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Abstract: A number of examples illustrate the following thesis. Mathe-
matical problems involving the Fisher information have statistical roots. The
list of examples includes (i) singularity of product measures with respect to
their shifts, (ii) Carlen’s superadditivity, (iii) Stam inequality, (iv) Milne’s in-
equality, (v) efficient score and partitioning systems of normal equations, (i)
convexity of the Fisher information matrix.
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1 Distinguishing a Sequence of Independent Random Vari-
ables from its Shifts

Let
X = (X1, Xa,...) 1)

be a sequence of independent random variables. Denqig llye measure in the space
IR™ of all sequences generated in the standard wa¥ blyor a sequence = (a4, as, . . .)
of numbers we denote hyx . ., the measure iR*° generated by the shifted sequence

X+a:(X1+a1,Xg—l—a2,...). (2)

For independent identically distributed,, X5, . .. the following results were proved in
Shepp (1965).

(i) If J|a]|* = 37" a2 = oo, then the measuresx andix ., are mutually singular what-
ever the distribution of; is.

(i) If Ix, < oo, the condition||a|| = oo becomes also necessary for mutual singularity
of ux andux . a.

In this section statistical meaning of Shepp’s results is discussed. It may be of a
general interest since, as noticed in Shepp (1965), “it was unexpected that the Fisher
information plays such a central role”.

For independent (not necessarily identically distribut&e) X, ... consider an infi-
nite sequence of observatioks= (Y1, Y>,...),

with 6 € IR as a parameter.

Distinguishing (1) from (2) means testing the null hypothé&éjs: 6 = 0 versus the
alternativeH; : 6 = 1 with zero probabilities of type 1 and type 2 errors. Let us deal
with a more general problem of estimatifg
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Assuming the variances df;, X5, ... finite and positive (the latter assumption eliminate
trivial cases when a single observation suffices for distinguisKirigpm X + a),

O<a]2-zvar(Xj)<oo,j:1,2,..., 4)
consider the (generalized) least squares estimatdfrom Y7, ..., Y,.:
n n —2
. a;o;°Y;
055 = arg mginZaf(Yj — 0a;)? = —ZIn jzj — (5)
1 1459
The estimator (5) is unbiased with the variance
var(6-%) = ; (6)
" Xidey”
Thus, if
Za?aj_g = 00, (7)
1

the least squares estimaéjf converges t@ in mean square as — oo. )
The following version of the strong law of large numbers ensures the convergefice of
to 6 with probability one.

Lemma 1.1 Let(y, (s, . .. be a sequence of independent random variables Wit)) =
0, E(Cf) =v,;, j =1,2,...and leta sequence of numbéisbh,, . . . satisfy the conditions

bl<b2<...,jlirgobj:+oo. (8)
If
S uyh? < oo, ©)
1
then with probability one
(1/bn)i@—>0 as n — 0. (10)
1
Proof of Lemma 1See, e.g., Shiryaev (1996), Chapter 4, Theorem 2. O

On setting; = a;0;*(Y; — a;0) one hask((;) = 0, E((?) = v; = alo; .
Forb, = > | v; one had;_; < b; and

n

D b = (b= bi—a) /b3 <Y (b — bj—1)/(bibj1)

2

- En:(1/bj_1 —1/bj) =1/by — 1/b, < 1/by



A.M. Kagan 73

so that (9) holds.
By virtue of Lemma 1, with probability one

R n_ .—2 Y _ 0 n
955 —0= 2 agjn a(-UJ_Q a;9) = (1/b,) ZCJ — 0, n — oo. (11)
1 450, 1

The relation (11) implies that under condition (7) any two measugeg, in IR gen-
erated by the random variables (3) with= 6, andf = 0,, respectivelyp, # 60, are
mutually singular. The above measuyes and ix., correspond t@ = 0 andf = 1.
Hence, the following result holds.

Theorem 1.1 Let X, X, ... be a sequence of independent random variables with finite
positive variances?, o2, ... and letay, as, . . . be a sequence of numbers. If

o0

2 _—2
E ajo; " = +00,
1

the sequenc&;, X5, ... is distinguishable fronX; + a;, X5 + as, .. ., i.e., there is a set
A C R such thatP{(X;, Xs,...) € A} = 1 while
P{(X1+a1,X2+a2,...) € A} = 0.

