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Abstract: In this paper we provide some simple expressions for the exact
law of sums of logarithms of uniform spacings. We also obtain closed form
expressions for the corresponding cumulants of arbitrary order, in terms of
the Riemann zeta function. Our results follow from two representations of
this statistic through sums of independent random variables, the latter being
of independent interest. We conclude by showing that the distribution of sums
of logarithms of uniform spacings are very closely approximated by a Gamma
distribution even for very small values of the sample size. This renders easy
the use of this statistic for goodness-of-fit tests of the uniformity assumption.
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1 Introduction and Main Result

Let X = Xi, Xy,... beiid.r.v’s with densityf(z), continuous and positive o, 1],
and null elsewhere. Denote for> 2by 0 < X;,,1 < ... < X,,_1,-1 < 1 the order
statistics ofXy, ..., X,_;. SettingX,,_, = 0andX, ,_, = 1forn > 1, denote by

Dip=Xin1—Xi1nr for i=1,...,n, (1)
the spacings of order > 1. Darling (1953) introduced the statistic
T =Y { ~log(nDin)} = ~log (" ] i), 2)
i=1 i=1

for testing the uniformity assumptiai.0): {f(z) = 1 : = € [0, 1]}, against the alter-
native. Blumenthal (1968), established the weak asymptotic behaviby by showing
that, asm — oo,

n’lﬂ{Tn — iy — nE log f(X)} LA N(o, ¢(2) — 1+ Var(log f(X))). 3)

Here, we denote respectively by (see, e.g., 3:3:1-3:3:5, pp. 26-27 and 3:7:1, p. 28 in
Spanier and Oldham, 1987)

Loertd N1
C(T):F(T)/o ef—lzjz:;? for r>1, (4)
>0 1
v = | oo =tim o) - —} (5)
n—1

1
— lim { Y- —1ogn} — 0577215664 .. .,
Jj=1
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Riemann’s zeta function and Euler’s constant (see, e.g., 9.73, p. 1080 in Gradshteyn and
Ryzhik, 1982). Form > 1,

7T2 7T4 22m717r2m|32m|
2)= — 3) ~ 1.202 056 903 4) = —, ... 2 = 6
(@) =" ) ) = G C2m) = TSP (6)
with By = ¢, By = —55, Bs = 3, ... denoting the Bernoulli numbers conveniently
defined through the formal expansiga; = >~ %Bn.

The problem of testing uniformity via statistics based upon spacings together with
the investigation of related limit laws has been discussed by a number of authors, includ-
ing Aly (1990), Aly et al. (1984), Blumenthal (1966a), Blumenthal (1966b), Borovikov
(1988), Cox (1955), Deheuvels (1983), del Pino (1975), Ekstrom (1991), Hall (1982),
Hall (1984), Koziol (1980), Le Cam (1958), L'Ecuyer (1997¢\y (1939), Naus (1966),

Pyke (1965), Pyke (1972), Rao (1976), Sethuraman and Rao (1969), Siegel (1978), Siegel
(1979), Slud (1978) and Weiss (1956), Weiss (1957), among others. Beirlant ar@tiiorv
(1984), Beirlant et al. (1991a), Beirlant et al. (1991b), Beirlant et al. (1994), Beirlant et al.
(1982), Einmahl and van Zuijlen (1988), and Shorack (1972), provided an empirical pro-
cess approach to the derivation of limiting laws a$dhn Cressie (1976), Cressie (1978)
discussed the power of tests based on sums of functions of spacings, Holst (1979, 1981),
devised a general methodology to establish the asymptotic normality of such statistics.
Further related papers are those of Czekala (1993), Guttorp and Lockhart (1989), Ran-
neby (1984), Shao and Hahn (1995), Shao an@dam (1998), and Swartz (1992).

For0 < a < 1, denote byy, the uppera quantile of the normalv(0,1) law. A
simple consequence ¢8), in combination with the observation thit log f(X) > 0,
with equality iff f(x) = 1 for all = € [0, 1], shows that the test rejectirig/.0) when

Tn > ny + n1/2Va{%2 - 1}1/27 (7)

is asymptotically consistent f@¢#.0) with size tending tax asn — oco. A finite sample
application of this test is rendered difficult by the fact that the exact distributidh, of
under(H.0) has remained unknown until present. Our main purpose is to give an answer
to this question through the following theorem. We denotd'ty) = [~ ¢"'e~"dt and
B(r,s) =T'(r)I'(s)/T'(r + s) for r, s > 0, the Euler Gamma and Beta functions.

