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Abstract

The main purpose of this paper is to perform linear regression analysis on a con-
tinuous aggregate outcome from a Bayesian perspective using a Markov chain Monte
Carlo algorithm (Gibbs sampling). In many situations, data are partially available due to
privacy and confidentiality of the subjects in the sample. So, in this study, the vector of
outcomes, Y, is realistically assumed to be missing and is partially available through sum-
mary statistics, sum (Y), aggregated over groups of subjects, while the covariate values,
X, are available for all subjects in the sample. The results of the simulation study high-
light both the efficiency of the regression parameter estimates and the predictive power
of the proposed model compared with classical methods. The proposed approach is fully
implemented in an example regarding systolic blood pressure for illustrative purposes.

Keywords: aggregate information, Bayesian analysis, linear regression, MCMC.

1. Introduction

The relation among two or more observable quantities is the main concern of many scientific
studies. Particularly, how a response outcome Y varies as function of a p−vector of quantities
X. Typically, both X and Y are available for each individual in the sample, let DC be
the complete data set, where DC = {(Xi, Yi) , 1 ≤ i ≤ n }. The model in matrix-form is
Y = Xβ + e, such that X is an n× p design matrix consisting of p− 1 explanatory variables
with the first column being fixed at 1 for the intercept, therfore, the regression parameters
are β

′
= [β0, β1, . . . , βp−1]. The error term e follows the multivariate normal distribution,

MVN
(
0, σ2In

)
, where In is the identity n × n matrix, and Y is a vector of n outcomes.

Based on this classical scenario, the standard statistical regression models can be used to
draw meaningful statistical inferences about the regression parameters β and σ2.

However, in many situations, data are partially available due to privacy and confidentiality
of the subjects in the study, see Moineddin and Urquia (2014). In this article, we realistically
assume that the Y values are missing for subjects, but only aggregate information, i.e., sums,
minimum, and maximum of Y values of groups of subjects are available, while the X values
are available for each individual in the study. In notation, suppose there are J groups of data.
The jth group has nj subjects, where j = 1, . . . , J and n1 + n2 + · · ·+ nJ = n. The outcome
of the ith subject in the jth group is Yij with covariates Xij = [1, Xij 1, Xij 2, . . . , Xij p−1],
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which is a (1× p) matrix. Define the following J-dimensional vectors. For j = 1, . . . , J let

• Y∗: The vector composed of the group-sum values, Y∗ =
[
Y∗

j

]
, where Y∗

j =
∑nj

i=1 Yij .

• Ymin: The vector composed of the group-minimum values, Ymin =
[
Yj(1)

]
, where

Yj(1) = min
{
Y1 j , Y2 j , . . . , Ynj j

}
.

• Ymax: The vector composed of the group-maximum values, Ymax =
[
Yj(nj)

]
, where

Yj(nj) = max
{
Y1 j , Y2 j , . . . , Ynj j

}
.

Set DPA to be the partially aggregate data where the design matrix X, Y∗, Ymin, and Ymax

are available, while Yj
′

=
[
Y1 j , Y2 j , . . . , Ynj j

]
are missing for all j = 1, . . . , J . Notice that

DPA can not be utilized by the standard statistical methods to estimate
(
β, σ2

)
.

The most common approach to deal with such type of missing data is to restrict the analysis

to the group level data DG =
{(

X∗
j , Y∗

j

)
, 1 ≤ j ≤ J

}
, where X∗

j =
∑nj

i=1 Xij , which is a

completely-aggregated data. In this case, DG serves as a bivariate random sample of size
J , so it can be fitted by the standard statistical regression theory with a design matrix

X∗ =

 X∗
1

...
X∗

J

, of dimension J × p, and Y∗ as a vector of J outcomes. Analysis based on

completely-aggregated data, DG, is popular especially in meta-analysis, for more information
see Moineddin and Urquia (2014) and Riley, Lambert, Staessen, Wang, Gueyffier, Thijs, and
Boutitie (2008).

However, such analysis suffers from several disadvantages; (1) Aggregating both X and Y
values smooths out variation at the individual level and therefore, synthetically, inflates the
correlation coefficient values. (2) Most importantly, assuming that relationships observed for
groups necessarily hold for individuals is known as ecological fallacy, therefore models fit group
level data can not be applied to individual-level data. For further details about ecological
fallacy see Dias, Sutton, Welton, and Ades (2013) and Freedman (1999). (3) When J is small
and group sizes are generally large, then DG has very few amount of information that can be
relied on. Retrospectively, it is promising to conduct inference based on partially aggregated
data, which is the main idea of this article.

