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Abstract: We consider estimation of the structural distribution function of
the cell probabilities of a multinomial sample in situations where the num-
ber of cells is large. We review the performance of the natural estimator, an
estimator based on grouping of the cells, and a kernel type estimator. In-
consistency of the natural estimator and weak consistency of the other two
estimators is derived by Poissonization and other, new, technical devices.
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1 The Structural Distribution Function

Let the vectorX = (X1,..., X,,) denote a multr, p,,) distributed random vector, where
pyv = (P, P2, - - -, P ) 1S the vector of cell probabilities. Hence, the components of
py are nonnegative and satisfy;; + ... + pyy = 1.

We will consider situations wher&l = M,, is large with respect ta, i.e.

M/n 4 0, asn — oc. 1)

In these caseX /n does not estimatg,, accurately. For instance, for the average mean
squared error in estimating p,s;,i = 1, ..., M, we have

MZ (M——MpMz) = %ﬁ;pm(l—pm) = %(1_;;])?%) 40,

unlesszi]\ilp%i — 1 holds, i.e. unless the vectgr, comes close to a unit vector
(0,...,0,1,0,...,0).

However, there are characteristicspgf that can be estimated consistently. Here we
will study thestructural distribution functiorof p,,. This is a special case of the more
general concept of a structural function introduced in Khmaladze (1988) and Khmaladze
and Chitashvili (1989). The structural distribution function is defined as the empirical
distribution function of the\ip,,;, i = 1,... M, and itis given by

M
F]V[(ZE) = % Zl[MPMiSI]’ T € R

i=1
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Our basic assumption will be th&t,, converges weakly to a limit distribution function
F,ie.
Fy = F, asn — oo. (2)

The basic estimation problem is how to estimaig (or £') from an observation ok'.

A rule of thumb in statistics is to replace unknown probabilities by sample fractions.
This yields the so calledatural estimator This estimator, denoted ¥, is equal to the
empirical distribution function based avl times the cell fractions(; /n, so

A

M
1

=1

This estimator has often been used in linguistics, but turns out to be inconsistent for
estimatingF’; see Section 5.1, Khmaladze (1988), Khmaladze and Chitashvili (1989) and
Klaassen and Mnatsakanov (2000).
Our estimation problem is related to estimation in sparse multinomial tables. For
recent results on the estimation of cell probabilities in this context see Aerts et al. (2000).
In Section 2 we present a small simulation study of a typical multinomial sample and
the behavior of the natural estimator. It turns out that smoothing is required to obtain
weakly consistent estimators. An estimator based on grouping and an estimator based
on kernel smoothing are presented in Section 3. Section 4 deals with the technique of
Poissonization and with the relation between weak/ancbnsistency. These basic results
are used in the weak consistency proofs in Section 5. Section 6 contains a discussion.

2 A Simulation

We have simulated a sample willi = 1000 andn = 2000. The cell probabilities are
generated via
pvi = GE/M)—G((i —1)/M),i=1,..., M.

The distribution functiorG and its density; have been chosen equal to the functions
g(x) =302%(1 —2)®> and G(z) = 102® — 152" +62°,0 <z < 1.

In Section 3 we show that for these cell probabilities, the limit structural distribution
function ' from (2) is equal to the distribution function ¢fU). Here it is given by

Fla)=1—/1—y/&z, 0<z< 2
These functions are drawn in Figure 1.
For this simulated sample we have plotted the cell counts, multiplied oy, and the
natural estimate in Figure 2. Comparison with the réah Figure 1 clearly illustrates the
inconsistency of the natural estimator.
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Figure 1: The functiory and the corresponding structural distribution function
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Figure 2: The functiory, M /n times the cell counts, and in the second figure the natural
estimator ofF".

3 Estimators Based on Smoothing Technigques

Up to now we have only assumed that the structural distribution fundéfigrconverges
weakly to a limit distribution functiorf'.

From now on we will assume more structure.

Consider the function

M
gm(u) = Z MpMil(%w%]@L% ueR.
i=1

This step function is a density representing the cell probabilities and we shall call it the
parent density The relation between this parent dengity and the structural distribution
function F; is given by the fact that it/ is a uniform(0,1) random variable then, is

the distribution function of,,(U). Note that

0o M
Egu() = | gulwdu =" pyi =1
o0 i=1

S0y, is a probability density indeed.
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We will assume that there exists a limiting parent dengityn [0,1] such that, as
n — oo,
sup [gm(u) — g(u)| — 0. 3)

O0<u<l

Consequently we havg,(U) — g(U), almost surely, and hendg,; — F.

