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Abstract: In this paper we provide some simple expressions for the exact
law of sums of logarithms of uniform spacings. We also obtain closed form
expressions for the corresponding cumulants of arbitrary order, in terms of
the Riemann zeta function. Our results follow from two representations of
this statistic through sums of independent random variables, the latter being
of independent interest. We conclude by showing that the distribution of sums
of logarithms of uniform spacings are very closely approximated by a Gamma
distribution even for very small values of the sample size. This renders easy
the use of this statistic for goodness-of-fit tests of the uniformity assumption.
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1 Introduction and Main Result

Let X = X1, X2, . . . be i.i.d.r.v.’s with densityf(x), continuous and positive on[0, 1],
and null elsewhere. Denote forn ≥ 2 by 0 < X1,n−1 < . . . < Xn−1,n−1 < 1 the order
statistics ofX1, . . . , Xn−1. SettingX0,n−1 = 0 andXn,n−1 = 1 for n ≥ 1, denote by

Di,n = Xi,n−1 −Xi−1,n−1 for i = 1, . . . , n, (1)

the spacings of ordern ≥ 1. Darling (1953) introduced the statistic

Tn =
n∑

i=1

{ − log(nDi,n)} = − log
(
nn

n∏
i=1

Di,n

)
, (2)

for testing the uniformity assumption(H.0): {f(x) = 1 : x ∈ [0, 1]}, against the alter-
native. Blumenthal (1968), established the weak asymptotic behavior ofTn by showing
that, asn →∞,

n−1/2
{

Tn − nγ − nIE log f(X)
}

d→ N
(
0, ζ(2)− 1 + Var( log f(X))

)
. (3)

Here, we denote respectively by (see, e.g., 3:3:1-3:3:5, pp. 26-27 and 3:7:1, p. 28 in
Spanier and Oldham, 1987)

ζ(r) =
1

Γ(r)

∫ ∞

0

tr−1dt

et − 1
=

∞∑
j=1

1

jr
for r > 1, (4)

γ =

∫ ∞

0

(− log t)e−tdt = lim
r↓1

{
ζ(r)− 1

r − 1

}
(5)

= lim
n→∞

{ n−1∑
j=1

1

j
− log n

}
= 0.577 215 664 . . . ,
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Riemann’s zeta function and Euler’s constant (see, e.g., 9.73, p. 1080 in Gradshteyn and
Ryzhik, 1982). Form ≥ 1,

ζ(2) =
π2

6
, ζ(3) ≈ 1.202 056 903, ζ(4) =

π4

90
, . . . , ζ(2m) =

22m−1π2m|B2m|
(2m)!

, (6)

with B2 = 1
6
, B4 = − 1

30
, B6 = 1

42
, . . . denoting the Bernoulli numbers conveniently

defined through the formal expansiont
et−1

=
∑∞

n=0
tn

n!
Bn.

The problem of testing uniformity via statistics based upon spacings together with
the investigation of related limit laws has been discussed by a number of authors, includ-
ing Aly (1990), Aly et al. (1984), Blumenthal (1966a), Blumenthal (1966b), Borovikov
(1988), Cox (1955), Deheuvels (1983), del Pino (1975), Ekstrom (1991), Hall (1982),
Hall (1984), Koziol (1980), Le Cam (1958), L’Ecuyer (1997), Lévy (1939), Naus (1966),
Pyke (1965), Pyke (1972), Rao (1976), Sethuraman and Rao (1969), Siegel (1978), Siegel
(1979), Slud (1978) and Weiss (1956), Weiss (1957), among others. Beirlant and Horváth
(1984), Beirlant et al. (1991a), Beirlant et al. (1991b), Beirlant et al. (1994), Beirlant et al.
(1982), Einmahl and van Zuijlen (1988), and Shorack (1972), provided an empirical pro-
cess approach to the derivation of limiting laws as in(3), Cressie (1976), Cressie (1978)
discussed the power of tests based on sums of functions of spacings, Holst (1979, 1981),
devised a general methodology to establish the asymptotic normality of such statistics.
Further related papers are those of Czekala (1993), Guttorp and Lockhart (1989), Ran-
neby (1984), Shao and Hahn (1995), Shao and Jiménez (1998), and Swartz (1992).

For 0 < α < 1, denote byνα the upperα quantile of the normalN(0, 1) law. A
simple consequence of(3), in combination with the observation thatIE log f(X) ≥ 0,
with equality iff f(x) = 1 for all x ∈ [0, 1], shows that the test rejecting(H.0) when

Tn ≥ nγ + n1/2να{π2

6
− 1}1/2, (7)

is asymptotically consistent for(H.0) with size tending toα asn → ∞. A finite sample
application of this test is rendered difficult by the fact that the exact distribution ofTn

under(H.0) has remained unknown until present. Our main purpose is to give an answer
to this question through the following theorem. We denote byΓ(r) =

∫∞
0

tr−1e−tdt and
β(r, s) = Γ(r)Γ(s)/Γ(r + s) for r, s > 0, the Euler Gamma and Beta functions.

Theorem 1.1 Under(H.0), for eachn ≥ 1, it holds that

IE
(

exp(sTn)
)

= Γ(1− s)n

{
n−nsΓ(n)

Γ(n(1− s))

}
for s < 1. (8)

The proof of Theorem 1.1 is postponed until Section 2, where this result will be shown
to follow from a representation ofTn as a sum ofn − 1 independent random variables.
Some useful consequences of Theorem 1.1 are given in Corollaries 1.1 and 1.2 below.

