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1 Distinguishing a Sequence of Independent Random Vari-
ables from its Shifts

Let
X = (X1, X2, . . .) (1)

be a sequence of independent random variables. Denote byµX the measure in the space
IR∞ of all sequences generated in the standard way byX. For a sequencea = (a1, a2, . . .)
of numbers we denote byµX+a the measure inIR∞ generated by the shifted sequence

X + a = (X1 + a1, X2 + a2, . . .). (2)

For independent identically distributedX1, X2, . . . the following results were proved in
Shepp (1965).
(i) If ||a||2 =

∑∞
1 a2

j = ∞, then the measuresµX andµX+a are mutually singular what-
ever the distribution ofXj is.
(ii) If IXj

< ∞, the condition||a|| = ∞ becomes also necessary for mutual singularity
of µX andµX+a.

In this section statistical meaning of Shepp’s results is discussed. It may be of a
general interest since, as noticed in Shepp (1965), “it was unexpected that the Fisher
information plays such a central role”.

For independent (not necessarily identically distributed)X1, X2, . . . consider an infi-
nite sequence of observationsY = (Y1, Y2, . . .),

Yj = Xj + ajθ, j = 1, 2, . . . (3)

with θ ∈ IR as a parameter.
Distinguishing (1) from (2) means testing the null hypothesisH0 : θ = 0 versus the

alternativeH1 : θ = 1 with zero probabilities of type 1 and type 2 errors. Let us deal
with a more general problem of estimatingθ.
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Assuming the variances ofX1, X2, . . . finite and positive (the latter assumption eliminate
trivial cases when a single observation suffices for distinguishingX from X + a),

0 < σ2
j = var(Xj) < ∞, j = 1, 2, . . . , (4)

consider the (generalized) least squares estimator ofθ from Y1, . . . , Yn:

θ̂LS
n = arg min

θ

n∑
1

σ−2
j (Yj − θaj)

2 =

∑n
1 ajσ

−2
j Yj∑n

1 a2
jσ
−2
j

. (5)

The estimator (5) is unbiased with the variance

var(θ̂LS
n ) =

1∑n
1 a2

jσ
−2
j

. (6)

Thus, if
∞∑
1

a2
jσ
−2
j = ∞, (7)

the least squares estimatorθ̂LS
n converges toθ in mean square asn →∞.

The following version of the strong law of large numbers ensures the convergence ofθ̂LS
n

to θ with probability one.

Lemma 1.1 Let ζ1, ζ2, . . . be a sequence of independent random variables withE(ζj) =
0, E(ζ2

j ) = vj, j = 1, 2, . . . and let a sequence of numbersb1, b2, . . . satisfy the conditions

b1 < b2 < . . . , lim
j→∞

bj = +∞. (8)

If
∞∑
1

vjb
−2
j < ∞, (9)

then with probability one

(1/bn)
n∑
1

ζj → 0 as n →∞. (10)

Proof of Lemma 1. See, e.g., Shiryaev (1996), Chapter 4, Theorem 2. tu

On settingζj = ajσ
−2
j (Yj − ajθ) one hasE(ζj) = 0, E(ζ2

j ) = vj = a2
jσ
−2
j .

For bn =
∑n

1 vj one hasbj−1 < bj and

n∑
2

vjb
−2
j =

n∑
2

(bj − bj−1)/b
2
j <

n∑
2

(bj − bj−1)/(bjbj−1)

=
n∑
2

(1/bj−1 − 1/bj) = 1/b1 − 1/bn < 1/b1
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so that (9) holds.
By virtue of Lemma 1, with probability one

θ̂LS
n − θ =

∑n
1 ajσ

−2
j (Yj − ajθ)∑n
1 ajσ

−2
j

= (1/bn)
n∑
1

ζj → 0, n →∞. (11)

The relation (11) implies that under condition (7) any two measuresµ1, µ2 in IR∞ gen-
erated by the random variables (3) withθ = θ1 andθ = θ2, respectively,θ1 6= θ2 are
mutually singular. The above measuresµX andµX+a correspond toθ = 0 andθ = 1.
Hence, the following result holds.

