

kj∑

i=kj−1+1

Xi, j = 1, . . . ,m.

Then the vector of grouped counts̄X is again multinomially distributed,

X̄ = (X̄1, . . . , X̄m) ∼ mult(n, qm)

with qm = (qm1, . . . , qmm) and

qmj =

kj∑

i=kj−1+1

pMi, j = 1, . . . , m.

The grouped cells estimator, introduced in Klaassen and Mnatsakanov (2000), is defined
by

F̂M(x) =
1

M

m∑
j=1

(kj − kj−1)1[ M
n(kj−kj−1)

X̄j≤x], x ∈ R.

This estimator may be viewed as a structural distribution function with parent density

ĝM(u) =
m∑

i=1

M

n(ki − ki−1)
X̄i1[

ki−1
M

<u≤ ki
M

]
, u ∈ R.

This histogram is an estimator of the limiting parent densityg in (3). We will prove weak
consistency of the corresponding estimatorF̂M in Section 5.2.

For our simulated example the estimates ofg andF resulting from grouping with
equal group sizek = 50 are given in Figure 3.

3.2 A Kernel Type Estimator

Now that we have seen that the estimator based on the grouped cells counts is in fact
based on a histogram estimate of the parent densityg we might also use kernel smoothing
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Figure 3:g, F , and estimateŝgM andF̂M by grouping with equal cell size.

to estimateg and proceed in a similar manner. If we choose a probability densityw as
kernel functionand abandwidthk ≥ 0, we get the following estimator for the parent
densityg

ĝM(u) =
M

nk

M∑
i=1

w
(dMue − i

k

)
Xi, u ∈ R.

As an estimator for the structural distribution function of the functionF we take the
empirical distribution function of̂gM(U) with U uniform, namely

F̂M(x) =
1

M

M∑
j=1

1[ M
nk

PM
i=1 w( j−i

k
)Xi≤x], x ∈ R.

Weak consistency of this estimator will be derived in Section 5.3.
For our simulated example, kernel estimatesĝM andF̂M of g andF respectively, with

k equal to 50 are given in Figure 4.
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Figure 4:g, F , and estimateŝgM andF̂M by kernel smoothing.

4 Relevant Techniques

In our proofs we shall use repeatedly the powerful method of Poissonization and a device
involving L1 convergence.
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4.1 Poissonization

Consider the random vectorsX andY , with

X = (X1, . . . , XM) ∼ mult(n, pM) (4)

and
Y = (Y1, . . . , YM), Yi ∼ Poisson(npMi), (5)

whereY1, . . . , YM are independent. Note

N =
M∑
i=1

Yi ∼ Poisson(n).

GivenN = k the random vectorY has a mult(k, pM) distribution.
Based on an infinite sequence ofmult(1, pM1, . . . , pMM) random vectors one can

construct vectorsX andY , the cell counts overn andN of these vectors respectively,
with the distributions (4) and (5). GivenN = k they are coupled as follows

k ≤ n : X = Y + mult(n− k, pM),

k > n : Y = X + mult(k − n, pM).
(6)

Note that this shows that eitherXi ≤ Yi for all i or Xi ≥ Yi for all i.

4.2 Convergence inL1 and Weak Convergence

The focus of this paper is on consistency of estimators of a distribution function. This
concept will be defined in Section 5 in terms of weak convergence in probability, which
we will define first.

Definition 4.1 LetF be a distribution function and letFn be a possibly random distribu-
tion function. We say thatFn converges weakly toF in probability,

Fn
w→ F, in probability,

if for all ε > 0 and all continuity pointsx0 of F

P (|Fn(x0)− F (x0)| > ε) → 0,

holds.

An important step in the (in)consistency proofs is to show that “Poissonization is al-
lowed”, i.e. that we can transfer the limit result for the estimator based on the Poissonized
sample, the “Poissonized version”, to the original estimator. The following proposition is
used repeatedly, also if no Poissonized version is involved.
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Definition 4.2 LetF be a distribution function and letFn be a possibly random distribu-
tion function. We say thatFn converges toF in probability,

Fn
w→ F, in probability,

if for all ε > 0 and all continuity pointsx0 of F

P (|Fn(x0)− F (x0)| > ε) → 0.

Proposition 4.1 Let F be a distribution function and let̂Fn and F̃n be possibly random
distribution functions. If

F̃n
w→ F, in probability, (7)

and ∫
|F̂n − F̃n| P→ 0 (8)

hold, then we have
F̂n

w→ F, in probability.

In the special case wherẽFn equalsF , the proposition states thatL1 convergence implies
weak convergence.