The inconsistency of the natural estimator can be lifted by first smoothing the cell
countsX;. We consider two smoothing methods, grouping, which is actually some kind
of histogram smoothing, and a method based on kernel smoothing of the counts.

3.1 Grouping

Letm,k;,j = 0,1,...,m, be integers, all depending on such that) = ky < k1 <
... < k,, = M. Define the group frequencies; as

X;j= ) Xi, j=1...m

Then the vector of grouped countsis again multinomially distributed,
X =(Xy,...,Xm) ~mult(n,q,)

with ¢,, = (¢m1, - - -, ¢mm) @nd

k;j
Gmj = E pvi, J=1,...,m.
i:kj_1+1

The grouped cells estimator, introduced in Klaassen and Mnatsakanov (2000), is defined
by

m

A 1
Pu(@) = 57 20k = k)l oo v €R.

j=1
This estimator may be viewed as a structural distribution function with parent density

u € R.

m

. M >
()= —————— X1,

k.
T n(k:l — /{71;1) v <usgrl

)

This histogram is an estimator of the limiting parent dengitry (3). We will prove weak
consistency of the corresponding estimatyr in Section 5.2.

For our simulated example the estimatesgyadnd £’ resulting from grouping with
equal group sizé = 50 are given in Figure 3.

3.2 A Kernel Type Estimator

Now that we have seen that the estimator based on the grouped cells counts is in fact
based on a histogram estimate of the parent depsity might also use kernel smoothing
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Figure 3:¢, ', and estimateg,; and F,; by grouping with equal cell size.

to estimatey and proceed in a similar manner. If we choose a probability densig
kernel functionand abandwidth%k > 0, we get the following estimator for the parent
densityg

== Z ((M“] _Z>Xi, ueR.

As an estimator for the structural distribution function of the functiorwe take the
empirical distribution function o, (U) with U uniform, namely

M
Z JZ)X<I} I'E]R.

Weak consistency of this estimator will be derived in Section 5.3.
For our simulated example, kernel estimajgsand F; of g andF' respectively, with
k equal to 50 are given in Figure 4.
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Figure 4:¢, F, and estimates,; and ¥, by kernel smoothing.

4 Relevant Techniques

In our proofs we shall use repeatedly the powerful method of Poissonization and a device
involving L convergence.
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4.1 Poissonization

Consider the random vectos andY’, with

X = (X1,...,Xy) ~ mult(n, py) (4)
and
Y = (H:"')YM>7 }/; ~ POiSSO[(]ani)? (5)
whereYi, ..., Y, are independent. Note

M
N =) Y ~ Poissofin).

=1

Given N = k the random vectoY” has a multk, py,) distribution.

Based on an infinite sequence w@fult(1, pas,- .., pua) Fandom vectors one can
construct vectorsy andY’, the cell counts oven and N of these vectors respectively,
with the distributions (4) and (5). GiveN = k they are coupled as follows

k<n:X=Y+multln — k,pu), (6)
k>n:Y =X+multlk —n,puy).

Note that this shows that eithéf; < Y; for all s or X; > Y; for all <.

4.2 Convergence inL; and Weak Convergence

The focus of this paper is on consistency of estimators of a distribution function. This
concept will be defined in Section 5 in terms of weak convergence in probability, which
we will define first.

Definition 4.1 Let F’ be a distribution function and lef,, be a possibly random distribu-
tion function. We say thdat,, converges weakly t6' in probability,

F, = F, in probability,
if for all ¢ > 0 and all continuity points:, of F’
P(|Fy(zo) — F(zo)| > €) — 0,

holds.

An important step in the (in)consistency proofs is to show that “Poissonization is al-
lowed”, i.e. that we can transfer the limit result for the estimator based on the Poissonized
sample, the “Poissonized version”, to the original estimator. The following proposition is
used repeatedly, also if no Poissonized version is involved.
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Definition 4.2 Let F' be a distribution function and Idf,, be a possibly random distribu-
tion function. We say that,, converges t@' in probability,

F, 5 F, in probability,
if for all ¢ > 0 and all continuity points, of F’
P(|F,.(z¢) — F(zo)| > €) — 0.

Proposition 4.1 Let F be a distribution function and lef,, and £}, be possibly random
distribution functions. If
F, % F, in probability, (7)

and
JE ®)
hold, then we have

E, % F, in probability.

In the special case whefe, equalsE’, the proposition states thag convergence implies
weak convergence.