Theorem 1.1 Let X1, X2, . . . be a sequence of independent random variables with finite
positive variancesσ2

1, σ
2
2, . . . and leta1, a2, . . . be a sequence of numbers. If

∞∑
1

a2
jσ
−2
j = +∞,

the sequenceX1, X2, . . . is distinguishable fromX1 + a1, X2 + a2, . . ., i.e., there is a set
A ⊂ IR∞ such thatP{(X1, X2, . . .) ∈ A} = 1 while
P{(X1 + a1, X2 + a2, . . .) ∈ A} = 0.

Note that the construction of a discriminating setA requires the knowledge of the vari-
ancesσ2

1, σ
2
2, . . . (but not of the distributions ofX1, X2, . . .) and ofa1, a2, . . .. The dis-

crimination can be based on the tailσ-algebraσ =
⋂

n σ(n) whereσ(n) = σ(Yn, Yn+1, . . .)
is theσ-algebra generated byYn, Yn+1, . . ..

Assume now thatXj has a densityfj such the Fisher information inXj

Ij =

∫
(f ′j(x)/fj(x))2fj(x)dx

is finite,j = 1, 2, . . . . The Fisher information onθ contained inYj = Xj + ajθ equals

IYj
= a2

jIj

and due to additivity of the Fisher information, the information onθ in Y = (Y1, Y2, . . .)
is

IY =
∞∑
1

a2
jIj. (12)

For independent identically distributedXj one hasIj = I andIY =
∑∞

1 a2
j , the last

relation explaining one of Shepp’s results:

if I < ∞, then IY = ∞⇐⇒
∞∑
1

a2
j = ∞.

The condition (7) also has informational meaning. Remind that ifY is a random variable
whose mean and variance are functions of a (scalar) parameterθ,

Eθ(Y ) = m(θ), varθ(Y ) = v(θ),
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the linear score inY is defined asJlin(Y ; θ) = m′(θ)(Y − m(θ))/v(θ) and the linear
information as

Ilin,Y (θ) = Eθ{(J(Y ; θ)2} = {m′(θ)}2/v(θ).

If IY (θ) < ∞ ( so that the Fisher scoreJ(Y ; θ) is well defined), the linear score equals

Jlin(Y ; θ) = Êθ{J(Y ; θ)|Y }
where the mathematical expectation in the wide senseÊθ simply means the minimum
variance linear approximation toJ(Y ; θ).

The linear information in (3) is
∑∞

1 a2
jσ
−2
j and the condition (7) simply means that

Ilin,Y(θ) = ∞.
A basic statistical principle supported by the Cramér-Rao inequality is that the in-

equalityIY(θ) < ∞ is an obstruction to consistent estimation ofθ from the dataY. We
shall show that due to the special character of the parameter in the setup (3), the finiteness
of IY is also an obstruction to testingH0 : θ = 0 versusH1 : θ = 1 with zero probabil-
ities of type 1 and type 2 errors. The idea of the proof is known; see, Shepp (1965) and
Ibragimov and Hasminskii (1981).

Let fj be the density ofXj andIj the Fisher information. Write

|
√

fj(x)−
√

fj(x− a)| = |
∫ 0

−a

(√
fj(x− u)

)′
du|,

then square both sides and integrate the result overx:
∫
|
√

fj(x)−
√

fj(x− a)|2dx =

∫
|
∫ 0

−a

(√
fj(x− u

)′
du|2dx ≤ (a2/4)Ij, (13)

since ∫ ((√
fj(x− u)

)′)2

dx = Ij/4.

If Hj is the Hellinger distance between the distributions ofXj andXj + aj,

Hj =

∫ √
fj(x)fj(x− aj)dx = 1− (1/2)

∫ (√
fj(x)−

√
fj(x− aj)

)2

dx,

then due to (13),
Hj ≥ 1− a2

jIj/8.

The Hellinger distanceH(µX, µX+a) between product measures is the product of the
Hellinger distances between the factors. Hence,

H(µX, µX+a) =
∞∏
1

Hj ≥
∞∏
1

(1− a2
jIj/8) > 0

due to
∑∞

1 a2
jIj < ∞ and the measuresµX andµX+a are not mutually singular.

