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Abstract

The paper studies the relation of data fit (Stress) and model fit (recovery of a true
latent configuration superimposed with random error) depending on the number of points
and the error level in the data when running ordinal and interval MDS. Using 2-dimensional
MDS with 6 to 100 points and ten levels of error, it is found that adding more points (given
that n > 10) is driving up the Stress of the MDS solutions but also leads to better re-
covery, in general. The recovery exceeds any reasonable statistical benchmarks, i.e. more
points enable MDS to smooth out the error in the data so that the true configuration can
surface more clearly in the MDS solution.
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1. Introduction

A crucial issue of multidimensional scaling (MDS) is evaluating how well a particular solution
represents the data. The data fit is measured by various stress or alienation coefficients – all
loss functions which quantify on a scale from 0 to 1 the extent to which the dissimilarity data,
optimally re-scaled at the assumed scale level, correspond to the distances among the points of
the MDS solution. In the early days of MDS, certain absolute benchmarks were proposed for
such loss functions. Kruskal (1964), for example, suggested five grades for his Stress coefficient,
ranging from “0%” showing a “perfect” fit to “>20%” indicating “poor” fit. Guttman (1968)
even proposed a single benchmark for his alienation coefficient, i.e. K < .15. Solutions that
satisfy this criterion are considered acceptably good, others are taken as “borderline” or poor.
Similarly, Davison (1983, p. 116) recommends that one should “seldom accept a solution with
a Stress of more than .10”. Borgatti (1996, p. 29) suggests that “the rule of thumb we use is
that anything under 0.10 is excellent and anything over 0.15 is unacceptable”.

Such absolute criteria are still used today, in particular the K < .15 criterion. Yet, Borg
and Groenen (2005), Mair, Borg, and Rusch (2016), and Borg, Groenen, and Mair (2017),
suggest that the MDS user should pay attention to a range of criteria rather than to only a
single one. Such criteria are, in particular, the number of points; the dimensionality of the
MDS solution; the type of MDS model (ordinal, interval, ratio); the error level of the data;
possible outliers in terms of Stress-per-Point; the replicability of the MDS solution; and its
interpretability vis-à-vis a substantive theory explaining the structure of the data.
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An additional aspect of assessing the quality of MDS solutions that has not received much
attention in the past is the question to what extent high Stress values can be misleading in
the sense that they indicate a poor data fit while the model fit is actually quite good, i.e. the
MDS distances correspond only poorly to the data but correspond well to the distances of
the underlying true model configuration. Is MDS able to actually re- or uncover an assumed
true configuration from error-affected data, even though the Stress seems high, and, if so, to
what extent does that depend on the number of points and the error level of the data?

By “true configuration” we mean the assumed or known underlying configuration of the MDS
model whose inter-point distances are the systematic component of the observed dissimilar-
ities. If such a true configuration exists, MDS should detect it in the data. Consider two
examples. The first one is a study by Borg and Leutner (1983). They studied how persons
generate their judgments of similarity when looking at well-constructed geometric stimuli,
namely at rectangles of different shape and size. Sixteen rectangles were constructed us-
ing four different width values and four different height values (“design configuration”), and
then each possible pair of rectangles of this design was presented to the respondents to be
rated on a scale from “0=equal, identical” to “9=very different”. The resulting scores were
averaged over all respondents and replications, and then converted to dissimilarities1. These
dissimilarities were scaled with MDS, finding a configuration that closely matched the de-
sign configuration, except for logarithmic re-scalings of the X- and the Y -axis, as predicted.
Hence, MDS succeeded in reconstructing the latent true model configuration (i.e., the de-
sign configuration with a psycho-physical Weber-Fechner re-scaling of the physical width and
height dimensions).

Another example is research on personal values. When individuals are asked to assess the im-
portance of such basic values as power, tradition, or benevolence, they, according to Schwartz
and Bilsky (1987), generate their judgments on the basis of an underlying circle of basic values,
where these values have a universal order and certain oppositions that indicate psychological
neighborhoods and perceived incompatibilities. This value circle is the theoretically assumed
latent true configuration. Hundreds of studies conducted all over the world have shown that
MDS uncovers this configuration reliably2. The circle is not perfect in MDS, and the Stress
is never zero, but the theory seems to hold. It also holds when using vastly different ques-
tionnaires to collect the data (direct ratings, ratings of portraits; values based on theory or
values derived by lexicographic methods), and surveys assessing from 10 to 19 different val-
ues (Schwartz, Cieciuch, Vecchione, Davidov, Fischer, Beierlein, Ramos, Verkasalo, Lönquist,
Dirilen-Gumus, and Konty 2012; Borg, Dobewall, and Aavik 2016).

