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Abstract: A combination of deductive reasoning, clustering, and inductive
learning is given as an example of a hybrid system for exploratory data anal-
ysis. Visualization is replaced by a dialogue with the data.
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1 Introduction

The aim of this paper is to show how data analysis may be enriched by the use of an
automated deduction system, and simultaneously how a system for automated deduction
may be extended to carry out data analysis. Of course there are many ways that this could
be done and many frameworks on which it could be built. Here we will useequational
reasoningand show how its discrete algebraic language may be used to analyze data with
discrete and continuous variables.

In Section 2 we introduce the basics of equational reasoning using a term algebra and
show how information is represented in this language and how deductions and induc-
tive conjectures can be made. The data analysis will begin with some form of inductive
learning and then use deduction to make predictions from the conjectures and existing
knowledge. Section 3 describes the discretization process that is necessary for analyz-
ing continuous data, with Section 4 giving a second method of learning information from
a database of observations. This discrete form of reasoning fits well with a simplified
natural language, allowing a user to have adialoguewith the software rather than using
visualization to analyze data. Example dialogues are given in Section 5. Finally, in Sec-
tion 6 we summarize the potentials of this approach and detail some of its shortcomings.

2 Equational Reasoning

We begin by giving an introduction to the equational approach to deduction and a simple
functional learning method that follows from it. The language of our equational reasoning
is that of aterm algebragenerated by asignature. Figure 1 gives an example signature
for representing knowledge about family relationships. HerePerson andSex aresorts
while father andAlice arewords. Terms of the algebra are generated by making paths in
the signature, which we will write in reverse order. For example, Figure 1 gives rise to
the termsfather Alice : Ground → Person andsex mother : Person → Sex, as well as
the singletonClare : Ground → Person. For a termf : σ → τ we callσ thedomainof f ,
dom(f), andτ thecodomainof f , cod(f).

Terms whose domain isGround are theelementsof the language and we will usually
write, for example,Clare ∈ Person to reflect this. Terms with domains other thanGround
arefunctions. All sorts σ have theerasingterm ! : σ → Ground. That is, ifg ∈ σ then



232 Austrian Journal of Statistics, Vol. 31 (2002), No. 2&3, 231-239

Figure 1: A signature for describing family relationships

the termf ! g is equal tof . Thusf ! is a constant function on the elements ofσ. For
example,

Male ! John = Male.

Knowledge is captured by giving equations between terms in the language. For exam-
ple, thegroundequationfather Alice = John represents the statement that “Alice’s father
is John”. Functional equations, such asfather sister = father (“the father of a person’s
sister is their father”) andsex father = Male ! (“the sex of any person’s father is male”),
capture universal statements since they hold for any element of the domain. For example,
if we believe the three equations





father sister = father,
father Alice = John,
sister Kate = Alice





then we may deduce

father Kate = father sister Kate = father Alice = John.

This equational deduction, which can be done mechanically using rewrite rules and the
Knuth-Bendix algorithm, has a rich history in automated theorem proving (Hsiang et al.,
1992). However, little work has been done on using equational reasoning for the inductive
learning required by data analysis.

Yet equational induction is straightforward in the functional setting. Consider again
the above deduction. Suppose instead we knew





father Alice = John,
sister Kate = Alice,
father Kate = John





.

Then we would observe that

father sister Kate = father Kate,

and so might conjecture the functional equation

father sister = father
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since the two functions have the same output when applied to the singletonKate.
In general, suppose we have a database of ground equations. If it is observed that for

all singletonsa ∈ dom(f) there is a singletonb ∈ cod(f) such thatfa = b andga = b,
then we conjecture thatf = g. This is asummativeconjecture since complete information
about the function values exists in the database. A weaker form of induction, allowing
predictions, is to conjecturef = g if there is at least one singletona ∈ dom(f) such that
fa = b andga = b and there is noa′ ∈ dom(f) such thatfa′ = b andga′ = c, where
b 6= c. For example, given the data

D =





father Alice = John,
mother Alice = Clare,
wife John = Clare,
father Paul = Peter,
wife Peter = Mary





we could conjecture thatwife father = mother. We could then predict fromD that

mother Paul = wife father Paul = wife Peter = Mary.

This method has been shown to be successful in certain problem domains (Bulmer,
1996a). In particular, the bidirectional nature of equations makes this representation
very effective. In the above example, if we observedmother Paul = Mary instead of
wife Peter = Mary, we could use the same conjecture to predictwife Peter = Mary.

We find thatD also gives rise to the erasing conjecturemother = Clare !, since the
single observation suggests thatmother is a constant function. Such conjectures are some-
times important, such assex father = Male !, but can also arise in this trivial manner; as
the database grows, the trivial ones will usually evaporate. However, such erasing conjec-
tures will be the main focus of the use of subsets in Section 4.

Note that in the context ofD we face the problem of deciding between two predic-
tions formother Paul, eitherMary (from wife father = mother ) or Clare (from mother =
Clare !). Such issues have been addressed by looking atconsistent theoriesfor the data
(Bulmer, 1996b); our implicit requirement above that the induction algorithm only gen-
erates conjectures that are individually consistent with the data is to allow such analysis
of consistency amongst sets of conjectures. However, this leads to poor results for data
sets that have overlapping classes or which are noisy. Error reduction methods, such as
bootstrap aggregating (Breiman, 1996), can help overcome this in practice.

3 Data Analysis and Discretization

So far we have dealt only with discrete data. For practical data analysis we need to be
able to work with continuous observations as well. The approach we will use here is to
preprocess continuous variables by collapsing them into a collection of discrete groups.