Note that the construction of a discriminating setequires the knowledge of the vari-
anceso?, o3, ... (but not of the distributions oK, X,,...) and ofay, as,.... The dis-
crimination can be based on the taiblgebrac = (), o™ wheres™ = o(Y,,, V,,41, .. .)
is thec-algebra generated By, Y,, .1, . . ..

Assume now thak; has a density; such the Fisher information i¥;

L= [ ) s
is finite, j = 1,2, .... The Fisher information ofl contained inY; = X, + a;0 equals

_ 27,
[y] —aj[j

and due to additivity of the Fisher information, the informationddn Y = (Y;,Y5,...)
is

Iy =) dl;. (12)
1

?, the last

For independent identically distribute¥; one hasl; = I andly = > "a
relation explaining one of Shepp’s results:

if < oo, thenIY:oo<:>Za§:oo.
1
The condition (7) also has informational meaning. Remind thgtig a random variable
whose mean and variance are functions of a (scalar) pararfieter

Ey(Y) =m(0),vare(Y) = v(0),
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the linear score ity is defined as/,(Y;0) = m/(0)(Y — m(0))/v(d) and the linear

information as
Diny (0) = Eo{(J(Y;0)*} = {m(0)}*/v(0).
If Iy (0) < oo ('so that the Fisher scorgY’; #) is well defined), the linear score equals

Jin(Y50) = Eo{J(Y;0)|Y}

where the mathematical expectation in the wide sefissimply means the minimum
variance linear approximation t&(Y’; 6).

The linear information in (3) |§°° 20 ‘2 and the condition (7) simply means that
Ihmy(@) Q.

A basic statistical principle supported by the C&arRao inequality is that the in-
equality Iy (f) < oo is an obstruction to consistent estimatiorddfom the datay. We
shall show that due to the special character of the parameter in the setup (3), the finiteness
of Iy is also an obstruction to testing, : # = 0 versusH; : # = 1 with zero probabil-
ities of type 1 and type 2 errors. The idea of the proof is known; see, Shepp (1965) and
Ibragimov and Hasminskii (1981).

Let f; be the density oX; and, the Fisher information. Write

Vi —yia—al=1 [ (Yrea—w) al

then square both sides and integrate the result.aver

/|\/fj \/fjx—a|dx—// ( f]x—u) dul*dz < (a*/4)I;, (13)

since

2

[(Yoa=a)) ar=pn

If H; is the Hellinger distance between the distributions{efand.X; + a;,

H; = /\/f] 2)f;(z — a;)de = 1 — (1/2) /(\/fj \/fj(x—aj))de,

then due to (13),

Hj Z 1 —CLJQIJ/S

The Hellinger distancdd (ux, i1x+a) between product measures is the product of the
Hellinger distances between the factors. Hence,

H(px, pixea) = [ [ Hy = [J(1 = a31;/8) > 0
1 1

due to) * a?Ij < oo and the measurgsg andux ., are not mutually singular.

Thus, if all I; < oo, the condition} 7® a31; = oc is necessary for mutual singularity of
pux andpx.y,. In case of independent identically distribut&d, X, ..., I, = I and the
condition becomes Shepp’s a? = oo So that in this case it is necessary and sufficient
for mutual singularity ofux andjx .
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2 Carlen’s Superadditivity

Turn now to the phenomenon observed by Carlen (1991). Let
X — (Xl,Xz) (14)

be ans = (p + r)-variate random vector. Assume thak s, p x p andr x r matrices
Ix, I, I, of Fisher information abouwt, 6; andd,, 0 = (6, 62) contained in observations
of X +6, X;+6, and X, +6,, respectively, are well defined. They are symmetric positive
semi-definite matrices that do not depend on (location) parameters.

Let
Iy = ]X,ll IX,12
]X,21 [X,22
be the partition ofly corresponding to (14). Using logarithmic Sobolev inequalities,
Carlen proved the following property he called superadditivity of the Fisher information:

trace Ix > trace I; + trace I5. (15)

He says in passing that usefulness of the (15) in statistics is unlikely.

However, it turns out that (15) has a simple and nice statistical interpretation that,
besides being of interest in its own, leads to a few lines proof.