What most MDS users know is that Stress depends on the number of variables or points:
“For the same underlying data structure, a larger data set will necessarily result in a higher
stress value” (Holland 2008). Simulation studies show that random Stress norms grow in
a negatively accelerated function, first steeply increasing up to about 30 points, and then
slowly growing with ever more points (Spence and Ogilvie 1973; Borg et al. 2017). At the
same time, the power of MDS to uncover or recover an underlying true configuration grows
too by adding more points, as Young (1970) has shown in another simulation study. Users of
MDS occasionally use this finding in arguing that one can accept MDS solutions with high
Stress if the number of points is only “large”. The idea is that more points make it easier for
MDS to act as a data smoother, ironing out the error in the data and uncovering the true
structure in the data. The extent to which this is true is, however, not so clear.

Unfortunately, it is difficult to decide the issue of admitting large Stress values if only the
number of points is large on the basis of the simulations reported by Young (1970). The study
used a 3× 5× 5 factorial design with five replications. The three independent variables were
the number of dimensions3 of the true configuration (1, 2, and 3), the number n of points in

1The data are contained in the R package smacof that we use in this paper for MDS.
2See the data set PVQ40 in smacof for real and testable data.
3In this paper, we are only concerned with the 2-dimensional case. This is by far the most relevant

one in MDS applications. 1-dimensional MDS or 3-dimensional MDS are almost never used, at least not
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the configuration (6, 8, 20, 25, and 30) and the proportion of error e introduced (.0, .1, .2,
.35, .5). The true configuration X was defined by taking n point coordinates from two small
tables of random numbers published by Coombs and Kao (1960)4. A error term sampled
from a normal distribution was then added to each coordinate of X, independently drawn
each time a new distance was computed (the so-called Hefner model5). The error-affected
distances, De(X), were then mildly monotonically distorted and used as dissimilarities in
ordinal MDS. Finally, the distances of any MDS solution Y, i.e. the “recovered” distances,
D(Y), were compared with the true distances, Dt(X), by correlating across the corresponding
coordinates using the product-moment correlation coefficient.

One problem with this study is that the PM correlation of corresponding distances is not a
proper way to measure the similarity of two geometric configurations. This is easy to see.
Let A be a configuration of three points with distances d12 = 1, d23 = 2, and d13 = 3. For
comparison, use B with d12 = 2, d23 = 3, and d13 = 4. The correlation of the two sets of
distances is r = 1, incorrectly indicating perfect similarity of what is actually a triangle and
three collinear points, respectively. A correct measure of similarity of two configurations is
the congruence coefficient c of corresponding distances, i.e. the correlation about the fixed
origin zero:

c(A,B) =

∑
i<j dij(A)dij(B)

[
∑

i<j d
2
ij(A)]1/2[

∑
i<j d

2
ij(B)]1/2

, (1)

where dij(X) denotes the distance of points i and j of configuration X. Another often used
measure is the PM correlation across the corresponding coordinates of the configurations
after bringing them to an optimal fit using Procrustean similarity transformations (Borg and
Groenen 2005):

r(A,B∗) = r(A, sBT + 1t′) , (2)

with s a global scaling constant, T a rotation/reflection matrix, t a translation vector, and 1
a vector of 1’s; s, T, and t are chosen to maximize r(A,B∗) (Borg and Groenen 2005).

These two measures usually show similar but not identical results. However, even for random
configurations, they can be misleading to the naive user, since they are always positive and
often “large”, even for random configurations (in particular those with only few points), so
they should be evaluated for their statistical significance.

Another problem with Young’s study is that it is simply quite old. Simulations were expensive
to run on mainframe computers in the 1960’s, requiring substantial amounts of research
money. Therefore, the number of replications and the simulation design in general is small
and the results difficult to generalize. Moreover, the early MDS algorithms were slow and
did not necessarily converge to local Stress minima. Finding global Stress minima was even
more uncertain. And only ordinal MDS was considered worthwhile in those days. Then, with
only 5 replications and only one true configuration, it becomes risky to generalize the findings
and to describe the relationship of Stress and recovery for different numbers of points and
error levels. Finally, the error distributions and the error levels in Young’s study are difficult
to assess. A truly normal distribution admits, in principle, extremely large values. This is
implausible in any MDS error model. Some type of truncation is needed. Also, one should
be able to assess the amount of error at the most extreme level: Is that level realistic from
the point-of-view of the applied user?

in the social sciences.
4There are two tables, one 15 × 3 and one 30 × 3. The numbers are roughly rectangularly distributed, but

Coombs and Kao (1960) do not report how the data were generated.
5This model has been used “most frequently” in simulation studies on MDS (Zinnes and MacKay 1981).