Theorem 1.1 Under(H.0), for eachn > 1, it holds that

]E(exp(sTn)> =I(1—- s)”{%} for s<1. (8)

The proof of Theorem 1.1 is postponed until Section 2, where this result will be shown

to follow from a representation d@f, as a sum of. — 1 independent random variables.
Some useful consequences of Theorem 1.1 are given in Corollaries 1.1 and 1.2 below.

Corollary 1.1 Under(H.0), forn > 1, the cumulants:, ., . .. of T,, are given by

n—1

K1 :]E(Tn):n{Z%—logn}, 9)

j=1

K = n(k — 1)!{C(k:) k-l (c(k) - k)} for k> 2. (10)
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and fulfill
log]E<exp(sTn)> = %sk for |s| <1, (11)
k=1
Moreover, as1 — oo,
1
KL —ny — —3, (12)
1 (k —1)!
_ — 1) - _ >
p— 1).{C(k) — 1} - —ES for k2, (13)
andkq, ko, . . . fulfill the inequalities, fom > 1,
1
—1§—n+ < Kk —ny <0, (14)
1
—(k—1>!<ﬁk—n(/@—1)!{<(/@>—m} <0 for k>2. (15)

Proof. By (1), D, = 1 and7; = 0 hask-th cumulants;,, = 0 for anyk > 1. This
is in agreement wit9)—(10) and(14)—(15) via the conventio@?zl(-) = 0. Forn > 2,
we recall from Abramowitz and Stegun (1970), witiz) = - logI'(z) denoting the
digamma function, that

logT'(1 — s) +i§(7k for |s] <1, (16)
k=2
log'(n(1 — s)) —log'(n) = i(—n’cwnksh (17)

k=1

this last expansion holding in a neighborhoodscf 0. By 6.4.3, p. 260 of Abramowitz
and Stegun (1970),

p(n) =0 (n -——v%—E:— (18)

H

n—

V() = (1) k= DI = (k) +

J

1

ik
17

} for k> 2. (19)

By replacingy*~Y(n) in (17) by its values given irf18) and(19), we obtain that

k .k

logT'(n(1 —s)) —logT'(n) = {fy — ”Zj %}sn + io: {C(k) - "Zj jlk }% (20)

In view of (8), we obtain readily(9) and(10) by combining(16) with (20).

To establish(14), we setu; = 0 andu,, = Z;Zl % —logm form > 2. Forallm > 1,

1 1
0<um+1—um:——log(1—|——>< (21)
m m

2m2’
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whence, by combinings) with (9) and(21),
- n = 1
0 <ny— k= n(y—uy) :nZ(uerl_um) < 52—

<n{1+/ dt} n{1+1}
2 n2 ) 2 T 2lnz T

which is(14). We observe likewise that, far > 2,

I 1 1 “dt 1 1
0 <¢k) ~ -—kZZ-—k<m+/n ® = T S e

whence, by(10),

(k= 1)1 < my —nk— D (k) - ﬁ}

which is(15). Finally, we conclude fronf14) and(15) that

Z‘k_ Z‘T w3 { __}| F<oo for |s| <1,
k=1 k=1

k=1
which shows that the series {ihl) converges fofs| < 1. 0
Remark 1.1 Recall the definitior{r), = r(r +1)...(r + k — 1) of the Pochhammer
symbol. Sharp asymptotic evaluations of the cumulants,, . . . of 7,, may be obtained

by combining9)—(10) with the expansion (see, e.g., 3:3:6, p. 27 in Spanier and Oldham,
1987),

n—1

_ 1 1 1 r r(r+1)(r+2)
r—1 _ _ - -
" {C(r> r—1 ; jr} 2n * 12n? * 6n? (22)
(1)p—12%(2% — 1) By
+...+(1+0(1)) ST asn — oo.