Proof. Note that for allx0 and allδ > 0 we have

∫ x0+δ

x0−δ

|F̂n − F | ≤
∫ ∞

−∞
|F̂n − F̃ |+

∫ x0+δ

x0−δ

|F̃n − F |. (9)

Let x0 denote an arbitrary continuity point ofF andε an arbitrary positive number.
Chooseδ > 0 such thatF (x0 + δ)− F (x0 − δ) ≤ ε and such thatx0 − δ andx0 + δ are
continuity points ofF . Then

|F̃n(x0 − δ)− F (x0 − δ)| < ε and|F̃n(x0 + δ)− F (x0 + δ)| < ε

imply ∫ x0+δ

x0−δ

|F̃n − F | < 4δε.

Hence, we have

P
( ∫ x0+δ

x0−δ

|F̃n − F | ≥ 4δε
)

≤ P (|F̃n(x0 − δ)− F (x0 − δ)| ≥ ε) + P (|F̃n(x0 + δ)− F (x0 + δ)| ≥ ε)

and, by (7), ∫ x0+δ

x0−δ

|F̃n − F | P→ 0.
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Consequently, by (8) and (9) we get

∫ x0+δ

x0−δ

|F̂n − F | P→ 0.

Choose0 < δ′ < δ such thatF (x0 + δ′) ≤ F (x0) + 1
2
ε andF (x0− δ′) ≥ F (x0)− 1

2
ε.

Then we see

|F̂n(x0)− F (x0)| ≥ ε ⇒
∫ x0+δ′

x0−δ′
|F̂n − F | ≥ 1

2
δ′ε

and hence

P (|F̂n(x0)− F (x0)| ≥ ε) ≤ P
( ∫ x0+δ′

x0−δ′
|F̂n − F | ≥ 1

2
δ′ε

)

≤ P
( ∫ x0+δ

x0−δ

|F̂n − F | ≥ 1
2
δ′ε

)
→ 0.

Since this holds for arbitrary continuity pointsx0 and arbitraryε > 0 we have established
F̂n

w→ F , in probability. 2

5 Consistency

We define consistency as follows.

Definition 5.1 An estimatorF̂n of a distribution functionF is called consistent iff̂Fn

converges weakly toF in probability asn tends to infinity, i.e.

F̂n
w→ F, in probability, n →∞.

5.1 The Natural Estimator

The basic trick in dealing with the difference of the natural estimator and its Poissonized
version,

F̃M(x) =
1

M

M∑
i=1

1
[M

Yi
n
≤x]

, x ∈ R,

uses the coupling as in (6) and is given by the following string of inequalities

|F̂M(x)− F̃M(x)| ≤ 1

M

M∑
i=1

|1
[M

Xi
n
≤x]

− 1
[M

Yi
n
≤x]
|

≤ 1
M

∑M
i=1 1[Xi 6=Yi] ≤ |N−n|

M
= OP

(√
n

M

)
.

(10)

By (1) the right hand side converges to zero in probability and this shows that Poissoniza-
tion is allowed.
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Because of the independence of the Poisson countsYi we can easily bound the vari-
ance of the Poissonized estimator. We get

Var F̃M(x) = Var
1

M

M∑
i=1

1
[M

Yi
n
≤x]

≤ 1

4M
→ 0.

We also have

E F̃M(x) =
1

M

M∑
i=1

P (
M

n
Yi ≤ x) 6= 1

M

M∑
i=1

1[MpMi≤x] = FM(x)

and

E
∫

x2dF̃M(x) = E
1

M

M∑
i=1

(M

n
Yi

)2

= 1
M

∑M
i=1

(
M
n

)2

{npMi + (npMi)
2} = M

n
+

∫
x2d FM(x).

Together with (1) this gives two reasons whyF̃M(x) is probably not a consistent estimator
of F . Then, by (10) the natural estimator has to be inconsistent too.

The inconsistency of the structural distribution function has previously been estab-
lished in Khmaladze (1988), Khmaladze and Chitashvili (1989), Klaassen and Mnat-
sakanov (2000) and van Es and Kolios (2002). In these papers the situation of alarge
number of rare eventsis considered, i.e.n/M → λ for some constantλ. The explicit
limit in probability of F̂M(x) turns out to be a Poisson mixture ofF then.

5.2 Grouping

Under the additional assumptionn/M → λ, for some constantλ, weak consistency of
the estimator based on grouped cells has been proved, without using Poissonization, by
Klaassen and Mnatsakanov (2000) and by the Poissonization method for the simpler case
of equal group size, i.e.kj = k, by van Es and Kolios (2002). We shall prove the
following generalization without using Poissonization.