Corollary 1.1 Under(H.0), for n ≥ 1, the cumulantsκ1, κ2, . . . of Tn are given by

κ1 = IE(Tn) = n
{ n−1∑

j=1

1

j
− log n

}
, (9)

κk = n(k − 1)!
{

ζ(k)− nk−1
(
ζ(k)−

n−1∑
j=1

1

jk

)}
for k ≥ 2. (10)
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and fulfill

log IE
(

exp(sTn)
)

=
∞∑

k=1

κk

k!
sk for |s| < 1, (11)

Moreover, asn →∞,

κ1 − nγ → −1

2
, (12)

κk − n(k − 1)!
{

ζ(k)− 1

k − 1

}
→ −(k − 1)!

2
for k ≥ 2, (13)

andκ1, κ2, . . . fulfill the inequalities, forn ≥ 1,

−1 ≤ −n + 1

2n
< κ1 − nγ < 0, (14)

−(k − 1)! < κk − n(k − 1)!
{

ζ(k)− 1

k − 1

}
< 0 for k ≥ 2. (15)

Proof. By (1), D1,1 = 1 andT1 = 0 hask-th cumulantκk = 0 for anyk ≥ 1. This
is in agreement with(9)–(10) and(14)–(15) via the convention

∑0
i=1(·) = 0. Forn ≥ 2,

we recall from Abramowitz and Stegun (1970), withψ(z) = d
dz

log Γ(z) denoting the
digamma function, that

log Γ(1− s) = γs +
∞∑

k=2

ζ(k)

k
sk for |s| < 1, (16)

log Γ(n(1− s))− log Γ(n) =
∞∑

k=1

(−1)k ψ(k−1)(n)

k!
nksk, (17)

this last expansion holding in a neighborhood ofs = 0. By 6.4.3, p. 260 of Abramowitz
and Stegun (1970),

ψ(n) = ψ(0)(n) = −γ +
n−1∑
j=1

1

j
, (18)

ψ(k−1)(n) = (−1)k−1(k − 1)!
{
− ζ(k) +

n−1∑
j=1

1

jk

}
for k ≥ 2. (19)

By replacingψ(k−1)(n) in (17) by its values given in(18) and(19), we obtain that

log Γ(n(1− s))− log Γ(n) =
{

γ −
n−1∑
j=1

1

j

}
sn +

∞∑

k=2

{
ζ(k)−

n−1∑
j=1

1

jk

}nksk

k
. (20)

In view of (8), we obtain readily(9) and(10) by combining(16) with (20).

To establish(14), we setu1 = 0 andum =
∑m−1

j=1
1
j
− log m for m ≥ 2. For allm ≥ 1,

0 < um+1 − um =
1

m
− log

(
1 +

1

m

)
<

1

2m2
, (21)
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whence, by combining(5) with (9) and(21),

0 < nγ − κ1 = n(γ − un) = n

∞∑
m=n

(um+1 − um) <
n

2

∞∑
m=n

1

m2

<
n

2

{ 1

n2
+

∫ ∞

n

dt

t2

}
=

n

2

{ 1

n2
+

1

n

}
,

which is(14). We observe likewise that, fork ≥ 2,

0 < ζ(k)−
n−1∑
j=1

1

jk
=

∞∑

k=n

1

jk
<

1

nk
+

∫ ∞

n

dt

tk
=

1

nk
+

1

(k − 1)nk−1
,

whence, by(10),

−(k − 1)! < κk − n(k − 1)!
{

ζ(k)− 1

k − 1

}

= n(k − 1)!
{ 1

k − 1
− nk−1

(
ζ(k)−

n−1∑
j=1

1

jk

)}
< 0,

which is(15). Finally, we conclude from(14) and(15) that

∞∑

k=1

|κk|
k!
|s|k ≤

∞∑

k=1

|s|k
k

+ n
∞∑

k=1

1

k

{
ζ(k)− 1

k − 1

}
|s|k < ∞ for |s| < 1,

which shows that the series in(11) converges for|s| < 1. ut

Remark 1.1 Recall the definition(r)k = r(r + 1) . . . (r + k − 1) of the Pochhammer
symbol. Sharp asymptotic evaluations of the cumulantsκ1, κ2, . . . of Tn may be obtained
by combining(9)–(10) with the expansion (see, e.g., 3:3:6, p. 27 in Spanier and Oldham,
1987),

nr−1
{

ζ(r)− 1

r − 1
−

n−1∑
j=1

1

jr

}
=

1

2n
+

r

12n2
+

r(r + 1)(r + 2)

6n2
(22)

+ . . . + (1 + o(1))
(r)k−12

k(2k − 1)Bk

2k! nk
asn →∞.

In (22) we set, in agreement with(5), ζ(r)− 1/(r − 1) = γ for r = 1.