Originally, the model was an attempt to explain how an individual generates a distance judgment on the basis
of a psychological map. The basic idea is that the configuration is not fixed but rather “oscillating”, expressing
the individual’s uncertainty about the stimuli. Hence, the value of the distance dij depends on the positions
of points i and j at time t, and each distance is computed at a different time t.
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Today, many of the above questions can be addressed more easily and free of costs within the
R environment (R Core Team 2018), using up-to-date MDS algorithms such as, in particular,
the smacof R package (De Leeuw and Mair 2009).

2. Method

We here study how the relation of Stress and recovery depends on the number of points
for both ordinal and interval MDS. We use n = 6, ..., 30 points and, in addition, 50 and
100 points. For each n, many configurations X with X- and Y -coordinates drawn from
a rectangular random distribution over [−1, 1] are studied. For each X, the (Euclidean)
distances, Dt(X) are computed (“true distances”). Based on these distances, error-affected
distances De(X) are generated by adding to Dt(X) randomly picked elements from a truncated
normal distribution (using the truncnorm R-package of Mersmann, Trautmann, Steuer, and
Bornkamp (2018)) with a mean of zero, a standard deviation of sd(X), upper and lower
bounds of .5 ∗ max(Dt(X)), and multiplied by the error weight e = 0.1, 0.2, ..., 1. That is,
De(X) = Dt(X)+ Ntrunc(0, sd(X))∗e. Truncating the normal error distribution to the interval
[−.5∗max(Dt(X)),+.5∗max(Dt(X))] is introduced to avoid unrealistically large error values.
An error that is as large as half of the largest true distance is taken as the maximum that we
assume for meaningful observations.

The elements of each De(X) are taken as the dissimilarities for MDS. All MDS analyses
are computed by the mds() function of the R package smacof. For each combination of n
points and error level e, 100 random configurations X are drawn. For each X, 30 different
De(X)’s are constructed and used as data in MDS. For each MDS solution, Y, the recovery of
Dt(X) is assessed by computing r(X,Y∗) as in (2) and c(X,Y) as in (1), using the function
Procrustes() of the smacof R-package for Procrustean fitting of Y to X; the function also
delivers the value of c. Thus, for each of the 27 · 10 combinations of n and e we have two
recovery measures, each based on 100 · 30 MDS solutions.

The above error calculation based on distances rather than on point coordinates simulates the
Hefner model, but does not require to independently draw error components for each element
of De(X). This makes the simulations easier. In order to be able to evaluate the amount of
error in more detail, the error distribution used in the simulations is shown in Figure 2 for
the n = 30 and e = 1 case (simulated 10,000 times).

The recovery coefficients can be benchmarked against coefficients one gets when comparing
the similarity of random configurations. The r measure involves Procrustean fittings of the
configurations, and hence it cannot be expected to be zero for random data, and certainly
clearly greater than zero if the configurations contain only few points. The c measure compares
the true distances with the MDS distances, and since distances are all non-negative, their inner
product and their norms are all positive. Thus, we compute for both coefficients the mean
values, standard deviations, and 95% quantiles for 10,000 pairs of random configurations of
n = 3, 5, ..., 100 points to have some benchmarks of apparent but not real similarity.

3. Results

Figure 1 shows the main result of the simulations: The relation of Stress and recovery (using
r and c, respectively, as recovery measures) and ordinal and interval MDS, respectively, under
different combinations of n (number of points), and e (error levels). Each point of the grids
shown in the four panels of Figure 1 represents the means of the Stress and the recovery
values observed in 3.000 MDS solutions under one particular (n, e) condition. The solid red
grid lines that run vertically in the plots connect conditions using the same number of points.
The left-most line connects the n = 6 conditions, the right-most line the n = 100 condition.