Thus, if all Ij < ∞, the condition
∑∞

1 a2
jIj = ∞ is necessary for mutual singularity of

µX andµX+a. In case of independent identically distributedX1, X2, . . . , Ij = I and the
condition becomes Shepp’s

∑∞
1 a2

j = ∞ so that in this case it is necessary and sufficient
for mutual singularity ofµX andµX+a.
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2 Carlen’s Superadditivity

Turn now to the phenomenon observed by Carlen (1991). Let

X = (X1, X2) (14)

be ans = (p + r)-variate random vector. Assume thats × s, p × p andr × r matrices
IX , I1, I2 of Fisher information aboutθ, θ1 andθ2, θ = (θ1, θ2) contained in observations
of X +θ, X1+θ1 andX2+θ2, respectively, are well defined. They are symmetric positive
semi-definite matrices that do not depend on (location) parameters.

Let

IX =

(
IX,11 IX,12

IX,21 IX,22

)

be the partition ofIX corresponding to (14). Using logarithmic Sobolev inequalities,
Carlen proved the following property he called superadditivity of the Fisher information:

trace IX ≥ trace I1 + trace I2. (15)

He says in passing that usefulness of the (15) in statistics is unlikely.
However, it turns out that (15) has a simple and nice statistical interpretation that,

besides being of interest in its own, leads to a few lines proof.
Consider two setups. In the first, the statistician observes the random vector(X1 +

θ1, X2) with θ1 as a parameter. In the second, the statistician observes onlyX1 + θ1.
Simple calculations show that the matrix of Fisher information onθ1 in (X1 + θ1, X2)
equalsIX,11 and due to monotonicity of the information matrix,IX,11 ≥ I1 with respect
to the standard partial ordering of square matrices (A ≥ B if the matrixA−B is positive
semi-definite.) Hence,

trace IX,11 ≥ trace I1. (16)

Similarly, comparing the matrices of Fisher information onθ2 contained in(X1, X2 + θ2)
andX2 + θ2, one gets

trace IX,22 ≥ trace I2. (17)

Since
trace IX = trace IX,11 + trace IX,22,

the inequalities (16) and (17) prove Carlen’s superadditivity.
Referring for the detail to Kagan and Landsman (1997), let us consider here a special

case of Carlen’s superadditivity.
Let

V =

(
V11 V12

V21 V22

)

be a symmetric positive definites × s matrix partitioned as shown withp × p andr × r
matricesV11 andV22, p + r = s. If X1, X2, X = (X1, X2) are Gaussianp-,r- and
s-variate Gaussian random vectors with zero means and covariance matricesV11, V22, V,
thenIX = V −1, I1 = V −1

11 , I2 = V −1
22 . Carlen’s superadditivity implies

trace(V −1) ≥ trace(V −1
11 ) + trace(V −1

22 ).
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3 Superadditivity of the Efficient Information Matrix

In this section another form of superadditivity is discussed.
Let X be a random element of arbitrary nature whose distribution depends on ans-

dimensional parameterθ partitioned intop- andr-dimensional parameters

θ = (θ1, θ2). (18)

We assume that the (row) vector score

J(X; θ) = J = (J1, J2),

partitioned according to (18) is well defined and that all the components are square inte-
grable so that the matrix of Fisher information onθ in X ,

IX(θ) =

(
IX,11(θ) IX,12(θ)
IX,21(θ) IX,22(θ),

)

partitioned according to (18) is also well defined. We assumeIX(θ) positive definite.
The efficient score forθ1 is defined as

Ĵ
(1)
1 (X; θ) = J1 − Êθ(J1|J2) = J1 − I12I

−1
22 J2

(we skipped the argumentsX andθ on the right hand side). As usual,̂Eθ stands for the
minimum variance approximation of the components ofJ1 by linear combinations of the
components ofJ2 (see, e.g., Bickel et al., 1998, Chapter 2).

The efficient information matrix onθ1 is, by definition,

Î
(1)
X (θ) = Eθ

(
{(Ĵ (1)(X; θ)}T{(Ĵ (1)(X; θ)}

)
= I11 − I12I

−1
22 I21.

The symbolT stands for transposition; note thatÎ
(1)
X (θ) is ap × p matrix depending on

ans-dimensional parameter. We refer to Bickel et al. (1998), Chapter 2 for the role of the
efficient score in estimation (see also Section 1 of Kagan and Rao, 2003). In Klebanov and
Melamed (1976) and Klebanov and Melamed (1978), the concept of efficient score was
introduced and studied under the name “informant in presence of a nuisance parameter”.

Similar to the Fisher information matrix, the efficient information matrix is monotone:
if S = S(X) is a statistic, then (under standard regularity conditions)Î

(1)
S (θ) ≤ Î

(1)
X (θ).