Remark 1.2 Sinceζ(r) − 1/(r − 1) increases fromγ = 0.577 . . . to 1, asr increases
from1 to∞, (15) implies that thek-th cumulantκk of Tn fulfills, for n ≥ 1 andk ≥ 2,

0 ≤ κk < n(k − 1)!
{

ζ(k)− 1

k − 1

}
< n(k − 1)! (23)

Corollary 1.2 below gives a refinement of(3) when(H.0) holds.
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Corollary 1.2 Under(H.0), asn →∞,

n−1/2{Tn − nγ} d→ N(0, π2

6
− 1). (24)

Moreover, for eachk ≥ 1, thek-th moment ofn−1/2{Tn − nγ} converges asn → ∞ to
thek-th moment of theN(0, π2

6
− 1) law.

Proof. Let κ∗1, κ
∗
2, . . . denote the cumulants ofn−1/2{Tn−nγ}. By (9), (15) and(23),

for n ≥ 1,

−n−1/2 ≤ κ∗1 = n−1/2{κ1 − nγ} < 0,

−n−1 < κ∗2 − {ζ(2)− 1} = n−1{κ2 − n{ζ(2)− 1}} < 0,

|κ∗k| = n−k/2|κk| < n1−k/2(k − 1)! for k ≥ 3.

Thus, for any fixedδ > 0, we have, ultimately inn →∞, uniformly over|s| ≤ δ,
∣∣∣ log IE

(
exp (sn−1/2{Tn − nγ})− 1

2
s2{ζ(2)− 1}

∣∣∣ (25)

≤ n−1/2δ + 1
2
(n−1/2δ)2 + n

∞∑

k=3

1
k
(n−1/2δ)k = O(n−1/2) → 0,

which readily implies(24) and completes the proof of the corollary. tu
The remainder of our paper is organized as follows. In Section 2, we derive a useful

representation ofTn as a sum of independent random variables, which is of interest in and
of itself. This representation, stated in Theorem 2.1 below, provides a key argument for
the proof of Theorem 1.1, which is given at the end of the section. In Section 3 we give
an alternate representation ofTn, stated in Theorem 3.1, by showing thatTn = Qn −Rn,
whereQn is a partial sum of i.i.d.r.v.’s,Rn = OIP(1), and withRn and Tn mutually
independent. The limiting behavior ofRn is described in Theorem 3.2 of the same section.
By combining Theorems 3.1 and 3.2, we get an alternate proof of Theorem 1.1, as well as
a simple direct proof of Blumenthal’s limit law(3) under(H.0). In Section 4, we apply
the moment calculations of Section 1 to show that an approximation ofTn by a Gamma
distribution with suitably chosen parameters is extremely sharp even for values ofn as
small asn = 3. A theoretical justification for this fact is given in Theorem 4.1.

2 First Representation ofTn

In Theorem 2.1 below, we show thatTn has a simple expression as a sum ofn − 1 inde-
pendent random variables. This representation is then used to prove Theorem 1.1.

We start by some notation and facts. Under(H.0), it is convenient to denote byU1 =
X1, U2 = X2, . . . i.i.d. uniform (0, 1) random variables. SetU0,N = 0 andUN+1,N = 1
for N ≥ 0, and let0 < U1,N < . . . < UN,N < 1 for n ≥ 1 be the order statistics of
U1, . . . , UN for N ≥ 1. Theuniform spacingsof orderN ≥ 1 are then defined by

Di,N = Ei,N−1 = Ui,N−1 − Ui−1,N−1 for 1 ≤ i ≤ N. (26)
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For eachn ≥ 1, introduce the random variables

Yi,n =
Ui,n − Ui−1,n

Un,n

=
Ei,n

Un,n

=
Di,n+1

Un,n

for 1 ≤ i ≤ n. (27)

The following distributional identities hold for eachn ≥ 1 (see, e.g., Fact 2 and Remark
3.1 in§3), with Di,n being as in(26) (or equivalently, as in(1) under(H.0)).

{Yi,n : 1 ≤ i ≤ n} d
= {Di,n : 1 ≤ i ≤ n}. (28)

As follows from(26), (27) and(28), we have the distributional identity

Tn =
n∑

i=1

{ − log(nYi,n)} d
= Tn =

n∑
i=1

{ − log(nDi,n)}. (29)

which allows to use equivalentlyTn andTn in the statement of our theorems. For conve-
nience, in the present section, we will work withTn rather than withTn. Set, forn ≥ 1,

V`,n =
{ U`,n

U`+1,n

}`

for 1 ≤ ` ≤ n + 1. (30)

We first recall (see, e.g., Sukhatme, 1937; Malmquist, 1950; David, 1981, pp. 20-21):

Fact 1 For eachn ≥ 1, the random variables{V`,n : 1 ≤ ` ≤ n} are independent and
uniformly distributed on(0, 1).

The main result of this section may now be stated in Theorem 2.1 below.

Theorem 2.1 For eachn ≥ 1, the random variableTn may be decomposed into the sum
of n− 1 independent random variables as follows.

Tn =
n−1∑

`=1

{
− log

(
nV`,n{1− V

1/`
`,n }

)}
. (31)

Proof. Forn = 1, Tn = 0 and(31) holds via
∑0

`=1(·) = 0. Forn ≥ 2, we write

Ui,n =
n∏

`=i

V
1/`
`,n for i = 1, . . . , n and Un,n = V 1/n

n,n ,

whence, by(28)

Yi,n =
{ n−1∏

`=i

V
1/`
`,n

}{
1− V

1/(i−1)
i−1,n

}
for 2 ≤ i ≤ n− 1,

Y1,n =
{ n−1∏

`=1

V
1/`
`,n

}
and Yn,n =

{
1− V

1/(n−1)
n−1,n

}
.