In (22) we set, in agreement witly), ((r) — 1/(r — 1) = vy forr = 1.

Remark 1.2 Since((r) — 1/(r — 1) increases fromy = 0.577... to 1, asr increases
from1 to oo, (15) implies that the:-th cumulantx,, of 7, fulfills, forn > 1 andk > 2,

Ogmk<n(/c—1)!{C(/c)—ﬁ} < n(k—1)! (23)

Corollary 1.2 below gives a refinement @) when(#.0) holds.
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Corollary 1.2 Under(H.0), asn — oo,

n VT, =}t S N0, % - 1), (24)

Moreover, for eactk > 1, the k-th moment oh—l/Q{Tn — ny} converges as — oo to
the -th moment of thev (0, = — 1) law.

Proof. Let 3, x3, . . . denote the cumulants ef */2{T,, — nvy}. By (9), (15) and(23),
forn > 1,

V2 <=0k — ) <0,
—1

—n —{€(2) = 1} =n"{r = n{C(2) - 1}} <O,

K| = n "2k < 2k — 1)1 for k> 3.

<
<

Thus, for any fixed > 0, we have, ultimately im — oo, uniformly over|s| < ¢,

‘ logIE(eXp (sn™V2{T, —nv}) — £*{¢(2) — 1} (25)
< n-12g + 71/25 + nz 71/25 O(n 71/2) 0,
which readily implieg24) and completes the proof of the corollary. O

The remainder of our paper is organized as follows. In Section 2, we derive a useful
representation df;,, as a sum of independent random variables, which is of interest in and
of itself. This representation, stated in Theorem 2.1 below, provides a key argument for
the proof of Theorem 1.1, which is given at the end of the section. In Section 3 we give
an alternate representationtf, stated in Theorem 3.1, by showing that= Q,, — R,,,
where@,, is a partial sum of i.i.d.r.v'sR, = Op(1), and with R, and 7,, mutually
independent. The limiting behavior &%, is described in Theorem 3.2 of the same section.
By combining Theorems 3.1 and 3.2, we get an alternate proof of Theorem 1.1, as well as
a simple direct proof of Blumenthal’s limit la3) under(4.0). In Section 4, we apply
the moment calculations of Section 1 to show that an approximati@) bfy a Gamma
distribution with suitably chosen parameters is extremely sharp even for valueasof
small asn = 3. A theoretical justification for this fact is given in Theorem 4.1.

2 First Representation of7),

In Theorem 2.1 below, we show th&t has a simple expression as a sumof 1 inde-
pendent random variables. This representation is then used to prove Theorem 1.1.

We start by some notation and facts. Un@g&r0), it is convenient to denote by, =
X1,U; = Xo, ... id.d. uniform (0, 1) random variables. Séf, y = 0 andUy;1 v = 1
for N > 0,and let0 < Uy n < ... < Uyny < 1forn > 1 be the order statistics of
Ui,...,Uy for N > 1. Theuniform spacing®f order N > 1 are then defined by

Din=&Nna1=Un1—U_1ny1 for 1<i<N. (26)
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For eachn > 1, introduce the random variables

Uin - Uifln gzn Din+1 .
Y., = — —= = for 1<i<n. 27
’ Unm Upn  Unn =t=n 7)

The following distributional identities hold for eaech> 1 (see, e.g., Fact 2 and Remark
3.1in§3), with D, ,, being as in26) (or equivalently, as if1) under(H.0)).

(Yip:1<i<n}L{D;,:1<i<n}. (28)

As follows from(26), (27) and(28), we have the distributional identity

n d n
1, = Z{ —log(nYin)} =T, = Z{ — log(nDix)}- (29)
i=1 i=1
which allows to use equivalently;, andT,, in the statement of our theorems. For conve-
nience, in the present section, we will work with rather than withl;,. Set, forn > 1,

Uﬂ,n
UZ—i—l,n

vgm:{ }g for 1<¢<n+l. (30)

We first recall (see, e.g., Sukhatme, 1937; Malmquist, 1950; David, 1981, pp. 20-21):

Fact 1 For eachn > 1, the random variable§V;,, : 1 < ¢ < n} are independent and
uniformly distributed or{0, 1).