However, unlike the Fisher information matrix, the efficient information matrix is not
additive but superadditive:if X, Y are independent random elements, then

Î
(1)
X,Y (θ) ≥ Î

(1)
X (θ) + Î

(1)
Y (θ). (19)

If X, Y are independent and identically distributed, the equality sign holds in (19).
In Milne (1925) (see also Hardy et al., 1952, Problem 67), the following inequality

was proved. For any positive numbersw1, . . . , wn such that
w1 + . . . + wn = 1 and anyρj with |ρj| < 1, j = 1, . . . , n

(
n∑
1

wj

1− ρj

) (
n∑
1

wj

1 + ρj

)
≥

n∑
1

wj

1− ρ2
j

. (20)
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(Milne needed (20) for a problem in astrophysics).
It turns out that (20) is a straightforward corollary of monotonicity of the efficient

information in the setup of independent bivariate normal vectorsXj = (X ′
j, X

′′
j ), j =

1, . . . , n with Eθ(Xj) = θ = (θ1, θ2) as a parameter and known covariance matrix

var(Xj) = v−1
j

(
1 ρj

ρj 1

)
.

The efficient information onθ1 in X = (X1, . . . , Xn) is

Î
(1)
X =

n∑
1

vj

1− ρ2
j

−
(

n∑
1

ρjvj

1− ρ2
j

)2 (
n∑
1

vj

1− ρ2
j

)−1

(21)

and since the distribution of the vectorX′ = (X ′
1, . . . , X

′
n) of the first components de-

pends only onθ1,

Î
(1)
X′ = IX′(θ1) =

n∑
1

vj. (22)

SinceX′ = X′(X) is a statistic, monotonicity of the efficient information together with
(21) and (22) results in

n∑
1

vj

1− ρ2
j

−
(

n∑
1

ρjvj

1− ρ2
j

)2 (
n∑
1

vj

1− ρ2
j

)−1

≥
n∑
1

vj

which, on settingwj = vj/
∑n

1 vj, becomes Milne’s inequality (20).
See Kagan and Rao (2003) and Rao (2000) for the detail and other applications of the

efficient information.
Of general statistical interest is the fact that in the standard linear regression setup,

the efficient score partitions the system of normal equations into two subsystems of lower
total computational complexity. Namely, consider the standard linear regression

Y = Aθ + X (23)

whereY is ann×1 observable vector,A is a knownn× design matrix of full ranks ≤ n,
θ is ans-dimensional (column) vector parameter partitioned intop- ands-dimensional
subvectors,θT = (θT

1 , θT
2 ) andX is ann×1 vector of independent identically distributed

errors with zero mean and finite varianceσ2.
The least squares estimator ofθ

θ̂LS = (ATA)−1ATY (24)

is the best linear unbiased estimator ofθ and is obtained as the solution of the system of
normal equations

AT(Y − Aθ) = 0. (25)

The linear (column) vector score forθ (see Section 1) inY is

Jlin(Y ; θ) = (1/σ2)AT(Y − Aθ).
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Let us partitionA andJT
lin as

A = (A1
... A2), JT = (JT

1 , J2),

whereA1 is ann× p matrix,A2 is ann× r matrix,J1 is ap× 1 vector, etc.
(For notational convenience, we shall skip the subindiceslin andY ). The linear infor-

mation matrix onθ in Y is

I = (1/σ2)

(
I11 I12

I21 I22

)

where
I11 = AT

1 A1, I22 = AT
2 A2, A12 = IT

21 = AT
1 A2.

The efficient linear score forθ1,

Ĵ (1) = J1 − Êθ(J1|J2) = (1/σ2)(AT
1 − I12I

−1
22 AT

2 )(Y − AT
1 θ1)

does not depend onθ2.
Similarly, the efficient linear score forθ2,

Ĵ (2) = J2 − Êθ(J2|J1) = (1/σ2)(AT
2 − I21I

−1
11 AT

1 )(Y − AT
2 θ2)

does not depend onθ1. The solution̂θ1 of the system ofp linear equations

Ĵlin,1 = 0 (26)

andθ̂2 of the system ofr equations

Ĵlin,2 = 0 (27)

are easily seen to be a partition of the least squares estimator (24),θ̂LS = (θ̂1, θ̂2). Com-
puting θ̂LS from (24) requires inverting ones × s matrix while computing it from (26)
and (27) requires inverting four matrices, two of orderp × p and two of orderr × r.
The computational complexity of inverting anm ×m matrix (for largem) is Cm2+δ for
some constantsC, δ, 0 < δ < 1. Thus, ifp = r = s/2, the computational complexity of
obtaining the least squares estimator directly from (24) is2δ times higher than from the
systems (26), (27) generated by the efficient scores.