We then observe that
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Y1,nY2,n =
{ n−1∏

`=1

V
1/`
`,n

}{ n−1∏

`=2

V
1/`
`,n

}{
1− V

1/1
i−1,n

}
= V1,n{1− V1,n}

{ n−1∏

`=2

V
2/`
`,n

}
,

Y1,nY2,nY3,n = V1,n{1− V1,n}V2,n{1− V
1/2
2,n }

{ n−1∏

`=3

V
3/`
`,n

}
,

and, via a straightforward induction,

n∏
i=1

Yi,n =
n−1∏
i=1

V`,n{1− V
1/`
`,n }.

After taking logarithms and recalling(29), we conclude readily(31). tu
Remark 2.1 In view of(31), we may give a direct proof of(9) by showing that

IE(Tn) = IE(Tn) = n
{ n−1∑

j=1

1

j
− log n

}
.

For this, we observe by(31) that IE(Tn) = −n log n +
∑n−1

`=1 I`, where, for̀ ≥ 1,

I` = −IE
(

log V`,n + log(1− V
1/`
`,n )

)
= −

∫ 1

0

(log z)dz −
∫ 1

0

log(1− z1/`)dz

= 1− `

∫ 1

0

(1− t)`−1(log t)dt = 1− `

`−1∑

k=0

(
`− 1

k

)
(−1)k

∫ 1

0

tk(log t)dt

= 1−
∑̀
m=1

(
`

m

)
(−1)m

m
= 1 +

∫ 1

0

{1− (1− z)`

z

}
dz = 1 +

∫ 1

0

{1− z`

1− z

}
dz

= 1 +

∫ 1

0

{
1 + z + . . . + z`−1

}
dz = 1 +

{
1 +

1

2
+ . . . +

1

`

}
.

Here, we have used Fact 1, together with the change of variablet = 1 − z1/`, and the
identity

∫ 1

0
tk(log t)dt = −1/(k + 1)2 for k = 0, 1, . . . . This, in turn, shows that

IE(Tn) + n log n =
n−1∑

`=1

I` = n− 1 +
n−1∑

`=1

{
1 +

1

2
+ . . . +

1

`

}

= n
{

1 +
1

2
+ . . . +

1

n− 1

}
,

which is in agreement with(9).

The next lemma is oriented towards proving Theorem 1.1.

Lemma 2.1 For each` = 1, . . . , n, we have the identity

IE exp
{
− s log (V`,n{1− V

1/`
`,n })

}
= `β

(
`(1− s), 1− s

)
(32)

= `Γ(1− s)
{ Γ(`(1− s))

Γ((` + 1)(1− s))

}
for s < 1. (33)
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Proof. For eachs < 1, we may write, via the change of variablez = t`,

IE exp
{
− s log (V`,n{1− V

1/`
`,n })

}
=

∫ 1

0

exp
{
− s log (z{1− z1/`})

}
dz

=

∫ 1

0

z−s(1− z1/`)−sdz = `

∫ 1

0

t`(1−s)−1(1− t)−sdt = `β
(
`(1− s), 1− s

)
,

which is (32), from where(33) is straightforward (see 43:13:12, p. 419 in Spanier and
Oldham, 1987). tu

Proof of Theorem 1.1.By combining(31) in Theorem 2.1 with(33) in Lemma 2.1,
we see that, for eachn ≥ 1 ands < 1,

IE exp(sTn) = exp (− sn log n)
n−1∏

`=1

IE exp
{
− s log (V`,n{1− V

1/`
`,n })

}

= n−ns

n−1∏

`=1

`Γ(1− s)
{ Γ(`(1− s))

Γ((` + 1)(1− s))

}
=

n−nsΓ(n)Γ(1− s)n

Γ(n(1− s))
,

which, in view of the distributional equalityT d
= Tn in (29), yields(8). tu

3 Second Representation ofTn

Recalling from(29) thatTn
d
= Tn, below we will work withTn rather than withTn. We

recall the following fact (see, e.g., Pyke, 1965; Shorack and Wellner, 1986, Prop. 8.2.1).

Fact 2 Let ω = ω1, ω2, . . . be i.i.d. exponentially distributed random variables with
IP(ω > t) = e−t for t ≥ 0, and setSk = ω1 + . . . + ωk for k ≥ 1. Then, for each
n ≥ 1, we have the distributional identity

{
Di,n : 1 ≤ i ≤ n

}
d
=

{ ωi

Sn

: 1 ≤ i ≤ n
}

. (34)

Remark 3.1 The following distributional identity is a straightforward consequence of
Fact 2. For each specifiedN ≥ n ≥ 1 and1 ≤ j1 < . . . < jn ≤ N , we have

{
Di,n : 1 ≤ i ≤ n

}
d
=

{ Dji,N∑n
m=1 Djm,N

: 1 ≤ i ≤ n
}

. (35)

In particular, (35) reduces to(28) whenN = n + 1 andjm = m for m = 1, . . . , n.

We will need a refinement of Fact 2 stated in the following lemma.