The proposed method is motivated by the work done by Choi, Schervish, Schmitt, and Small
(2008), who developed a Bayesian approach to a logistic regression model applied to partially
aggregate data. The objective of the proposed method is to, simultaneously, predict the
missing values of Y and to estimate the regression model parameters, β and σ2, based on
only the partially aggregate data DPA. Predicting the missing values, is tempted by the
idea of missing data imputation. For a thorough discussion of missing data imputation see
Gelman, Carlin, Stern, and Rubin (2014) and Rubin (2004). It is expected that the inference
based on DPA should be more accurate when compared with the one based on DG especially
when J is small and group sizes are, generally, large.

The paper is organized as follows. The main elements for Bayesian inference are presented in
section 2. The behavior of both the Bayesian estimates and the predictive power are exploited
via a simulation study in Section 3. A discussion is led about the conditions under which the
proposed method outperforms traditional method. Section 4 illustrates the approach using a
real data. Finally, we make concluding remarks in section 5.

2. Bayesian analysis

This section is devoted to propose two Bayesian models; (1) the partially aggregate model,
ModelPA, and (2) the group level model, ModelG, which are applied to fit both DPA and DG

, respectively. Two important components need to be specified in order to conduct proper



92 A Bayesian Regression Model with Aggregate Data

Bayesian analysis; (1) The loss function, and (2) The prior knowledge about the parameters
of interest expressed as a probability distribution. The Bayesian estimators of both models
are developed using the squared error loss function. Non-informative and weakly-informative
priors are used so that posterior densities would be dominated by the sample data, Gelman
et al. (2014).

Once the prior distributions of the unknown parameters are determined, they are combined
with the likelihood function to obtain a joint posterior distribution for the unknown param-
eters. Typically, the joint posterior distribution of the parameters of interest is analytically
intractable. So Markov chain Monte Carlo algorithm (MCMC) together with Gibbs sampling
are employed to make inference about the parameters of interest.

2.1. The group level model (ModelG)

The group level data DG is modeled by Y∗
j = X∗

jβ + e∗j , where the errors e∗j are independent

normally distributed with mean 0 and variance njσ
2, for j = 1, . . . , J .

Prior:

A weakly-informative prior is assigned to parameter space of (β, σ2) as follows. Set the

prior π(σ2) ∝
(
σ2
)−(a+1)

e−
b
σ2 , which is the kernel of the Inverse-Gamma distribution with

hyper-parameters shape = a and rate = b. The variance of the Inverse-Gamma distribution
is b2

(a−1)(a−2) . So, when a = 2.0005 and b = 1 the variance of π(σ2) becomes very large which

produces a weakly-informative prior for σ2. The parameter vector β are assumed to be priori
indepndent with flat prior on their domain, that is π(β)=1. The parameters β and σ are
assumed to be priori independent, therefore the joint prior distribution is

π(β, σ2) ∝
(
σ2
)−(a+1)

e−
b
σ2 .

Posterior:

The joint posterior distribution of
(
β, σ2

)
given the groupe level data is

π
(
β, σ2|Y∗, X∗) ∝ π (β, σ2)P (Y∗|σ2, β, X∗) ,

where P
(
Y∗|σ2, β, X∗) is the likelihood function of the grouped data. After simple algebras,

the joint posterior distribution can be written as

π
(
β, σ2|Y∗, X∗) ∝ (σ2)−(J2+a+1)

exp−

{
1
2 (Y∗ −X∗β)

′
W−1 (Y∗ −X∗β) + b

σ2

}
, (1)

where W =


n1 0 · · · 0
0 n2 · · · 0
...

...
...

...
0 0 · · · nJ

.

The joint posterior distribution of
(
β, σ2

)
can be factored as

π(β, σ2|Y∗, X∗) = π
(
β|σ2, Y∗, X∗)π (σ2|Y∗, X∗)

Notice that π
(
β|σ2, Y∗, X∗) is the conditional posterior distribution for β given σ2 and

π
(
σ2|Y∗, X∗) is the marginal posterior distribution for σ2, see Gelman et al. (2014), which

are as follows.
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The marginal posterior distribution for σ2 can be shown to be the Inv-Gamma distribution
with shape A=a+ J−p

2 and rate B = b+ 1
2 (Y∗)

′ (
W−1 −H

)
Y∗, where

H = W−1X∗
[
(X∗)

′
W−1X∗

]−1 (
W−1X∗)′ .