Consider two setups. In the first, the statistician observes the random V&gter
01, X,) with 0, as a parameter. In the second, the statistician observesXanly 6;.
Simple calculations show that the matrix of Fisher informatiordpim (X; + 6;, X5)
equals/x ;; and due to monotonicity of the information matrik ;; > I; with respect
to the standard partial ordering of square matricés>( B if the matrix A — B is positive
semi-definite.) Hence,

trace Iy 11 > trace . (16)

Similarly, comparing the matrices of Fisher informationfgrcontained in X, Xs + 63)
and X, + ., one gets
trace Ix 99 > trace Io. 17)

Since
trace Ix = trace Ix 11 + trace Ix 29,

the inequalities (16) and (17) prove Carlen’s superadditivity.
Referring for the detail to Kagan and Landsman (1997), let us consider here a special
case of Carlen’s superadditivity.

Let
Vii Via
V=
(‘/21 Vag
be a symmetric positive definitex s matrix partitioned as shown with x p andr x r
matricesVi; and Voo, p +r = s. If Xy, Xy, X = (X3, X,) are Gaussiap-,r- and

s-variate Gaussian random vectors with zero means and covariance métficgs, V,
thenlx = V' I, = V;;', I, = V,,'. Carlen’s superadditivity implies

trace(V ') > trace(V,') + trace(Viy').
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3 Superadditivity of the Efficient Information Matrix

In this section another form of superadditivity is discussed.
Let X be a random element of arbitrary nature whose distribution depends en an
dimensional parametdérpartitioned intop- andr-dimensional parameters

0 = (91, 92)~ (18)
We assume that the (row) vector score
J(X, 9) == J == (Jl, JQ),

partitioned according to (18) is well defined and that all the components are square inte-
grable so that the matrix of Fisher information®m X ,

Ix11(0) Ix12(0)
Ix(0) = <[x,21(9> IXQ?(G)’)

partitioned according to (18) is also well defined. We assuix(€) positive definite.
The efficient score fof; is defined as

JO(X;0) = Jy — Eg( 1)) = Ty — Dol Jy

(we skipped the arguments andé on the right hand side). As usudl, stands for the
minimum variance approximation of the components'oby linear combinations of the
components of/; (see, e.g., Bickel et al., 1998, Chapter 2).

The efficient information matrix o#, is, by definition,

19(0) = By ({00 (DX 0)}) = I = Lol T,

The symbolT stands for transposition; note théi)(e) is ap x p matrix depending on
ans-dimensional parameter. We refer to Bickel et al. (1998), Chapter 2 for the role of the
efficient score in estimation (see also Section 1 of Kagan and Rao, 2003). In Klebanov and
Melamed (1976) and Klebanov and Melamed (1978), the concept of efficient score was
introduced and studied under the name “informant in presence of a nuisance parameter”.
Similar to the Fisher information matrix, the efficient information matrix is monotone:
if S = S(X) is a statistic, then (under standard regularity conditiorﬁﬁ? (0) < f)((l)(e).
However, unlike the Fisher information matrix, the efficient information matrix is not
additive but superadditivef X, Y are independent random elements, then

I (0) > 19(0) + 1) (0). (19)

If X,Y are independent and identically distributed, the equality sign holds in (19).

In Milne (1925) (see also Hardy et al., 1952, Problem 67), the following inequality
was proved. For any positive numbers, . . . , w, such that
wy +...+w, =1landanyp; with [p;| <1, j=1,...,n

> . (20)
(Zl—pj) (ZI:HPJ-) —1—pj

1
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(Milne needed (20) for a problem in astrophysics).

It turns out that (20) is a straightforward corollary of monotonicity of the efficient
information in the setup of independent bivariate normal vectors= (X7, X7), j =
1,...,n with Ey(X,) = 6 = (0,,6,) as a parameter and known covariance matrix

var(X;) = v;’ (;jp{) .

The efficient information o, in X = (X3,..., X,)is

n n 2 n -1
]g(l) — E 1 _Jp2 - ( PiY;j ) (E : J ) (21)
1

2 2
- 1 —p; - 1 —p;

and since the distribution of the vect®' = (X7,..., X)) of the first components de-
pends only or#,,

n

1

SinceX’' = X'(X) is a statistic, monotonicity of the efficient information together with
(21) and (22) results in

n n 2 n -1 n
Vs Piv; Vi
2 -7 (Z;li—;?> (Z 1—jP?) - levj

1

which, on settingv; = v;/ >"7 v;, becomes Milne’s inequality (20).

See Kagan and Rao (2003) and Rao (2000) for the detail and other applications of the
efficient information.