Lemma 3.1 Let S∗n denote a random variable, independent of{Di,n : 1 ≤ i ≤ n}, and
with a Γ(n) distribution. Then, the random variablesω∗i = Di,nS

∗
n for i = 1, . . . , n, are

mutually independent and exponentially distributed with unit mean.
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Proof. In view of the notation(27), setEi,n = Ui,n − Ui−1,n for i = 1, . . . , n +
1. It is well-known (refer to David (1981), p. 99) that{E1,n, . . . , En,n} is uniformly
distributed overAn := {(u1, . . . , un) ∈ IRn :

∑n
j=1 uj ≤ 1, ui ≥ 0, i = 1, . . . , n}.

Let S∗n+1 be independent of{E1,n, . . . , En,n}, and with aΓ(n + 1) distribution. The joint
density of(E1,n, . . . , En,n, S∗n+1) is thenf(u1, . . . , un, s) = sn+1e−s on An × (0,∞). By
a straightforward change of variables, it follows that the joint densityg(x1, . . . , xn+1) of
(E1,nS∗n+1, . . . , En,nS

∗
n+1, (1−

∑n
j=1 Ej,n)S∗n+1) = (E1,nS∗n+1, . . . , En+1,n+1S

∗
n+1) is given

by g(x1, . . . , xn+1) = exp(−∑n+1
i=1 xi) for x1 ≥ 0, . . . , xn+1 ≥ 0. We so obtain the

version of the lemma obtained with the formal change ofn into n + 1. tu
In the sequel, we may and do assume that the probability space(Ω,A, IP) on which

sits{Un : n ≥ 1} is enlarged by products to carry a sequence{ω∗n : n ≥ 1}, independent
of {Un : n ≥ 1}, and composed of independent and (unit mean) exponentially distributed
random variables. Via Lemma 3.1, for eachn ≥ 1, we setS∗n =

∑n
i=1 ω∗i , and define a

new set of random variables{ωi,n : 1 ≤ i ≤ n} by setting

ωi,n = Di,nS
∗
n for i = 1, . . . , n. (36)

Since(26) implies that
∑n

i=1 Di,n = 1, we observe from(36) that, for eachn ≥ 1,

Sn :=
n∑

i=1

ωi,n = S∗n

n∑
i=1

Di,n = S∗n. (37)

This, in turn, shows that we may obtain a version of(34) by writing

{Di,n : 1 ≤ i ≤ n} d
= {ωi,n/Sn : 1 ≤ i ≤ n}, (38)

with Sn =
∑n

i=1 ωi,n independentof {Di,n : 1 ≤ i ≤ n}. Set now, for eachn ≥ 1,

Qn =
n∑

i=1

{
ωi,n − 1− log ωi,n

}
, (39)

Rn = n
{Sn

n
− 1− log

(Sn

n

)}
. (40)

Given the above preliminaries, we may now state the main result of the present section.

Theorem 3.1 For eachn ≥ 1, Tn andRn are independent and such that

Qn = Tn + Rn. (41)

Moreover, the moment-generating functions ofQn andRn are given by

IE(exp(sQn)) = Γ(1− s)n
{ e−ns

(1− s)n(1−s)

}
for s < 1, (42)

IE(exp(sRn)) =
{Γ(n(1− s))

Γ(n)

}{ nnse−ns

(1− s)n(1−s)

}
for s < 1. (43)
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Proof. In view of (36)–(38) and Lemma 3.1, we obtain(41) by combining(29) with
(39)–(40). Recalling that, forr > 0,

∫∞
0

zr−1e−λzdz = λ−rΓ(r), to establish(43), we
use the fact thatSn follows aΓ(n) distribution to write that, forn ≥ 1 ands < 1,

IE(exp(sRn)) =

∫ ∞

0

exp
(
ns

{ z

n
− 1− log

( z

n

)}) zn−1

Γ(n)
e−zdz

=
nnse−ns

Γ(n)

∫ ∞

0

zn(1−s)−1e−z(1−s)dz =
{Γ(n(1− s))

Γ(n)

}{ nnse−ns

(1− s)n(1−s)

}
.

Settingn = 1 in this last expression, we see that, wheneverω is exponentially distributed,

IE
(

exp(s{ω − 1− log ω})
)

= Γ(1− s)
{ e−s

(1− s)1−s

}
for s < 1. (44)

SinceIE exp(sQn) = {IE exp(s{ω − 1− log ω})}n, we infer readily(43) from (44).tu

Remark 3.2 It is easy to check that(11) and(42)–(43) are in agreement, since

IE(exp(sQn)) = IE(exp(sTn))IE(exp(sRn)). (45)

The next corollaries of Theorem 3.1 evaluate the cumulants ofRn andQn. Their
proofs are very similar to that of Corollary 1.1, and are therefore omitted.

Corollary 3.1 For eachn ≥ 1, the cumulantsκq
1, κ

q
2, . . . of Qn are given by

κq
1 = IE(Qn) = nγ, (46)

κq
k = n(k − 1)!

{
ζ(k)− 1

k − 1

}
for k ≥ 2. (47)

Corollary 3.2 For eachn ≥ 1, the cumulantsκr
1, κ

r
2, . . . of Rn are given by

κr
1 = IE(Rn) = n

{
γ −

n−1∑
j=1

1

j
+ log n

}
, (48)

κr
k = n(k − 1)!