This phenomenon is well known to computer scientists, at least (see, e.g., Aho et al.,
1974, Chapter 6). For a statistician it is encouraging to know that a modification of the
classical Fisher score turns a useful computational tool.

4 The Pitman Estimator and Stam Inequality

Let X, Y, Z be random variables with distribution functionsF1(x− θ), F2(x− θ), F (x−
θ), F (x) = (F1 ∗ F2)(x), respectively, depending on a parameterθ ∈ IR. If the Fisher
informationI1 onθ in X andI2 onθ in Y are finite (in this case a fortiori the distributions



A.M. Kagan 79

of X andY are given by densities), the informationI on θ is also finite. Back in 1959
Stam proved the following classical by appearance inequality:

1/I ≥ 1/I1 + 1/I2 (28)

which is much stronger than trivialI < min(I1, I2), see Stam (1959) or the monograph
Blahut (1987), Chapter 7.

The Stam inequality has a counterpart in terms of the Pitman estimators. The only
assumption is ∫

x2dF1 < ∞,

∫
x2dF2 < ∞. (29)

The finiteness of the Fisher information is not assumed.
Let X1, . . . , Xn; Y1, . . . , Yn; Z1, . . . , Zn be samples of sizen ≥ 2 from populations

F1(x−θ), F2(x−θ), F (x−θ), respectively. The Pitman estimator ofθ (i.e., the minimum
variance equivariant estimator) fromX1, . . . , Xn is

t′n = X̄ − E(X̄|X1 − X̄, . . . , Xn − X̄) (30)

where the conditional expectation here and in what follows is taken whenθ = 0. Denote
by t′′n andtn the Pitman estimators ofθ from Y1, . . . , Yn andZ1, . . . , Zn.

The variance of the Pitman estimator is constant (i.e., does not depend onθ) so that in
calculating the variance one may assumeθ = 0.

From (30),

var(t′n) = var(X̄)− E
(
E(X̄|X1 − X̄, . . . , Xn − X̄)

)2
, (31)

var(t′′n) = var(Ȳ )− E
(
E(Ȳ |Y1 − Ȳ , . . . , Yn − Ȳ )

)2
, (32)

var(tn) = var(Z̄)− E
(
E(Z̄|Z1 − Z̄, . . . , Zn − Z̄)

)2
. (33)

SinceF = F1 ∗ F2, the vector(Z̄, Z1 − Z̄, . . . , Zn − Z̄) is equidistributed with(X̄ +
Ȳ , X1− X̄ +Y1− Ȳ , . . . , Xn− X̄ +Yn− Ȳ ) whereX1, . . . , Yn are assumed independent.
In view of this, theσ-algebraσ(Z1 − Z̄, . . . , Zn − Z̄) = σ generated by theZ-residuals
can be considered a subalgebra of a largerσ-algebraσ(X1− X̄, . . . , Yn− Ȳ ) = σ̃ so that

E(Z̄|σ) = E{E(Z̄|σ̃)|σ}

and thus,
E{E(Z̄|σ)}2 ≤ E{E(Z̄|σ̃)}2.

To proceed further one needs a lemma.

Lemma 4.1 Let ξ be a random variable withE(|ξ|) < ∞ and η, ζ arbitrary random
elements. If the pair(ξ, η) is independent ofζ, then

E(ξ|η, ζ) = E(ξ|η).