Theorem 5.1 If m/n → 0,

sup
1≤j≤m

kj − kj−1

M
→ 0,

and
sup

0<u≤1
|gM(u)− g(u)| → 0

are valid for some limiting parent densityg that is continuous on[0, 1], then

F̂M
w→ F, in probability,

holds with

F̂M(x) =
1

M

m∑
j=1

(kj − kj−1)1
[ M
n(kj−kj−1)

Pkj
i=kj−1+1 Xi≤x]

, x ∈ R.
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Proof. The estimator̂FM behaves asymptotically as

F̄M(x) =
1

M

m∑
j=1

(kj − kj−1)1[
Mqmj

kj−kj−1
≤x]

.

Indeed, in view of
∫ |1[a≤x] − 1[b≤x]|dx = |b− a| we have

∫
|F̂M(x)− F̄M(x)|dx

≤
∫ m∑

j=1

kj − kj−1

M

∣∣∣1
[

MX̄j
n(kj−kj−1)

≤x]
− 1

[
Mqmj

kj−kj−1
≤x]

∣∣∣dx

=
m∑

j=1

kj − kj−1

M

∣∣∣ MX̄j

n(kj − kj−1)
− Mqmj

kj − kj−1

∣∣∣.

Consequently, we obtain

E
∫
|F̂M(x)− F̄M(x)|dx ≤ m

n

1

m

m∑
j=1

E |X̄j − nqmj|

≤ m

n

√√√√ 1

m

m∑
j=1

E(X̄j − nqmj)2 =
m

n

√√√√ 1

m

m∑
j=1

nqmj(1− qmj)

≤
√

m

n
→ 0

and hence ∫
|F̂M(x)− F̄M(x)|dx

P→ 0.

In order to proveF̂M
w→ F in probability, by Proposition 4.1 it remains to show̄FM

w→ F .
Consider the function

ḡM(u) =
m∑

j=1

1

kj − kj−1

kj∑

i=kj−1+1

MpMi1(
kj−1

M
,
kj
M

]
(u), u ∈ R.

Forkj−1/M < u ≤ kj/M we have

|ḡM(u)− g(u)| ≤ 1

kj − kj−1

kj∑

i=kj−1+1

|MpMi − g(u)|

≤ sup
kj−1/M<v≤kj/M

|gM(v)− g(u)|

≤ sup
v
|gM(v)− g(v)|+ sup

|u−v|≤supj(kj−kj−1)/M

|g(v)− g(u)|.

By assumption, the functiong is uniformly continuous and hencesupj(kj−kj−1)/M → 0

implies ḡM(U) → g(U), almost surely, and in distribution, i.e.̄F
w→ F , which completes

the proof of the theorem. 2
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5.3 The Kernel Type Estimator

Weak consistency of the kernel type estimator is established by the next theorem.

Theorem 5.2 If k →∞, k/M → 0,M/(nk) → 0 hold, if w is a density that is Riemann
integrable on bounded intervals, that is also Riemann square integrable on bounded in-
tervals, and that has bounded support or is ultimately monotone in its tails, and if

sup
0<u≤1

|gM(u)− g(u)| → 0 (11)

holds withg continuous on[0, 1], then

F̂M
w→ F, in probability,

is valid for

F̂M(x) =
1

M

M∑
j=1

1[ M
nk

PM
i=1 w( j−i

k
)Xi≤x], x ∈ R.

Proof. Let

F̃M(x) =
1

M

M∑
j=1

1[ M
nk

PM
i=1 w( j−i

k
)Yi≤x], x ∈ R,

be the Poissonized version ofF̂M(x). Note that by the coupling argumentXi ≥ Yi for all
i or Xi ≤ Yi for all i. Sincew is a Riemann integrable density we thus get

E
∫
|F̂M(x)− F̃M(x)|dx

≤ E
1

M

M∑
j=1

∫
|1[ M

nk

PM
i=1 w( j−i

k
)Xi≤x] − 1[ M

nk

PM
i=1 w( j−i

k
)Yi≤x]|dx

= E
1

M

M∑
j=1

∣∣∣M
nk

M∑
i=1

w
(j − i

k

)
(Xi − Yi)

∣∣∣ = E
1

M

M∑
j=1

M

nk

M∑
i=1

w
(j − i

k

)
|Xi − Yi|

= E
1

n

M∑
i=1

( M∑
j=1

1

k
w

(j − i

k

))
|Xi − Yi| ≤

∑

`∈Z

1

k
w

( `

k

)
E
|N − n|

n
= O

( 1√
n

)
.