The main result of this section may now be stated in Theorem 2.1 below.

Theorem 2.1 For eachn > 1, the random variabl€,, may be decomposed into the sum
of n — 1 independent random variables as follows.

T, = { — log (nVe,n{l - V;ﬁ) } 31)
Proof. Forn =1, 7,, = 0 and(31) holds viaz(j:l(-) = 0. Forn > 2, we write
Uin = H Vgr/f for i=1,...,n and U,, = Vi/n

n,n I
l=i

whence, by(28)

n—1
Yin = { Vjﬁ}{l — Vz-l_/l(f,:l)} for 2<i<n-—1,
=i
n—1
Yin = { Vﬁne} and Y, = {1 - v,j[ﬁf;”},
(=1

We then observe that
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n—1

ViYon={ V”‘}{rﬂ‘/}ﬁ}{ VL) = Viall - vln}{HVE,{e},

(=1

ViYauYon = Vil = Vi Vau{1 - ViI2H I v,
(=3
and, via a straightforward induction,

n n—1
[Tvin =] Venit — Vi1
=1 =1

After taking logarithms and recallin@9), we conclude readily31). O

Remark 2.1 In view of(31), we may give a direct proof ¢f) by showing that

n—1

IE(T,) = IE(7,) = n{ Z% - logn}.

J=1

For this, we observe b§31) thatIE(7,,) = —nlogn + 3~/ I,, where, for¢ > 1,

1 1
I, = —]E(log Vin + log(l — V%[)) = —/O (log z)dz —/0 log(1 — 29 dz

_ 1_5/01(1 Py 1<1ogt>dt_1—ez (6_1>< 1)k/01tk(logt)dt
J4

:1_Z<i>#:1+/0 {#}dz:ufol{ll__f}dz

m=1

' -1 1 1
14 {1+z+...+z }dz:1+{1+§+...—|—z}.
0

Here, we have used Fact 1, together with the change of variablel — z'/¢, and the
identityfo1 th(logt)dt = —1/(k + 1)? for k = 0,1,.... This, in turn, shows that

E(T)+nlogn—Zlg—n—l—i—Z{l—I—;—i— —1—2}
=1

(=1

{1 1 _1 }
=nql+-—4+...+
2 n—1J’

which is in agreement wit(p).

The next lemma is oriented towards proving Theorem 1.1.

Lemma 2.1 For each? = 1, ..., n, we have the identity
E exp{ —slog (V{1 — V%é})} = €ﬁ<€(1 —s),1— s) (32)

)
=0 =@ - )

} for s<1. (33)
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Proof. For eachs < 1, we may write, via the change of variable= ¢/,

1
mnmp{—smgu@xl—w%@ﬁc=/’wp{—smgqu—f“D}u
0
1 1
= / 2751 — 2y = z/ A== (1 — ) 7dt = €ﬁ<€(1 —5),1— s),
0 0

which is (32), from where(33) is straightforward (see 43:13:12, p. 419 in Spanier and
Oldham, 1987). O

Proof of Theorem 1.1By combining(31) in Theorem 2.1 with33) in Lemma 2.1,
we see that, for each > 1 ands < 1,

n—1

E exp(s7,) = exp ( — snlogn) H IE exp { — slog (V{1 — ‘/Klr/zf})}
/=1
= L(t(1—s) 0 ™T(n)I(1—s)"
=" £VNL”HFW+DO—$ﬁ Tn(i—s)

which, in view of the distributional equality < T, in (29), yields(8). O

3 Second Representation df,

Recalling from(29) that 7, 4 T,,, below we will work withT,, rather than withz,,. We
recall the following fact (see, e.g., Pyke, 1965; Shorack and Wellner, 1986, Prop. 8.2.1).