Notice that the matrix, H, is the same as the Hat matrix for weighted least square regression.
Moreover, (Y∗)

′ (
W−1 −H

)
Y∗ represents weighted-residual sum of squares. That is

π
(
σ2|Y∗, X∗) ∝ π (σ2, β) (σ2)−J−p

2 exp

[
− 1

2σ2
(Y∗ −X∗β)

′
W−1 (Y∗ −X∗β)

]
The posterior distribution of β given σ2 can be shown to be multivariate normal with mean

β̂ =
[
(X∗)

′
W−1X∗

]−1
(X∗)

′
W−1Y∗

and Variance-Covariance matrix σ2
[
(X∗)

′
W−1X∗

]−1
. That is,

π
(
β|σ2, Y∗, X∗) =(

2πσ2
)− p

2

∣∣∣∣[(X∗)
′
W−1X∗

]−1
∣∣∣∣− 1

2

exp

[
− 1

2σ2

(
β−β̂

)′
(X∗)

′
W−1X∗

(
β−β̂

)]
The Markov chain Monte Carlo algorithm is implemented by the following steps:

• for j = 1, . . . , N , where N is the number of MCMC iterations,

• sample σ2
(j)

from π
(
σ2|Y∗, X∗),

• sample β(j) from π
(
β|σ2(j) , Y∗, X∗

)
.

2.2. The partially aggregate model (ModelPA)

The major idea of the proposed partially aggregate model is the treatment of the missing
responses Y as additional parameters to be estimated. So a Bayesian inference about the
parameter vector

(
Y, β, σ2

)
, based on DPA, is desired. According to Bayes’ Theorem the

posterior distribution π(Y, β, σ2|Y∗, Ymin, Ymax, X) equals to

π(β, σ2)π(Y |β, σ2, Y∗, Ymin, Ymax, X).

Set the prior π(β, σ2) ∝
(
σ2
)−(a+1)

e−
b
σ2 , which is the weakly-informative density obtained in

sub-section 2.1.1. Markov chain Monte Carlo algorithm with Gibbs sampling is implemented
by specifying both π(β, σ2|Y, X) and π(Y |β, σ2, Y∗, Ymin, Ymax, X) which are provided
below:

1. π(β, σ2|Y, X): Given Y, the joint posterior distribution π(β, σ2|Y, X) is factored as
π(β|σ2, Y, X)π(σ2|Y, X). Notice that the conditional posterior distribution π(β|σ2, Y, X)

is a multivariate normal distribution with mean β̂ =
(
X
′
X
)−1

X
′
Y and variance-

covariance matrix σ2
(
X
′
X
)−1

. The marginal posterior distribution π(σ2|Y, X) is the

Inv-Gamma distribution with shape A=a+ n−p
2 and rate B = b+

(Y−Xβ̂)
′
(Y−Xβ̂)
2 .

2. π(Y |β, σ2, Y∗, Ymin, Ymax, X): The next sub-section is devoted to explain how to
generate the missing values Y given β, σ2, Y∗, Ymin, and Ymax.
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Generating the missing outcomes

This section aims to discuss how to generate the missing outcomes, Y, Given β, σ2,Y∗,Ymin,
and Ymax

Given
(
σ2, β

)
, Y1, . . . , YJ are conditionally independent random vectors, i.e.

P (Y |β, σ2, Y∗, Ymin, Ymax, X) =
J∏

j=1

P (Yj |β, σ2, Y∗
j , Yj(1), Yj(nj), Xj).

So, without loss of generality, only the distribution of P (Yj |β, σ2, Y∗
j , Yj(1), Yj(nj), Xj) is

considered. Notice that, P (Yj |β, σ2, Y∗
j , Yj(1), Yj(nj), Xj) is proportional to

P (Yj |β, σ2, Y∗
j , Xj)

with a restricted support, where each component yi j ∈
[
Yj(1), Yj(nj)

]
, for all 1 ≤ i ≤ nj .