Proof. Note that for allzy and alld > 0 we have
To+0 . 0 B zo+9 5
[N AR T e o (©)
To—0 —00 To—0

Let 2o denote an arbitrary continuity point &f ande an arbitrary positive number.
Choose&) > 0 such thatF'(z¢ + ) — F(zy — ) < e and such that, — § andz, + ¢ are
continuity points off’. Then

|Fy (20 — 8) — F(zo — )| < e and|Fy (zo + ) — Flzo + 6)| < ¢

imply
To+90 N
/ |F, — F| < 46e.
zo—0

0—

Hence, we have

zo+9 B
P(/ E, — F| 2456)
Tro—0

< P(|Eu(zo — 0) — F(zg — 0)| > €) + P(|Fy(x0 + 6) — F(xo 4 0)| > ¢)

and, by (7),

To+0 ~
/ \F,— F| 5 o.
To—0
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Consequently, by (8) and (9) we get

zo+0 .
/ £, — F| 5 o.
To—0

Choose) < ¢’ < ¢ such that'(zo + §') < F(zo) + 3¢ andF(zg — 6') > F(z) — 3e.
Then we see

and hence

Since this holds for arbitrary continuity points and arbitrary: > 0 we have established
F, % F, in probability. O
5 Consistency

We define consistency as follows.

Definition 5.1 An estimatorF), of a distribution function is called consistent iff",
converges weakly t6' in probability asn tends to infinity, i.e.

E, % F, in probability, n — oc.

5.1 The Natural Estimator

The basic trick in dealing with the difference of the natural estimator and its Poissonized
version,

M

- 1

Fa(r) =+ > Ly TER,
=1

uses the coupling as in (6) and is given by the following string of inequalities

M
. _ 1
[Far() = Fu(@)] € =) 11— Ly
M [ <] [ ]
= (10)

By (1) the right hand side converges to zero in probability and this shows that Poissoniza-
tion is allowed.
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Because of the independence of the Poisson cdgnig can easily bound the vari-
ance of the Poissonized estimator. We get

1
Var Fy(z) = Var — Zl[M vy <7 O

We also have

M M
Z Y < x Z [Mppi<z] — FM<:E)

and

M

E /xzdFM(;p) - E% > (%K)Q

= 3 Sici (%Y{npm + (npan)*} = 55+ [ 2%d Fu (),

Together with (1) this gives two reasons why; () is probably not a consistent estimator
of F. Then, by (10) the natural estimator has to be inconsistent too.

The inconsistency of the structural distribution function has previously been estab-
lished in Khmaladze (1988), Khmaladze and Chitashvili (1989), Klaassen and Mnat-
sakanov (2000) and van Es and Kolios (2002). In these papers the situatidargéa
number of rare events considered, i.en/M — X for some constank. The explicit
limit in probability of F; () turns out to be a Poisson mixture Bfthen.

5.2 Grouping

Under the additional assumptiety M — X, for some constank, weak consistency of

the estimator based on grouped cells has been proved, without using Poissonization, by
Klaassen and Mnatsakanov (2000) and by the Poissonization method for the simpler case
of equal group size, i.ek; = k, by van Es and Kolios (2002). We shall prove the
following generalization without using Poissonization.

Theorem 5.1 If m/n — 0,
sup kj — ki 0
1<j<m M ’
and

sup [gar(u) = g(u)| =0

0<u<l

are valid for some limiting parent densigythat is continuous ofp, 1], then
Fy 2 F,  in probability,
holds with

1 m
= M Z(kj — ]Cj_1>l[ M l'cj X<z’ r e R.
j=1

n(kjfkj_l) ZZ:kj,1+1
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Proof. The estimatoi#,; behaves asymptotically as

1 m
= M Zl(kj — kj_l) quJ < ]
]:

kkl

Indeed, in view of |1j,<;) — Lp<y|dz = |b — a| we have

/|FM (2)]dx

Z “‘1 . 1w
<z] [ I <q]

n(lc-—lc 1) = kj—kj_1
: M
Jj=1

Consequently, we obtain

dx

n(kj = kj—1)  kj— kil

/\FM )\dm<——ZE|X N |

S Z E HQm J - Z nqm] Qm]
-
n

/]FM (2)|dz & 0.

In order to proveF,; - F in probability, by Proposition 4.1 it remains to shdw;, > F.
Consider the function

IN

and hence

— 1
gu(u) = Z— Z MpMil(kjfl g](u)v ueR.