Fact2 Letw = wi,ws,... be i.i.d. exponentially distributed random variables with
Plw >t) =e'fort > 0, and setS, = w; + ... + wy, for £ > 1. Then, for each
n > 1, we have the distributional identity
. d [ W .
{Di,nzlgzgn}:{s—:lgzgn}. (34)
Remark 3.1 The following distributional identity is a straightforward consequence of
Fact 2. For each specified > n > 1andl < j; <... < j, < N, we have

D, n
Dinzlgign}i{+:1§i§n}. 35
{ ’ > me1 Dj N (35)

m=1
In particular, (35) reduces tq28) whenN =n+ 1andj,, =mform=1,... n.
We will need a refinement of Fact 2 stated in the following lemma.
Lemma 3.1 Let S} denote a random variable, independent{df, , : 1 < i < n}, and

with aI'(n) distribution. Then, the random variables = D, S fori =1,...,n, are
mutually independent and exponentially distributed with unit mean.
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Proof. In view of the notation(27), set&;,, = U;,, — Uiy, fori = 1,...,n +
1. It is well-known (refer to David (1981), p. 99) thd€, ,,,...,&,,} is uniformly
distributed overA, := {(u1,...,u,) € R" : 377 ju; < Liu; > 0,i = 1,...,n}.
Let S}, be independent of¢, ,,, ..., &, }, and with al’(n + 1) distribution. The joint
density of(&1, ..., Enm, Siyy) isthenf(uy, ... u,, s) = s"te™* on 4,, x (0,00). By
a straightforward change of variables, it follows that the joint dengity, . .., z,.1) of
(ErnSnitr s EnmSits (L =220 Ein)Siia) = (E1aSrins -5 Envint1 Sy 41) 1S given
by g(z1,. .., 2n1) = exp(— S04 ;) for 2, > 0,..., 2,41 > 0. We so obtain the
version of the lemma obtained with the formal change ofton + 1. O

In the sequel, we may and do assume that the probability gpacé, IP) on which
sits{U,, : n > 1} is enlarged by products to carry a sequeficg : n > 1}, independent
of {U, : n > 1}, and composed of independent and (unit mean) exponentially distributed
random variables. Via Lemma 3.1, for each> 1, we setS: = > "  w*, and define a
new set of random variablgs,; ,, : 1 <1i < n} by setting

Win = Di’ns;; for i= ]_7 oo n. (36)

Since(26) implies that) """ | D, ,, = 1, we observe front36) that, for eacln > 1,
Spi=Y win=25Y Din=>5; (37)
=1 =1
This, in turn, shows that we may obtain a versiorif) by writing

{Di7n:1§i§n}i{wi7n/5n: 1 <i<n}, (38)

with S, = > | w; , independentf {D;,, : 1 <i < n}. Set now, for each > 1,

@ =3 {unn— 1~ logun, ), (39)
=1
Rn:n{%—l—log <%)} (40)

Given the above preliminaries, we may now state the main result of the present section.

Theorem 3.1 For eachn > 1, T,, and R,, are independent and such that

Moreover, the moment-generating functiong)afand i,, are given by

G*TLS

( _ S)n(l—s)}

1
E(exp(sR,)) = {F<n1£1(7; s)) }{ (171 Se)n(ls)} for s<1. (43)

E(exp(sQ,)) = I'(1 — s)n{ for s<1, (42)
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Proof. In view of (36)—(38) and Lemma 3.1, we obtaifd1) by combining(29) with
(39)—(40). Recalling that, forr > 0, [;* 2" 'e **dz = A7"T'(r), to establish(43), we
use the fact tha$,, follows al'(n) distribution to write that, for. > 1 ands < 1,

[E(exp(sR,)) = /000 exp (ns{% —1—log (Z> }) ZTE ; “*dz
_ n’;((;_)ns /OOO n(1=s)=1,-2(1=5) 1, _ {F< I(}(ﬂ‘) 3))}{( n Sen: . }

Settingn = 1 in this last expression, we see that, whenever exponentially distributed,

IE(exp(s{w -1- 10gw})> =I(1—- s){ﬁ} for s<1. (44)

SincelE exp(sQ,) = {IE exp(s{w — 1 — logw})}", we infer readily(43) from (44).0
Remark 3.2 It is easy to check thdtl 1) and(42)—(43) are in agreement, since
[E(exp(sQ,)) = E(exp(s7,))E(exp(sR,)). (45)

The next corollaries of Theorem 3.1 evaluate the cumulant®,odnd ),,. Their
proofs are very similar to that of Corollary 1.1, and are therefore omitted.