So P (Yj |β, σ2, Y∗
j , Xj) is firstly obtained and then its truncation, based on the restricted

support, is followed. It can be shown that P (Yj |β, σ2, Xj) is MVN
(
µj, σ

2Inj
)
, where µ

′
j =[

X1jβ, . . . , Xnjjβ
]
. Since Y∗

j is given, then the number of missing responses in each Yj is

(nj − 1). Set θ
′
j =

[
y1 j , y2 j , . . . , y(nj−1) j

]
to be the missing responses that are considered

as additional parameters to be estimated. So we need to find P (θj |β, σ2, Y∗
j , Xj). For this

purpose, consider the linear transformation W = TYj , where T is square matrix of size nj

given by T =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 0 1 0
1 1 1 1 1

. As a block matrix, T can be written as

[
I(nj−1) 0

1
′

1

]
,

where 0 is a vector of zeros of dimension (nj − 1), and 1 is a vector of ones of dimension
(nj − 1).

Notice that

W =

[
θj

Y∗
j

]
given

(
β, σ2, X

)
follows

MVN




X1jβ
...

X(nj−1)jβ(∑nj
i=1 Xij

)
β

 , σ2
[

I(nj−1) 1

1
′

nj

]
By using the conditional distribution theory of the multivariate normal distribution, derived
by Anderson (1957), P (θj |β, σ2, Y∗

j , X) is a multivariate normal distribution with mean µj

and variance-covariance matrix
∑

j such that,

µj =

 X1jβ
...

X(nj−1)jβ

+
1

nj

 Y∗
j −

(∑nj
i=1 Xij

)
β

...
Y∗

j −
(∑nj

i=1 Xij

)
β


=

 X1jβ
...

X(nj−1)jβ

+ 1
(
Ȳj − X̄jβ

)
,

and ∑
j

= σ2
(

I(nj−1) −
1

nj
11
′
)
.
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Notice that, for i1 6= i2, the Correlation (Yi1 j , Yi2 j) =
Cov(Yi1 j , Yi2 j)√

V ar(Yi1 j)V ar(Yi2 j)
= − 1

(nj−1) .

Finally a truncated form of the conditional density P (θj |β, σ2, Y∗
j , Xj) is considered by re-

stricting the support to be Yi j ∈
[
Yj(1), Yj(nj)

]
, for all 1 ≤ i ≤ (nj − 1). In other words,

given β, σ2, Y∗
j , Yj(1), and Yj(nj), Yj is generated from truncated multivariate normal distri-

bution. See Horrace (2005) and Wilhelm (2015) for the properties and the generation from
truncated multivariate normal distribution, respectively. This completes the Bayesian model
specification and it sets the stage for Gibbs sampler to be implemented as follows

• Step One: Given Y,
(
β, σ2

)
is obtained as: Firstly, σ2 is generated from π(σ2|Y, X).

Then, given σ2, β is generated from π(β|σ2, Y, X).

• Step Two: Given
(
β, σ2

)
, θj =

[
Y1 j , Y2 j , . . . , Y(nj−1) j

]′
is generated from the trun-

cated multivariate normal density,

P (θj |β, σ2, Y∗
j , Yj(1), Yj(nj), Xj).

Then set Yj =

[
θj

Y∗
j −

∑(nj−1)
i=1 Yij

]
. Repeat this step for each j = 1, . . . , J . See

Wilhelm and Manjunath (2010) for generating truncated multivariate normal vectors
using R-package (tmvtnorm).

• Step Three: Repeat the above two steps for N MCMC iterations

The missing observations θj in each group can be predicted from their posterior predictive
distribution given by∫ ∫

P (θj |β, σ2, Y∗, Ymin, Ymax, X)π(β, σ2 |Y∗, Ymin, Ymax, X)dσ2dβ. (2)

3. Simulation study

A simulation study is conducted to investigate, based on empirical evidence, the performance
of the parameter estimators and the predictive power of both models; ModelG and ModelPA

in terms of the mean squared errors by considering different values of the parameters. The
sample size is varied to observe the effect of small and large samples on the performance.
At each scenario, 2000 data sets are simulated from the true model Y = Xβ + e. Both
DPA and DG are constructed from each simulated dataset. The Bayesian models ModelG
and ModelPA are applied to each corresponding simulated data set, with an MCMC of length
10,000 iterations such that 6000 burn-in and the last 4000 draws as the posterior sample from
the target joint posterior distribution.

3.1. Simulation

• Set the regression parameters β = (β0, β1) = (0.5, 1.1).

• Decide the scenario by setting: (1) Number of groups; J to be one of the values from
{4, 6, 10, 15}. (2) Group size; Although we tried two scenarios for group sizes, one with
equal group sizes and the other with unequal group sizes, we show here only the results
for equal group sizes because the results were similar in both scenarios. We set the
group size to be one of the values from {n1 = n2 = · · · = nJ = I = 6, 8, 12, or 20}. (3)
σ2 to be one of the values from {10, 20, or 30}.