Of general statistical interest is the fact that in the standard linear regression setup,
the efficient score partitions the system of normal equations into two subsystems of lower
total computational complexity. Namely, consider the standard linear regression

Y = A0+ X (23)

whereY is ann x 1 observable vectod is a knownn x design matrix of full rank < n,
0 is ans-dimensional (column) vector parameter partitioned ipt@nd s-dimensional
subvectorsf™ = (67, 65) and X is ann x 1 vector of independent identically distributed
errors with zero mean and finite varianeé.

The least squares estimatoréof

oL = (ATA)'ATY (24)

is the best linear unbiased estimato¥aind is obtained as the solution of the system of
normal equations
AT(Y — Af) = 0. (25)

The linear (column) vector score féi(see Section 1) iy is

J]in(Y; (9) = (1/02)AT<Y — AQ)
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Let us partition4 and.J;}, as

A= (Al Ay), TV = (], 1),

whereA; is ann x p matrix, A, is ann x r matrix, J; is ap x 1 vector, etc.
(For notational convenience, we shall skip the subindiceandY’). The linear infor-

mation matrix ord in Y is
I I
I _ 1 2 11 1412
(1/07) (-721 Iy

[11 == A?Ah 122 == AgAQ, A12 = ]';[‘1 == A’1TA2

where

The efficient linear score fat;,
JW = Jy = Eg(h| ) = (1/0®)(AT = oI5 A3)(Y — AT6r)

does not depend df.
Similarly, the efficient linear score f@k,

J@ = Jy — Ep(Jo| 1) = (1/0%) (A — InI AT (Y — A7 6,)
does not depend ofy. The solutiord; of the system o linear equations
Jing =0 (26)
andé, of the system of equations
Jina = 0 (27)

are easily seen to be a partition of the least squares estimatoé{fé4=):, (él, ég). Com-
puting LS from (24) requires inverting one x s matrix while computing it from (26)
and (27) requires inverting four matrices, two of orgex p and two of orden- x r.
The computational complexity of inverting am x m matrix (for largem) is Cm?* for
some constants§', §, 0 < 6 < 1. Thus, ifp = r = s/2, the computational complexity of
obtaining the least squares estimator directly from (24) iSmes higher than from the
systems (26), (27) generated by the efficient scores.

This phenomenon is well known to computer scientists, at least (see, e.g., Aho et al.,
1974, Chapter 6). For a statistician it is encouraging to know that a modification of the
classical Fisher score turns a useful computational tool.

4 The Pitman Estimator and Stam Inequality
Let X, Y, Z be random variables with distribution functiohg(x — 6), Fy(z — 0), F(z —

0), F(x) = (F1 = Fy)(z), respectively, depending on a parameéter RR. If the Fisher
information/; on#in X and/; onfin Y are finite (in this case a fortiori the distributions
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of X andY are given by densities), the informatidron ¢ is also finite. Back in 1959
Stam proved the following classical by appearance inequality:

1/1>1/1, +1/I, (28)

which is much stronger than trividl < min(/;, I5), see Stam (1959) or the monograph
Blahut (1987), Chapter 7.

The Stam inequality has a counterpart in terms of the Pitman estimators. The only
assumption is

/xQdFl < 00, /xQng < 00. (29)
The finiteness of the Fisher information is not assumed.

Let Xy,...,X,,; Y1,....Y,; Z1,...,Z, be samples of size > 2 from populations
Fi(x—0), Fr3(x—0), F(x—0), respectively. The Pitman estimatoréofi.e., the minimum
variance equivariant estimator) froky, ..., X,, is

t=X-EBEX|X:—-X,....,X,,— X) (30)

where the conditional expectation here and in what follows is taken whe. Denote
byt andt,, the Pitman estimators éffromY;,...,Y, andZ,, ..., Z,.

The variance of the Pitman estimator is constant (i.e., does not depéndothat in
calculating the variance one may assuime 0.

From (30),
var(th) = var(X) — E (B(X|X; - X,..., X, — X))?, (31)

var(t!) = var(Y) — E(E(Y|Y1 = Y, ..., Y, —= Y))?, (32)

var(t,) = var(Z) — E (B(Z|Zy — Z, ..., Zn — Z))*. (33)

SinceF = F I, the vector(Z, Z, — Z,..., Z, — Z) is equidistributed with X +
Y Xi—X+Y1-Y,... X, - X+Y,-Y) whereX;, ..., Y, are assumed independent.