Corollary 3.1 For eachn > 1, the cumulants?, x4, ... of Q,, are given by

ki = E(Qn) = nv, (46)
ke = n(k — 1)!{C(k) - ﬁ} for k> 2. (47)

Corollary 3.2 For eachn > 1, the cumulants?, s, . .. of R,, are given by

n—1
K = E(R,) =nfy - % +logn}, (48)
j=1

n—1

wp = n(k— )t (k) ik) - —} for k>2. (49)

J=1

Moreover, for eactk > 1, we have, as — oo,

k—1)!
Ky, — ( ) (50)
2
In addition, x7, x5, . . . fulfill the inequalities, fom > 1,
1
0<n <l (51)
2n

0<kp<(k—=1)! for k>2. (52)
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We now show that, in the decompositioy) = 7,,+ R,, in (41), R,, = Op(1), whence
T,=Q,+0p(l) as n— oo. (53)
This, together with the explicit limiting behavior &, is captured in the next theorem.

Theorem 3.2 Asn — oo, we have the weak convergence

2R, = Qn{& —1—log (%)} A X3, (54)

n

and, for eacht > 1, thek-th moment o2 R,, converges, as — oo, to thek-th moment
of ax? random variable.

Proof. By the central limit theorem, as — oo, n=/2(S, — n) -5 N(0,1), so that
n1S, — 1 = Op(n~'/?), and hence

o () = 15 (1) e on (),
Therefore, as — oo,

2R, = Zn{% —1—1log (%)} = n(% — 1)2 + Op (n_1/2> 4, X3, (55)

n

which is(54). The cumulantsy, 5, ..., k¢ = 2*"1(k — 1)!,... of ax? random variable
are readily obtained from the expansion

o

_4 (1—2)—ZE—§:K for s<1 (56)
g BN T T2 o T 2T s

k=1 k=1

The proof of the theorem is completed ), which implies that thé-th cumulant® s,
of 2R, converges ta:} = 2871(k — 1)!, asn — oo. O

Remark 3.3 By combining(53) with an application of the central limit theorem @@,
one obtains an immediate proof of the weak convergébicender(H.0), namely

n VT, —nay = 0 Y2{Q — n} + Op(n/%) S N(0, = — 1),

4  Approximation of 7;, by a Gamma Distribution

In this section, we consider the problem of finding simple and sharp numerical approxi-
mations ofF,, (z) := IP(7,, < x) under(H.0), allowing to derive non-asymptotic versions

of the test procedurgr) for small values of the sample size The easiest case is when

n = 2, the exact distribution dof;, being then provided by the proposition below.

Proposition 4.1 We have

P(T, <z)=+v1—-2e for x>log2. (57)
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Proof. Recalling(31), letV = V;, denote a uniforn{0,1) r.v. An application of
Theorem 2.1 fon = 2 shows that

P(Ty < ) = ]P(log @QV(1-V)) > —a:) - ]P<V(1 V) > ge*m). (58)

Since, for0 < z <1, v(1—-v) >z & |v— 3| < 3V1-— 4z, weinfer readily(57)
from the uniformity ofV/, in combination with(58), taken withz = e~. O

From now on, in view of Proposition 4.1, we will concentrate on the study of the
df. F,(z) = IP(T,, < z)of T,, for n > 3. As will become obvious from Table 2 in
the sequel, the approximation éf,(x) by ®,(z) := ®((z — ET,)/+/Var(T,) ), (with
®(t) = (2r)"V/2 ['__e**/%ds denoting the normaN (0, 1) d.f.) is too rough for small
values ofn, and some other method is needed. As a main result of the present section,
we will show that (undef#.0) and after centering) the distribution 6§ is very closely
approximated by &'(r, A) distribution for appropriate choices of= r,, and A = )\,
specified below. In practice, this replacement turns out to generate a uniform error less
than2.7% for n > 3 and less tham.0% for n > 4. Moreover, for most applications of in-
terest, the approximation error can be neglected>f 5. Since the practical computation
of the distribution of a Gamma random variable is routine, this observation allows us to
implement easily, for arbitrary values of the uniformity test (rejecting4.0) whenT,
exceeds a critical level) described§i.