M M

Fork,_./M < u < k;/M we have

_ 1
Gar(u) — g(u)| < ——— > |Mpus — g(u)|

T

i=kj_1+1
< sup lgm(v) — g(u)]
kj_l/M<’USk'j/M
< sup |gu(v) — g(v)| + sup l9(v) — g(u)].
v lu—v|<sup;(k;—k;j-1)/M

By assumption, the functiopis uniformly continuous and hensep, (k; —k;_1)/M — 0
implies gy, (U) — ¢(U), almost surely, and in distribution, i.&. = F, which completes
the proof of the theorem. O
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5.3 The Kernel Type Estimator

Weak consistency of the kernel type estimator is established by the next theorem.

Theorem 5.2 If £ — oo, k/M — 0, M/(nk) — 0 hold, ifw is a density that is Riemann
integrable on bounded intervals, that is also Riemann square integrable on bounded in-
tervals, and that has bounded support or is ultimately monotone in its tails, and if

sup |gar(u) — g(u)| — 0 (11)

O<u<l
holds withg continuous o0, 1], then
Fy 2 F,  in probability,

is valid for

Zl (i xizas T E R

Proof. Let

= 37 2= B s wiiztyvisay T ER,

] 1

be the Poissonized versmnﬁh(x). Note that by the coupling argumeiit > Y; for all
1 or X; <Y;foralli. Sincew is a Riemann integrable density we thus get

E/|FM(:):)—FM(x)|dx

1 M

g

1
<B4/ /|1 (hxige) ~ WA 5w yvicaldE

nk
ZEMZ\@Z“’(T)(&—YZ‘) ~Eqr 2 ey

=1

> (3 () -vi< X po(f) e - o( ),

E

Blr—‘

Consequently, by Proposition 4.1 it suffices to prove
Fy = F, in probability. (12)

Define

1
FM(‘T) - M Z 1[% S M w(E) Mpai<a)? z €R.
j=1
To prove (12), by Proposition 4.1, it suffices to prove

/|FM (x)|dx £0 and Fy 2 F, in probability. (13)
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Indeed, since th&; are independent and is square Riemann integrable, we have

e [1Futo) — Puotr < 55 €[S (L5 = g

I
2=
| =

gl\')
—~
T~

M M . . M
A (s 2SS (o

i=1 (e,
)=o(y3z) —o

because of — oo andM/(nk) — 0. This proves the first statement of (13).

Finally, we prove the second statement of (13). As parent density for the distribution
function F,; we choose

M M . .

_ 1 j—1

gu() =3 2> () Mpai L 4 (), w e R
j=1 " i=1

Note thatg,, vanishes outside (0,1]. Fix € (0,1). Foru € (42, L], andK > 0
fixed, we have

o =gl

< ol () -5

-3 bo(O) -l s
<Kk

{3 b+ S bl - st

is arbitrarily small forK sufficiently large, that

Z %w(%) — /K w(u)du,

(|<Kk K

which is arbitrarily close to one fak™ large enough, and hence that

i)
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ask — oo. Consequently, in view of (11), and in view of the uniform continuity and
boundedness qf, all three terms at the right hand side tend of (14) to zerb as ~
and subsequentlif — oo. S0,g,,(U) — ¢(U), almost surely and in distribution, which
implies F; = F.

O

6 Discussion

The key assumption in the consistency proofs of the grouping and kernel estimators is
the existence of a limiting parent density. This is a reasonable assumption only, if there
is a natural ordering of the cells and neighboring cells have approximately the same cell
probabilities. In applications like e.g. linguistics this need not be the case. Consider a text
of n words of an author with a vocabulary &f words. Here the words in the vocabulary
correspond to the cells of the multinomial distribution and the existence of a limiting or
approximating parent density is rather unrealistic. To a lesser extent this might be the case
in biology, where cells correspond to species ansl the number of individuals found in
some ecological entity.

An estimator that is consistent even if our key assumption does not hold, has been
constructed in Klaassen and Mnatsakanov (2000). However, it seems to have a loga-
rithmic rate of convergence only. The rates of convergence of our grouping and kernel
estimators will depend on the rate at which the assumed limiting parent density can be
estimated. This issue is still to be investigated, but under the assumptidn— J,
for some constank, van Es and Kolios (2002) show that, for the relatively simple case
of equal group sizes, an algebraic rate of convergence can be achieved by the estimator
based on grouping.

Since the estimators studied here are based on smoothing of the cell frequencies an
important open problem is the choice of the smoothing parameter. For the estimator
based on grouping this is the choice of the sizes of the groups and for the kernel type
estimator the choice of the bandwidth. By studying convergence rates these choices may
be optimized.
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