{
nk−1

(
ζ(k)−

n−1∑
j=1

1

jk

)
− 1

k − 1

}
for k ≥ 2. (49)

Moreover, for eachk ≥ 1, we have, asn →∞,

κr
k →

(k − 1)!

2
. (50)

In addition,κr
1, κ

r
2, . . . fulfill the inequalities, forn ≥ 1,

0 < κr
1 ≤

n + 1

2n
≤ 1, (51)

0 < κr
k < (k − 1)! for k ≥ 2. (52)
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We now show that, in the decompositionQn = Tn+Rn in (41), Rn = OIP(1), whence

Tn = Qn + OIP(1) as n →∞. (53)

This, together with the explicit limiting behavior ofRn is captured in the next theorem.

Theorem 3.2 Asn →∞, we have the weak convergence

2Rn = 2n
{Sn

n
− 1− log

(Sn

n

)}
d→ χ2

1, (54)

and, for eachk ≥ 1, thek-th moment of2Rn converges, asn → ∞, to thek-th moment
of aχ2

1 random variable.

Proof. By the central limit theorem, asn → ∞, n−1/2(Sn − n)
d→ N(0, 1), so that

n−1Sn − 1 = OIP(n−1/2), and hence

log
(Sn

n

)
=

Sn

n
− 1− 1

2

(Sn

n
− 1

)2

+ OIP

(
n−3/2

)
.

Therefore, asn →∞,

2Rn = 2n
{Sn

n
− 1− log

(Sn

n

)}
= n

(Sn

n
− 1

)2

+ OIP

(
n−1/2

)
d→ χ2

1, (55)

which is(54). The cumulantsκχ
1 , κχ

2 , . . . , κχ
k = 2k−1(k − 1)!, . . . of aχ2

1 random variable
are readily obtained from the expansion

−1

2
log(1− 2s) =

∞∑

k=1

2ksk

2k
=

∞∑

k=1

κχ
ksk

k!
for s < 1. (56)

The proof of the theorem is completed by(50), which implies that thek-th cumulant2kκr
k

of 2Rn converges toκχ
k = 2k−1(k − 1)!, asn →∞. tu

Remark 3.3 By combining(53) with an application of the central limit theorem toQn,
one obtains an immediate proof of the weak convergence(3) under(H.0), namely

n−1/2{Tn − nγ} = n−1/2{Qn − nγ}+ OIP(n−1/2)
d→ N(0, π2

6
− 1).

4 Approximation of Tn by a Gamma Distribution

In this section, we consider the problem of finding simple and sharp numerical approxi-
mations ofFn(x) := IP(Tn ≤ x) under(H.0), allowing to derive non-asymptotic versions
of the test procedure(7) for small values of the sample sizen. The easiest case is when
n = 2, the exact distribution ofTn being then provided by the proposition below.

Proposition 4.1 We have

IP(T2 ≤ x) =
√

1− 2e−x for x ≥ log 2. (57)
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Proof. Recalling(31), let V = V1,2 denote a uniform(0, 1) r.v. An application of
Theorem 2.1 forn = 2 shows that

IP(T2 ≤ x) = IP
(

log (2V (1− V )) ≥ −x
)

= IP
(
V (1− V ) ≥ 1

2
e−x

)
. (58)

Since, for0 ≤ z ≤ 1
4
, v(1 − v) ≥ z ⇔ |v − 1

2
| ≤ 1

2

√
1− 4z, we infer readily(57)

from the uniformity ofV , in combination with(58), taken withz = 1
2
e−x. tu

From now on, in view of Proposition 4.1, we will concentrate on the study of the
d.f. Fn(x) = IP(Tn ≤ x) of Tn for n ≥ 3. As will become obvious from Table 2 in
the sequel, the approximation ofFn(x) by Φn(x) := Φ((x − IE Tn)/

√
Var(Tn) ), (with

Φ(t) = (2π)−1/2
∫ t

−∞ e−s2/2ds denoting the normalN(0, 1) d.f.) is too rough for small
values ofn, and some other method is needed. As a main result of the present section,
we will show that (under(H.0) and after centering) the distribution ofTn is very closely
approximated by aΓ(r, λ) distribution for appropriate choices ofr = rn andλ = λn

specified below. In practice, this replacement turns out to generate a uniform error less
than2.7% for n ≥ 3 and less than1.0% for n ≥ 4. Moreover, for most applications of in-
terest, the approximation error can be neglected ifn ≥ 5. Since the practical computation
of the distribution of a Gamma random variable is routine, this observation allows us to
implement easily, for arbitrary values ofn, the uniformity test (rejecting(H.0) whenTn

exceeds a critical level) described in§1.

Recall that a random variableZ follows a Γ(r, λ) distribution iff it has densityg(·)
and moment-generating functionψ(·) given respectively by

g(z) =
λr

Γ(r)
zr−1e−λz for z > 0, and ψ(s) = IE(esZ) = (1− s/λ)−r for s < 1.