The dashed blue lines interconnecting the points from West to East represent ten different
error levels, with the least error (e = 0.1) at the top, and the highest error (e = 1) at the
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Figure 1: Recovery vs. Stress plots for ordinal MDS (upper panels) and interval MDS (lower
panels); each point represents the mean fit index for n points and error level e; solid vertical
red lines interconnect results based on 6 (left-most lines) to 100 points (right-most lines);
dashed horizontal blue lines interconnect ten error levels e = 0.1, ..., 1, with e = 1 at the
bottom.
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bottom. Thus, for example, the points at the lower left-hand corners of the grids show the
results of the simulations using 6 points and error level 1.0. The 32 points that are intercon-
nected by dashed line segments at the bottom of the grids show the results for 6, ..., 30, 50, 100
points at the highest error level e = 1.0.

The distribution of the true distances is exhibited in the left panel of Figure 2. The distances
range from 0 to the theoretical maximum 2.83, the length of the diagonal of the unit square.
Their mean is 1.04, their standard deviation is 0.49.
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Figure 2: Distributions of true distances (left) and error components (right).

The largest possible distance in Dt(X) is
√

8 and, hence, the largest possible error under
e = 1 is ±1.41, i.e. half the diagonal of the square that X can fill. The right panel of Figure
2 shows the distribution of the errors generated in the simulations. The values cover almost
the entire range of ±1.41, with a standard deviation of .47. Hence, the true distances and the
errors have about the same standard deviation, so that the error on the true distances can be
considered “substantial” in case of e = 1.

Figure 3 exhibits what similarity values, using r and c, can be expected when comparing two
2-dimensional random configurations with 3, 4, ..., 100 points, respectively. The solid points
that are connected by a solid line show the mean similarity coefficients observed for 10,000
pairs of random configurations. The solid line above the mean line represents the standard
deviations of the observed coefficients. The open circles above these lines show the 99%
quantiles.

The random benchmarks values of r and c for a selection of n points are shown numerically in
Table 1. The table also exhibits the Stress values obtained when scaling random dissimilarities
for the same number of points with ordinal and interval MDS, respectively. The Stress values
are generated for data drawn from a uniform random distribution using the randomstress()

function of smacof (Mair et al. 2016), with 1,000 replications for each n and type of MDS. The
results in Figure 1 can be evaluated against these benchmarks. For example, for n = 20 points
and e = 1, the simulations lead to a mean recovery of r = .921, c = .970, and Stress = .182
when using interval MDS. These values are hugely unlikely for random data: The r and c
recovery values are clearly greater than the benchmark values for n = 20 in Table 1, and
the Stress values are also much smaller than the expected 5% quantiles when scaling random
dissimilarities. Hence, one can conclude that the dissimilarities definitely contain a systematic
2-dimensional distance component.

4. Discussion

The simulations demonstrate that MDS can be expected to generally recover an underlying
true configuration of points the better the more points one has. The effect of more points
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Table 1: Fit coefficients for random dissimilarities in ordinal and interval MDS.

c r ordinal MDS interval MDS

n m(c) sd(c) c99 m(r) sd(r) r99 m(S) sd(S) 5% m(S) sd(S) 5%

6 .837 .055 .950 .572 .155 .837 .060 .042 .003 .138 .035 .075
10 .826 .035 .905 .436 .130 .826 .190 .021 .153 .236 .019 .204
15 .822 .024 .878 .354 .112 .822 .260 .013 .237 .289 .012 .268
20 .820 .019 .864 .305 .096 .820 .298 .009 .283 .318 .008 .304
25 .819 .015 .855 .272 .088 .819 .321 .007 .311 .337 .006 .327
30 .818 .013 .850 .248 .080 .818 .338 .005 .330 .349 .005 .342
50 .817 .009 .839 .191 .063 .817 .370 .002 .367 .376 .002 .372
100 .816 .005 .829 .135 .045 .816 .396 .001 .394 .398 .001 .397

Legend: n is number of points; m(c), sd(c), and c99 denote mean, standard deviation, and
99% quantile of c; m(r), sd(r), and r99 denote mean, standard deviation, and 99% quantile
of r; m(S), sd(S), and 5% are mean Stress, standard deviation of Stress, and 5% quantile of
Stress for ordinal and interval MDS, respectively.

on recovery is larger for larger numbers of points (n), and also larger for higher error levels.
However, the improvement effects can be found only if there are at least about 10 points in
case of ordinal MDS, and at least that many points in case of interval MDS. This is not a real
limitation, though, since fewer than 10 points should generally not be used in real applications
of (2-dimensional) MDS anyway. Kruskal and Wish (1978, p. 52) suggest as “a rule of thumb”
that n > 4m should hold, where m is the dimensionality of the MDS space.