In view of this, theo-algebrao(Z, — Z, ..., Z, — Z) = o generated by th&-residuals
can be considered a subalgebra of a lasgafgebras (X, — X, ..., Y, —Y) = 7 so that

E(Z|o) = E{E(Z|5)|}

and thus,
E{E(Z|0)}* < E{E(Z|5)}*.

To proceed further one needs a lemma.

Lemma 4.1 Let { be a random variable withE(|¢]) < oo andn, ¢ arbitrary random
elements. If the paif¢, ) is independent of, then

E(&[n, ¢) = E(¢|n).
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Proof. See Meyer (1966), Theorem 51 of which Lemma 2 is a special case. O

On applying Lemma 2 first witl§ = X n=X-X,....X, - X), (= (Y] -
Y,...,Y, —Y) and second witlf = n=(Y,-Y,. Y -Y), ¢ = (X; -
X,..., X, — X)onegets
E{E(Z|Z\ - Z,. .., 2)y* <

E{E(X|X1 Xo = X)+E(Y |V, - Y V)P =
E{E(X|X, — X, — X)) +E{E(Y]Y1 Y, —Y)2 (34)
Combining (31)-(34) results in
var(t,) > var(t,) + var(t)). (35)

The inequality (35) can be called a small sample version of the Stam inequality. Its proof
is completely different from the original proof of the Stam inequality.

Under regularity type conditions oh;, F, (that include the finiteness of the Fisher
information)

1
—(1 1 36
—(1+0(1))  (36)
asn — oo (see Ibragimov and Hasminskii, 1981, Example to Theorem 3.1). Hence, (35)
is stronger than (28) modulo these conditions plus (29).
In Kagan (2002), one can find inequalities similar to (35) for polynomial Pitman esti-
mators and a version of (28).

L —(1+0(1)), var(t,) =

! —(1+40(1)), var(ty) = e

t/
var(t,,) = e

5 Convexity of the Fisher Information Matrix

For the sake of the material of this section it is convenient to use the concept of a statis-
tical experiment;,; = 1,...,n consisting in an observation of a random elem&nt

taking values in a measurable spdéé .A) and having distributio@a(j) depending on a
parametef € O, © being an open set ilk*. We shall call an experime#t,;, a mixture

of &, ..., &, with weightsw;, > 0,...,w, >0, w; + ... +w, = 1, if &5 consists in

observing a random elemeAit taking values i X', .A) and having distribution

Pp=w PV +.. .+ P (37)
and shall write in this case
gmix = w151 + ...+ wné'n

Let us assume the experimenggular (see Ibragimov and Hasminskii, 1981, Chapter 1),
so that the matrices;(¢) of Fisher information or# in X (or, equivalently, inf;) and
Iix(0) in X (orin &) are positive definite x s matrices.

Lemma 5.1 The matrix of Fisher information is convex with respect to the mixtures,
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Proof. The proof of (38) that follows is purely statistical based on monotonicity of the
information matrix.

Consider the experimeét= £(wy, ..., w,) consisting in an observation of a random
pair (A, X)) where the distribution

PA=i)=w;,i=1,...,n

of the discrete componert does not involveé) and the general component has the con-
ditional distribution '
Py(X e AJA =i) = P(A), Ac A.

The joint distribution of(A, X)) is
P(A=i, X €A =wPA),i=1,....n; Ac A
whence the matrix of Fisher information érin the pair(A, X) (orin &) is
Inx(0) = wi[1(0) + ... + w,,(0).

Since the marginal distribution of is (37),&ix IS @ subexperiment & and monotonic-
ity of the Fisher information matrix leads to (38). ad

For Gaussian experiments, whah ~ N(0,V;) the information matrice$; = V'
andI,;, do not depend ofi and (38) becomes

Lix SwiVi 4+ 4w,V

Using the fact that the Gaussian distribution minimizes the matrix of Fisher information
on a location parameter (see, e.g. Kagan, 2001), the last inequality can be amended in the
following:

(Vi o w0, V) T < D S w0V L w, VL (39)

Without the middle term, (39) is a multivariate version of the classical inequality between
the arithmetic and harmonic means. In the univariate case, one may put in the middle the
geometric mean. In the multivariate ca$g, . .., V, do not commute in general and (to

the best of author’s knowledge) there is no analog of the geometric mean. Maybe, in some
sense the matrix of Fisher information on a location parameter contained in the mixture
of Gaussian experiments is a candidate for the role of the geometric mean?
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