This discretization has an important role in many data mining methods, and indeed is
an intrinsic part of all decision trees. Methods use some criterion, such as maximizing
information gain or minimizing the description length (see Fayyad and Irani, 1993), to
find the best splitting of a continuous attribute with respect to a target attribute. However,
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here our aim is not necessarily the same as that of a classification problem. Instead we
would like to discretize variables individually, without reference to any existing groups.

Thus discretization in this paper is simply a univariate clustering problem, to which we
can apply many existing tools. One of the simplest and fastest is thek-meansalgorithm
(see, for example, Berry and Linoff, 1997), and we have used this for our examples.
Choosing the number of discrete groups in clustering is a difficult problem in general and
in our case the variables we are discretizing may be quite homogenous. We have taken
our cue from natural language and have arbitrarily split all continuous variables into five
groups, since five is an easy number of groups to give names to. For example, heights
will be split into “very short”, “short”, “medium”, “tall”, “very tall”.

4 Subset Induction

Consider an alternative set of observations about the family in Figure 1:





father Alice = John,
mother Alice = Clare,
father Kate = John





Here it is plausible that Kate’s mother is also Clare, since her father is the same as Alice’s
father and so she might belong to the same “class” as Alice. This is precisely the setting
of many classification problems. However, the simple functional induction of Section 2
fails to make this prediction since there are no functions which have the same outputs
(except for the trivial conjecturesfather = John ! andmother = Clare !). To overcome
this we need to extend our language and equation processing to capture such reasoning.

Any functional equation can be used as acharacteristic functionto describe a subset
of a sort. (The use here is related to subobjects in category theory; (see Goldblatt, 1983,for
details).) For example, from the equationfather Alice = John we could create the subset
fatherJohn from the classifierfather = John !, as illustrated in Figure 2.

Figure 2: Signature for families with a subset
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The equation processing system is augmented to treatAlice and fatherJohn Alice in-
terchangeably, a process that is similar to the handling of associative and commutative
domains (Dershowitz, 1989). With subsets present, the learning algorithm can then con-
jecture

mother fatherJohn = Clare !.

From this it can make the prediction

mother Kate = mother fatherJohn Kate

= Clare ! Kate

= Clare.

The main advantage of this system is that it fits into the broader scope of equational
reasoning and induction. For example, consider the database





father Alice = John, mother Alice = Clare,
wife John = Clare, father Kate = John,
father Paul = Peter, mother Paul = Mary





This database gives conjectures under both the functional induction described in Section 2
and the subset induction described here. We obtain the conjectures

{
wife father = mother,
mother fatherJohn = Clare !

}
.

From these conjectures we can predictmother Kate = Clare in two different ways, and
wife Peter = Mary, and also make a range of other deductions.

5 Dialogues

The use of equational reasoning moves the emphasis of data analysis from visualisation to
a kind of dialogue with the data. In this section we present two such dialogues, generated
automatically by an implementation of the system described here.

5.1 Heights

The first data set is a simple one obtained from student responses to a survey used in the
teaching of an introductory statistics subject (see Bulmer, 1999, for the data). Among
other variables, each student gave their sex and height. After loading the data from the
web page, the dialogue in Table 1 was recorded.

The reasoner begins with 89 observations of heights, which are automatically split into
the 5 groups. There was no measurement for Alice, so no deductive consequences about
Alice’s height can be made. Once the reasoner is told Alice’s height this is discretized
and can be used to make deductions. (Any statement made by the reasoner is a deductive
truth unless it is preceded by “I think that”.) When asked about sex, no split is given
since its value is already discrete. However, based on observations about height and sex,
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Table 1: A dialogue about height and sex

User Reasoner

Tell me about height. I have 89 observations about height. The values are split
into very short, short, average height, tall, and very tall.

How tall is Alice? I don’t know.

Alice’s height is 156. Okay.

How tall is Alice? Alice is very short.

Tell me about sex. I have 89 observations about sex. I think that if a person’s
height is very tall then that person is male. I think that if a
person’s height is very short then that person is female.

What sex is Alice? I think that Alice is female.

the reasoner has formed two subset conjectures about sex. These can be used to predict
Alice’s sex.

It is worth noting here that the subsets arecrisp; the induction could be extended to
use fuzzy clustering and fuzzy subsets. For example, most of the people clustered inShort
by the reasoner are also female, and so the reasoner could make predictions with varying
degrees of certainty.

5.2 Irises

The second data set is Fisher’s famous iris data (Fisher, 1936). The data includes mea-
surements of the petals and sepals of 50 specimens each of 3 varieties of iris. Figure 3
gives part of the signature for representing this data. Table 2 gives a dialogue with the
iris data set, showing the discretization of petal length and the resulting conjectures about
determining petal lengths and iris varieties. Again these can be used to make predictions
about a new plant.

6 Conclusions

The approach described here has been applied to a variety of data settings in the UCI
Repository (Black and Merz, 1998). As a classification tool it does not perform as well
as directed methods such as discriminant analysis and decision tools, but it does do rea-
sonably well on most problems, as suggested by Holte (1993). In addition, the equational
framework allows the easy inclusion of background functional knowledge, and can also
be used to generate abductive hypotheses.

However, the aim of this paper has been mainly to show the potential of embedding
data analysis within a framework for automated deduction. As there are a broad range of
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Figure 3: Signature for iris data

approaches to both tasks, there is naturally a large number of possible systems that could
be developed in this way. We have demonstrated how one method, equational reasoning,
can be used to enrich the analysis of data.
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