Settingµ = IE(Z) andMk = IE((Z − µ)k) for k = 1, 2, . . ., we denote byβg
1 = M2

3 /M3
2

(resp.βg
2 = M4/M

2
2 ) the skewness (resp. kurtosis) coefficient ofZ. Forr > 0 andλ > 0,

µ =
r

λ
, M2 =

r

λ2
, βg

1 =
4

r
and βg

2 = 3 +
6

r
= 3 +

3

2
βg

1 . (59)

We chooser = rn > 0, λ = λn > 0 andcn in such a way that the moments of order1,
2 and3 of Z = Zn andTn − cn coincide. In view of(6), (12)–(13) and(59), we obtain
therefore, withκ1, κ2, . . . denoting as in(9)–(10) the cumulants ofTn, that

rn :=
4κ3

2

κ2
3

=
n
{

ζ(2)− n
(
ζ(2)−∑n−1

j=1
1
j2

)}3

{
ζ(3)− n2

(
ζ(3)−∑n−1

j=1
1
j3

)}2 (60)

=
(1 + o(1))n

{
ζ(2)− 1

}3

{
ζ(3)− 1

2

}2 ≈ (0.544 253)× n as n →∞,

λn :=
2κ2

κ3

=
ζ(2)− n

(
ζ(2)−∑n−1

j=1
1
j2

)

ζ(3)− n2
(
ζ(3)−∑n−1

j=1
1
j3

) (61)
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=
(1 + o(1))

{
ζ(2)− 1

}

ζ(3)− 1
2

≈ 0.918 635 as n →∞,

µn := IE(Zn) =
rn

λn

=
2κ2

2

κ3

=
n
{

ζ(2)− n
(
ζ(2)−∑n−1

j=1
1
j2

)}2

ζ(3)− n2
(
ζ(3)−∑n−1

j=1
1
j3

) (62)

=
(1 + o(1))n

{
ζ(2)− 1

}2

ζ(3)− 1
2

≈ (0.592 459)× n as n →∞,

cn := IE(Tn − Zn) = κ1 − 2κ2
2

κ3

= n
{ n−1∑

j=1

1

j
− log n

}
(63)

−
n
{

ζ(2)− n
(
ζ(2)−∑n−1

j=1
1
j2

)}2

ζ(3)− n2
(
ζ(3)−∑n−1

j=1
1
j3

)

= (1 + o(1))n
{

γ − {ζ(2)− 1}2

ζ(3)− 1
2

}
≈ −(0.015 243)× n as n →∞.

Below, we follow the notation(59) by lettingβg
2 = 3+6/rn denote the kurtosis coefficient

of Zn. In the same spirit, we letβ2 = 3 + (κ4/κ
2
2) denote the kurtosis coefficient ofTn,

with κk being as in(10) for k ≥ 2. We will make use later on of the fact that

β2 − βg
2 = κ4 − 6

rn

= (1 + o(1))
6

n

{
ζ(4)− 1

3

{ζ(2)− 1}2 −
{ζ(3)− 1

2
}2

{ζ(2)− 1}3

}

= −(1 + o(1))n−1(0.219 973 574) as n →∞.

The choices ofrn, λn andcn = IE(Tn − Zn) provided by(60)–(61) and(63) ensure that
the first three moments ofTn andZn + cn coincide. The evaluation of the asymptotic
sharpness of this approximation is achieved in the next theorem. Recalling thatFn(x) =
IP(Tn ≤ x), we setF g

n(x) = IP(Zn ≤ x − cn) and denote as above, respectively, byβ2

andβg
2 the kurtosis coefficients ofTn andZn.

Theorem 4.1 We have, asn →∞,

sup
x∈IR

|Fn(x)− F g
n(x)| = 1 + o(1)

24
|β2 − βg

2 | sup
z∈IR

|H3(z)|ϕ(z) (64)

=
1 + o(1)

4n

{
ζ(4)− 1

3

{ζ(2)− 1}2 −
{ζ(3)− 1

2
}2

{ζ(2)− 1}3

}{
sup
z∈IR

|z3 − 3z|e
−z2/2

√
2π

}
≈ 0.005 046

n
.

Proof. SetZr
n = (Zn − IE(Zn))/

√
Var(Zn) andT r

n = (Tn − IE(Tn))/
√

Var(Tn),
F g,r

n (z) = IP(Zr
n ≤ z) andF r

n(z) = IP(T r
n ≤ z). Set, as usualϕ(t) = (2π)−1/2e−t2/2 and

Φ(x) =
∫ x

−∞ ϕ(t)dt for the normalN(0, 1) density and d.f. Denote byH2(x) = x2 − 1,
H3(x) = x3−3x, H5(x) = x5−10x3+3x, . . . (see p. 137 in Petrov, 1975) the Chebyshev-
Hermite polynomials of order2, 3, 5, . . . . Fix any0 < M < ∞. SinceZn follows a
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Γ(rn, λn) distribution with skewness and kurtosis coefficientsβg
1 , β

g
2 such that

√
βg

1 =
2√
rn

and βg
2 − 3 =

6

rn

= (1 + o(1))
6
{

ζ(3)− 1
2

}2

n
{

ζ(2)− 1
}3 , (65)

it follows from Ch. VI in Petrov (1975) that, asn →∞, uniformly over|z| ≤ M

F g,r
n (z)− Φ(z) = −ϕ(z)

{√
βg

1

6
H2(z) +

βg
1

72
H5(z)

+
βg

2 − 3

24
H3(z) + O(n−3/2)

}
. (66)

Likewise, making use of Theorem 2.1, which shows thatTn may be represented as a sum
of independent random variables, we may write that, uniformly over|z| ≤ M ,

F r
n(z)− Φ(z) = −ϕ(z)