Recall that a random variablé follows aI'(r, \) distribution iff it has densityy(-)
and moment-generating functian-) given respectively by

/\r

g(z) = mz“le*’\z forz >0, and ¥(s)=IE(e*?) = (1—s/\)"fors < 1.

Settingu = E(Z) andM,, = IE((Z — p)*) for k = 1,2,. .., we denote by3{ = M2/M3
(resp.sy = M, /M?3) the skewness (resp. kurtosis) coefficienzofForr > 0 and\ > 0,

T T 4 6

=5 My=-p =" and B=3+ =3+ 4 (59)

; =
We choose: = r,, > 0, A = A\, > 0 andc, in such a way that the moments of order
2 and3 of Z = Z,, andT,, — ¢, coincide. In view of(6), (12)—(13) and(59), we obtain
therefore, withx,, ko, . .. denoting as i9)—(10) the cumulants of,, that

e = 2 - (60)
1

A, = 2 1 (61)
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(1 +o()fc@ -1}

= ~ 0918635 as n — oo,

o = E(Z,) = - = T2 = — (62)

¢B3)—3
22 ity |
e, =E(T,—Z,)=K ——2=n — —logn 63
( J=m = {;j gn (63)

n{o@ - n(c@ -5 5) )
(3) —n2(¢(3) - Xjl )
= (1+ o(l))n{v = %__1;2} ~ —(0.015243) x n as n — oo.

Below, we follow the notation59) by letting 55 = 3+6/r,, denote the kurtosis coefficient
of Z,. In the same spirit, we let, = 3 + (x4/x3) denote the kurtosis coefficient @f,,
with x, being as in(10) for & > 2. We will make use later on of the fact that

-1 e -3 }
{c@-1" {@-1)
= —(1+0(1))n1(0.219973574) as n — oc.

n

@—ﬁg:m——:mou))g{

The choices of,,, A\, andc¢,, = E(T,, — Z,,) provided by(60)—(61) and(63) ensure that
the first three moments af, and Z,, + ¢, coincide. The evaluation of the asymptotic
sharpness of this approximation is achieved in the next theorem. Recalling,that=
IP(T, < z), we setF¢(z) = IP(Z, < = — ¢,) and denote as above, respectively,dy
andgj the kurtosis coefficients df,, and Z,.

Theorem 4.1 We have, ag — oo,

1+0()

sup |Fo(z) = F(z)| = — 62 — ﬁé’!igﬁlﬂg(@!s@(z} (64)
Cdl+o(l) | (W5 {6(3) -, 5 /2] 0005046
T (@ -1 (€@ - 17 Len Vo n

Proof. SetZ] = (Z, — E(Z,))/\/Var(Z,) andT = (T,, — E(T,,))/+/Var(T,),
Fg”( ) = ]P(Z’“ < z)andF’(z) = IP(T < z). Set, as usuab(t) = (2r)~"/2e~*"/2 and
= [*__¢(t)dt for the normalN(O 1) density and d.f. Denote bif,(z) = 22 — 1,

H3( )==x —3:(: Hs(z) = 2°—1023+3z, ... (see p. 137 in Petrov, 1975) the Chebyshev-
Hermite polynomials of orde1’,3,5,... . Fixany0 < M < oco. SinceZ, follows a
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['(rn, An) distribution with skewness and kurtosis coefficiefits35 such that

o{c -1}

V=2 and #-3=3 —(1+4001) , (65)
1 Vn ; I n{C(Q) - 1}3
it follows from Ch. VI in Petrov (1975) that, as — oo, uniformly over|z| < M
g g
P () - 0() = o) { Y ) + 2 (e
+B 22; 3H3(z) + O(n*')/?)}. (66)

Likewise, making use of Theorem 2.1, which shows tHaimay be represented as a sum
of independent random variables, we may write that, uniformly seg M,

F(2) - () = o= { Y Hu(e) + D)
7 22; S Hy(2) + O(n—3/2)}, (67)
where (recall9)—(10) and(12)—(13)) 3, — 3 is given by
" 6{c(4) 1
ﬂ2_3:F:(1+0(1)) { }2. (68)
: e 1)
Recalling(6), it follows readily from(66)—(67) that, uniformly overz| < M,
£ () - () = - S o (69
e -H{ew -1} —3{4(3) -1}
4c) - 1}
- (1 +7;)(1)) @(2)Hg(2){0'219§Z3 574}‘