Consequently, by Proposition 4.1 it suffices to prove

F̃M
w→ F, in probability. (12)

Define

F̄M(x) =
1

M

M∑
j=1

1[ 1
k

PM
i=1 w( j−i

k
)MpMi≤x], x ∈ R.

To prove (12), by Proposition 4.1, it suffices to prove

E
∫
|F̃M(x)− F̄M(x)|dx

P→ 0 and F̄M
w→ F, in probability. (13)
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Indeed, since theYi are independent andw is square Riemann integrable, we have

E
∫
|F̃M(x)− F̄M(x)|dx ≤ 1

M

M∑
j=1

E
∣∣∣M
nk

M∑
i=1

w
(j − i

k

)
(Yi − npMi)

∣∣∣

≤
√√√√ 1

M

M∑
j=1

Var
{M

nk

M∑
i=1

w
(j − i

k

)
(Yi − npMi)

}

=

√√√√ M

n2k2

M∑
j=1

M∑
i=1

w2
(j − i

k

)
npMi ≤

√√√√ M

nk2

M∑
i=1

∑

`∈Z
w2

( `

k

)
pMi

=

√
M

nk

∑

`∈Z

1

k
w2

( `

k

)
= O

(√
M

nk

)
→ 0,

because ofk →∞ andM/(nk) → 0. This proves the first statement of (13).
Finally, we prove the second statement of (13). As parent density for the distribution

functionF̄M we choose

ḡM(u) =
M∑

j=1

1

k

M∑
i=1

w
(j − i

k

)
MpMi 1( j−1

M
, j
M

](u), u ∈ R.

Note thatgM vanishes outside (0,1]. Fixu ∈ (0, 1). For u ∈ ( j−1
M

, j
M

], andK > 0
fixed, we have

|ḡM(u)− g(u)|
≤

∑

`∈Z

1

k
w

( `

k

)∣∣∣gM

(j − `

M

)
− g

(j − `

M

)∣∣∣

+
∑

|`|≤Kk

1

k
w

( `

k

)∣∣∣g
(j − `

M

)
− g(u)

∣∣∣ (14)

+
{ ∑

|`|>Kk

1

k
w

( `

k

)
+

∣∣∣
∑

`∈Z

1

k
w

( `

k

)
− 1

∣∣∣
}

sup
u

g(u).

Note that the conditions imposed onw guarantee that

∑

|`|>Kk

1

k
w

( `

k

)

is arbitrarily small forK sufficiently large, that

∑

|`|≤Kk

1

k
w

( `

k

)
→

∫ K

−K

w(u)du,

which is arbitrarily close to one forK large enough, and hence that

∑

`∈Z

1

k
w

( `

k

)
→ 1,
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ask → ∞. Consequently, in view of (11), and in view of the uniform continuity and
boundedness ofg, all three terms at the right hand side tend of (14) to zero ask → ∞
and subsequentlyK →∞. So,ḡM(U) → g(U), almost surely and in distribution, which
impliesF̄M

w→ F .
2

6 Discussion

The key assumption in the consistency proofs of the grouping and kernel estimators is
the existence of a limiting parent density. This is a reasonable assumption only, if there
is a natural ordering of the cells and neighboring cells have approximately the same cell
probabilities. In applications like e.g. linguistics this need not be the case. Consider a text
of n words of an author with a vocabulary ofM words. Here the words in the vocabulary
correspond to the cells of the multinomial distribution and the existence of a limiting or
approximating parent density is rather unrealistic. To a lesser extent this might be the case
in biology, where cells correspond to species andn is the number of individuals found in
some ecological entity.

An estimator that is consistent even if our key assumption does not hold, has been
constructed in Klaassen and Mnatsakanov (2000). However, it seems to have a loga-
rithmic rate of convergence only. The rates of convergence of our grouping and kernel
estimators will depend on the rate at which the assumed limiting parent density can be
estimated. This issue is still to be investigated, but under the assumptionn/M → λ,
for some constantλ, van Es and Kolios (2002) show that, for the relatively simple case
of equal group sizes, an algebraic rate of convergence can be achieved by the estimator
based on grouping.

Since the estimators studied here are based on smoothing of the cell frequencies an
important open problem is the choice of the smoothing parameter. For the estimator
based on grouping this is the choice of the sizes of the groups and for the kernel type
estimator the choice of the bandwidth. By studying convergence rates these choices may
be optimized.
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