80 Austrian Journal of Statistics, Vol. 32 (2003), No. 1&2, 71-83

Proof. See Meyer (1966), Theorem 51 of which Lemma 2 is a special case. tu

On applying Lemma 2 first withξ = X̄, η = (X1 − X̄, . . . , Xn − X̄), ζ = (Y1 −
Ȳ , . . . , Yn − Ȳ ) and second withξ = Ȳ , η = (Y1 − Ȳ , . . . , Yn − Ȳ ), ζ = (X1 −
X̄, . . . , Xn − X̄) one gets

E{E(Z̄|Z1 − Z̄, . . . , Zn − Z̄)}2 ≤
E{E(X̄|X1 − X̄, . . . , Xn − X̄) + E(Ȳ |Y1 − Ȳ , . . . , Yn − Ȳ )}2 =

E{E(X̄|X1 − X̄, . . . , Xn − X̄))}2 + E{E(Ȳ |Y1 − Ȳ , . . . , Yn − Ȳ )}2. (34)

Combining (31)-(34) results in

var(tn) ≥ var(t′n) + var(t′′n). (35)

The inequality (35) can be called a small sample version of the Stam inequality. Its proof
is completely different from the original proof of the Stam inequality.

Under regularity type conditions onF1, F2 (that include the finiteness of the Fisher
information)

var(t′n) =
1

nI1

(1 + o(1)), var(t′′n) =
1

nI2

(1 + o(1)), var(tn) =
1

nI
(1 + o(1)) (36)

asn →∞ (see Ibragimov and Hasminskii, 1981, Example to Theorem 3.1). Hence, (35)
is stronger than (28) modulo these conditions plus (29).

In Kagan (2002), one can find inequalities similar to (35) for polynomial Pitman esti-
mators and a version of (28).

5 Convexity of the Fisher Information Matrix

For the sake of the material of this section it is convenient to use the concept of a statis-
tical experimentEj, j = 1, . . . , n consisting in an observation of a random elementXj

taking values in a measurable space(X ,A) and having distributionP (j)
θ depending on a

parameterθ ∈ Θ, Θ being an open set inIRs. We shall call an experimentEmix a mixture
of E1, . . . , En with weightsw1 > 0, . . . , wn > 0, w1 + . . . + wn = 1 , if Emix consists in
observing a random elementX taking values in(X ,A) and having distribution

Pθ = w1P
(1)
θ + . . . + P

(n)
θ (37)

and shall write in this case

Emix = w1E1 + . . . + wnEn.

Let us assume the experimentsregular (see Ibragimov and Hasminskii, 1981, Chapter 1),
so that the matricesIj(θ) of Fisher information onθ in Xj (or, equivalently, inEj) and
Imix(θ) in X (or in Emix) are positive definites× s matrices.

Lemma 5.1 The matrix of Fisher information is convex with respect to the mixtures,

Imix(θ) ≤ w1I1(θ) + . . . + wnIn(θ). (38)
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Proof. The proof of (38) that follows is purely statistical based on monotonicity of the
information matrix.

Consider the experimentE = E(w1, . . . , wn) consisting in an observation of a random
pair (∆, X) where the distribution

P (∆ = i) = wi, i = 1, . . . , n

of the discrete component∆ does not involveθ and the general component has the con-
ditional distribution

Pθ(X ∈ A|∆ = i) = P
(i)
θ (A), A ∈ A.

The joint distribution of(∆, X) is

Pθ(∆ = i, X ∈ A) = wiP
(i)
θ (A), i = 1, . . . , n; A ∈ A

whence the matrix of Fisher information onθ in the pair(∆, X) (or in E) is

I∆,X(θ) = w1I1(θ) + . . . + wnIn(θ).

Since the marginal distribution ofX is (37),Emix is a subexperiment ofE and monotonic-
ity of the Fisher information matrix leads to (38). tu

For Gaussian experiments, whenXj ∼ N(θ, Vj) the information matricesIj = V −1
j

andImix do not depend onθ and (38) becomes

Imix ≤ w1V
−1
1 + . . . + wnV

−1
n .

Using the fact that the Gaussian distribution minimizes the matrix of Fisher information
on a location parameter (see, e.g. Kagan, 2001), the last inequality can be amended in the
following:

(
w1V

−1
1 + . . . + wnV −1

n

)−1 ≤ Imix ≤ w1V
−1
1 + . . . + wnV

−1
n . (39)

Without the middle term, (39) is a multivariate version of the classical inequality between
the arithmetic and harmonic means. In the univariate case, one may put in the middle the
geometric mean. In the multivariate case,V1, . . . , Vn do not commute in general and (to
the best of author’s knowledge) there is no analog of the geometric mean. Maybe, in some
sense the matrix of Fisher information on a location parameter contained in the mixture
of Gaussian experiments is a candidate for the role of the geometric mean?
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