Finally, we observe that the supremum|ofz) H;(z)| overz € IR is reached for, =
V3 — /6 and equal®.550 587939 . .. . The conclusior{64) is now straightforward. O

To appreciate the relevance of the limiting bouiid) for small values ofn, it is
natural to estimaté,(z) = IP(7,, < z) by the empirical distribution functiod,, 5 (z),
obtained from a simulated sample of si¥eof T,, for some suitably large value d¥. It
is easy to evaluate numerically?(z), and we so estimatd,, = sup, |F,(z) — F4(z)|
by A, = sup, |Fn.n(z) — F4(x)|. The convergence ok, to A, is achieved with rate
O(N~1/2). Making use of the rough inequality

IP(sup |Fon(z) — Fo(z)] > 3/\/N) < 10%,
zeR
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we see that the (rather huge and beyond our present reach) sample-si2e0 000 000
would be required to achieve (with0% confidence) a precision @f.000 1 or less in

the estimation ofA,, by A,,. Below, we provide estimations obtained with the more
tractablelV = 2000 000. The figures in Table 1 are therefore given only with a guaranteed
precision oft+4, whered = 3/1/2 000 000 ~ 0.0021 (with 90% confidence).

Table 1:A,, = sup, | F, n(2) — F9(z)]

n A, +4 nAy, +nd

3 0.02463 +0.002 0.07389 +0.006
4 0.00734 £0.002 0.02936 £0.008
5

8

0.00360 £0.002 0.01800 +0.010
0.00122 £0.002 0.00976 £0.016
10 0.00102 +0.002 0.01020 +0.021
15 0.00064 £0.002 0.00960 £0.032
20 0.00042 £0.002 0.00840 £0.042

In spite of the lack of precision induced by our choicé\gfwe see that the estimations
in Table 1 come close to the order of the asymptotic raté4n, even for very small values
of n. In particular, Table 1 gives numerical evidence to support the conjecture that the
replacement of’, by F¢ should yield an error less thdf (resp.0.5%) for n > 4 (resp.
n > 8). We leave the question of checking the validity of this numerical conjecture for
future research. In particular, the lack of precisionfonobtained from our simulations,
performed withN = 2000000 only, does not allow us to observe properly from the
values in Table 1 the convergencerfsn to the constan®.005046 . . . (following from
(64)). This is in contrast with the behavior of /2A,, discussed later on in Remark 4.1,
where the simulated sample size /8f = 2 000 000 turns out to be sufficient, to give a
numerical confirmation of Proposition 4.2 below.

In Table 2 below, we give similar figures as in Table 1, withbeing replaced by the
normal approximan®,,(z) = ®((x — IET,)/+/Var(T,)).

Table 2:A,, = sup, | F, n(2) — @, (2)]

A, +0 n'/2A,, +n'/2§

n
3 0.15270 £0.002 0.26448 0.00346
4 0.10630 £0.002 0.21260 0.00400
5
8

0.09082 £0.002 0.20308 0.00447
0.06816 £0.002 0.19278 0.00565
10 0.06047 +0.002 0.19122 0.00632
15 0.04822 £0.002 0.18676 0.00775
20 0.04116 £0.002 0.18407 0.00894
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Making use of(67), it is not too difficult to prove the proposition

Proposition 4.2 We have, as — oo,

sup Fy(2) — @ (a)] = A2 Y g ) o2

zeR 6 \/E zeR
_ 1+0(1) ¢(3)—3  0.180255 (70)
IR RECEE VS BN

Proof. The supremunsup, .y |H2(2)|¢(2) = 1/v/2r is reached forz = 0. The
remainder of the proof, being very similar to the proof of Theorem 4.1 is omitted.0

Remark 4.1 The limiting constan0.180 255 ... in (70) is in agreement with the figures
obtained in Table 2. As follows from Proposition 4.2 and Tables 2, a normal fi}, a$
very poor with respect to the Gamma fit described in Theorem 4.1 and Table 1.
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