{√β1

6
H2(z) +

β1

72
H5(z)

+
β2 − 3

24
H3(z) + O(n−3/2)

}
, (67)

where (recall(9)–(10) and(12)–(13)) β2 − 3 is given by

β2 − 3 =
κ4

κ2
2

= (1 + o(1))
6
{

ζ(4)− 1
3

}

n
{

ζ(2)− 1
}2 . (68)

Recalling(6), it follows readily from(66)–(67) that, uniformly over|z| ≤ M ,

F r
n(z)− F g,r

n (z) = −(1 + o(1))

n
ϕ(z)H3(z) (69)

×

{
ζ(4)− 1

3

}{
ζ(2)− 1

}
−

{
ζ(3)− 1

2

}2

4
{

ζ(2)− 1
}3

≈ −(1 + o(1))

n
ϕ(z)H3(z)

{0.219 973 574

24

}
.

Finally, we observe that the supremum of|φ(z)H3(z)| over z ∈ IR is reached forz0 =√
3−√6 and equals0.550 587 939 . . . . The conclusion(64) is now straightforward.tu
To appreciate the relevance of the limiting bound(64) for small values ofn, it is

natural to estimateFn(x) = IP(Tn ≤ x) by the empirical distribution functionFn,N(x),
obtained from a simulated sample of sizeN of Tn for some suitably large value ofN . It
is easy to evaluate numericallyF g

n(x), and we so estimate∆n = supx |Fn(x) − F g
n(x)|

by ∆̂n = supx |Fn,N(x) − F g
n(x)|. The convergence of̂∆n to ∆n is achieved with rate

O(N−1/2). Making use of the rough inequality

IP
(

sup
x∈IR

|Fn,N(x)− Fn(x)| ≥ 3/
√

N
)
≤ 10%,
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we see that the (rather huge and beyond our present reach) sample sizeN = 900 000 000
would be required to achieve (with90% confidence) a precision of0.000 1 or less in
the estimation of∆n by ∆̂n. Below, we provide estimations obtained with the more
tractableN = 2 000 000. The figures in Table 1 are therefore given only with a guaranteed
precision of±δ, whereδ = 3/

√
2 000 000 ≈ 0.0021 (with 90% confidence).

Table 1:∆̂n = supx |Fn,N(x)− F g
n(x)|

n ∆̂n ±δ n∆̂n ±nδ

3 0.02463 ±0.002 0.07389 ±0.006
4 0.00734 ±0.002 0.02936 ±0.008
5 0.00360 ±0.002 0.01800 ±0.010
8 0.00122 ±0.002 0.00976 ±0.016
10 0.00102 ±0.002 0.01020 ±0.021
15 0.00064 ±0.002 0.00960 ±0.032
20 0.00042 ±0.002 0.00840 ±0.042

In spite of the lack of precision induced by our choice ofN , we see that the estimations
in Table 1 come close to the order of the asymptotic rate in(64), even for very small values
of n. In particular, Table 1 gives numerical evidence to support the conjecture that the
replacement ofFn by F g

n should yield an error less than1% (resp.0.5%) for n ≥ 4 (resp.
n ≥ 8). We leave the question of checking the validity of this numerical conjecture for
future research. In particular, the lack of precision on∆̂n obtained from our simulations,
performed withN = 2 000 000 only, does not allow us to observe properly from the
values in Table 1 the convergence ofn∆̂n to the constant0.005 046 . . . (following from
(64)). This is in contrast with the behavior ofn1/2∆̃n discussed later on in Remark 4.1,
where the simulated sample size ofN = 2 000 000 turns out to be sufficient, to give a
numerical confirmation of Proposition 4.2 below.

In Table 2 below, we give similar figures as in Table 1, withF g
n being replaced by the

normal approximantΦn(x) = Φ((x− IE Tn)/
√

Var(Tn)).

Table 2:∆̃n = supx |Fn,N(x)− Φn(x)|

n ∆̃n ±δ n1/2∆̃n ±n1/2δ

3 0.15270 ±0.002 0.26448 0.00346
4 0.10630 ±0.002 0.21260 0.00400
5 0.09082 ±0.002 0.20308 0.00447
8 0.06816 ±0.002 0.19278 0.00565
10 0.06047 ±0.002 0.19122 0.00632
15 0.04822 ±0.002 0.18676 0.00775
20 0.04116 ±0.002 0.18407 0.00894
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Making use of(67), it is not too difficult to prove the proposition

Proposition 4.2 We have, asn →∞,

sup
x∈IR

|Fn(x)− Φn(x)| = 1 + o(1)

6

{ 2√
rn

}
sup
z∈IR

|H2(z)|ϕ(z)

=
1 + o(1)

3
√

2π
√

n

{
ζ(3)− 1

2

{ζ(2)− 1}3/2

}
≈ 0.180 255√

n
. (70)

Proof. The supremumsupz∈IR |H2(z)|φ(z) = 1/
√

2π is reached forz = 0. The
remainder of the proof, being very similar to the proof of Theorem 4.1 is omitted.tu

Remark 4.1 The limiting constant0.180 255 . . . in (70) is in agreement with the figures
obtained in Table 2. As follows from Proposition 4.2 and Tables 2, a normal fit ofFn is
very poor with respect to the Gamma fit described in Theorem 4.1 and Table 1.
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