The quality of recovery – as measured by two different coefficients of geometrical similarity of
the true and the MDS configuration – is clearly better than can be statistically expected for
random configurations, even in case of few points and high levels of error. This follows from
comparing the r and the c coefficients in Figure 1 with their benchmark values in Figure 3.

The simulations also show that the recovery is not just improved but greatly improved with
more points, in particular if the error level of the data is substantial. MDS succeeds in smooth-
ing the data so that the true underlying configuration surfaces from the noisy observations:
The MDS distances, therefore, become better information than the observed and noisy data.

The relation of Stress increments and recovery improvements (in terms of r or c) is essen-
tially linear for low to medium error levels (for n > 9). For high error levels, the recovery
improvements as compared to the Stress increments are relatively small for few points and
then accelerate for many points. Hence, for noisy data and few points, merely adding one or
two additional points cannot be expected to improve the model fit very much. However, it
should also be added that not all points are equal, i.e. points associated with large distances
in the true configuration impact the MDS solution more than points close to the centroid of
the configuration. Hence, if the MDS user has a choice he or she should first consider such
high-impact points (provided they are reliable).

When comparing the results of ordinal and interval MDS, one notes that interval MDS leads
to clearly higher Stress values in general, but the differences taper off considerably when the
number of points becomes large. For 50 or 100 points, the Stress values are very similar. For
n > 9 points, both models also lead to similar levels of recovery. Only for very few points,
ordinal MDS is more successful in recovering the true configuration.

It has been asked whether the similarity coefficients c and r used in this study are equally
good. In particular, it may appear that c is technically superior because it does not require
Procrustean transformations but simply compares the distances of two configurations (Vera
2017)). However, in this study, both c and r are computed on the same configurations, X
(true configuration) and Y∗ (fitted MDS solution). The Procrustean fitting of Y to X is
solved analytically. There are no local minima problems. If technical MDS problems arise
when computing Y, they affect both c and r, and not just one of these coefficients. On the
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Figure 3: Expected similarity indexes for 2-dimensional random configurations with n =
3, ..., 100 points; solid black points represent mean values; blue line shows standard deviations;
open circles are 99% quantiles.

other hand, one should keep in mind that each coefficient answers a rather complex geometric
question – the degree of similarity of two configurations – by a single number. It is therefore
not surprising that c and r do not always arrive at exactly the same conclusions (for an applied
example see Borg and Groenen 2005).

A technical problem that can arise when computing MDS solutions is that the solutions
are not global but only local minima. This is particularly likely when using random initial
configurations in MDS (Borg and Mair 2017). However, to generate the above results we
always used the Torgerson configuration to start the MDS algorithm. This is the default
in practice, making local minima much less likely than using random starting configurations
(Borg et al. 2017). Other starting configurations (including X itself) were also tested, leading
to the same results in the simulations. Note also that each point in Figure 1 is based on 3.000
MDS analyses. In summary, one one can therefore safely assume that the general conclusions
are not affected by local minima problems.

Finally, a number of caveats should be mentioned. First, we only simulated the 2-dimensional
MDS case, assuming that the underlying true configuration is also 2-dimensional. This rep-
resents the case of the vast majority of MDS applications published in the literature. Second,
our true underlying configurations were constructed by sampling their coordinates randomly
from a rectangular distribution. This led to configurations whose points are fairly evenly
distributed in the unit square. With real data, such distributions are not always guaran-
teed. One example is the case of personal values from the Introduction. Here, the points are
distributed along a circle in space, leaving the center of the configuration empty. Moreover,
when adding certain values such as “religion” to the standard set of ten personal values that
give rise to the Schwartz value circle, it means that one adds a point that only partly belongs
to the usual basic values (Borg, Hermann, Bilsky, and Pöge 2019): Religion requires an ad-
ditional third dimension to be fully fitted to the ten-value value circle and, if fitted into two
dimensions, it would therefore lead to higher Stress values but not to better recovery. Even
if all variables can be represented in the same dimensionality, an additional point may lead
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to problems of fit and recovery. The user can detect such cases, however, by keeping an eye
on the Stress-per-Point indexes when adding variables to the data set.
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