96 A Bayesian Regression Model with Aggregate Data

• For each scenario:

– Generate n = IJ values from uniform (1, 20) to be the covariate values that
constitute the second column of the design matrix X, with the first column being
fixed at 1.

– Decide the three location
{
X(2), Median, X(n−1)

}
at which prediction is desired.

– Divide the list 1, . . . , n into J groups, with each group having I observations such
that n = IJ .

– Repeat the following steps (1 through 6) 2000 times.

1. Generate Y values from MVN
(
Xβ, σ2In

)
.

2. For each 1 ≤ j ≤ J , obtain Y∗
j =

∑nj
i=1 Yij , Yj(1) = max

{
Y1 j , Y2 j , . . . , Ynj j

}
,

Yj(nj) = max
{
Y1 j , Y2 j , . . . , Ynj j

}
, and X∗

j =
∑nj

i=1 Xij .

3. The partially aggregate data DPA is composed of Y∗, Ymin, Ymax, and the

design matrix X, while DG =
{(

X∗
j , Y∗

j

)
, 1 ≤ j ≤ J

}
.

4. Both ModelPA and ModelG are applied toDPA andDG to produce
(
β̂, σ̂2

)
PA

and(
β̂, σ̂2

)
G

, respectively.

5. ModelPA predicts the outcome Y , at the three predetermined locations, by
using the formula in (2).

6. ModelG predicts the outcome Y , at the three predetermined locations, by using

the formula Ŷ =
(
1
I

) (
β̂0

)
G

+
(
β̂1

)
G
X. Notice that ,

(
β̂0

)
G

, the intercept

parameter estimate resulted from ModelG, needs to be multiplied by
(
1
I

)
. The

reason for this is because the prediction is desired for a single Y value, while
the estimators are obtained based on Y∗

j , which is a sum of Y values. In other
words (β0)G and Y are not on the same scale because of the aggregation, while
the other regression parameters, β1, are not affected by aggregation.

3.2. Simulation results

The simulation results are listed in this section. The mean square error of the estimates of
β1 are provided in Table 1. Table 2 shows the coverage probability and half length of a 95%
highest posterior credible interval for β1. The square root of the mean square error of the
estimates of σ2 are provided in Table 3. Table 4 provides the prediction error of the missing
outcomes using both models ModelPA and ModelG. The prediction power of the proposed
model is investigated at 3 distant locations in the range of X values. Two locations on the
boundaries; which are X(2) (second minimum) and X(n−1)(second maximum) . While, the
third location is at the median, which is considered to examine predicting Y values when
X is close to the center of the data. Conclusions are drawn regarding the behavior of the
estimators and the predictive power, which are summarized in the next subsection. Notice
that:

1. The first three scenarios consider the case of increasing σ2 while keeping the sample
size, n = IJ = (6) (8) = 48, fixed.

2. The last three scenarios consider the case of increasing the number of groups J while
keeping, σ2 = 30, fixed.

3. The two middle-scenarios, when(J, I) = (4, 12) or (4, 20), are considered to assess the
realistic case when there are few number of groups with a lot of missing data in each
group. In this regard, it is expected that DPA is efficiently utilized byModelPA which takes
advantage over ModelG.
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Table 1: MSE for β̂1

σ2 = 10 20 30 20 30 30 30

(J, I) = (6, 8) (6, 8) (6, 8) (4, 12) (4, 20) (10, 6) (15, 6)

ModelPA 0.669 1.09 0.654 0.805 1.429 0.422 0.413

ModelG 0.924 7.78 1.215 1.896 9.495 0.645 0.488

Table 2: Coverage prob. and half length (in parenthesis) of a 95% credible interval for β1

σ2 = 10 20 30 20 30 30 30

(J, I) = (6, 8) (6, 8) (6, 8) (4, 12) (4, 20) (10, 6) (15, 6)

ModelPA 0.85(0.61) 0.82(0.82) 0.84(0.90) 0.80(0.92) 0.78(1.00) 0.85(0.82) 0.74(0.68)

ModelG 0.89(1.47) 0.85(2.13) 0.86(2.20) 0.76(2.72) 0.79(3.27) 0.91(1.98) 0.95(1.45)

3.3. Discussion

1. In terms of estimating the slope of the regression line, based on Table 1, as generally
expected, the mean square error decreases when sample size increases or the variabil-
ity exhibited by the data decreases. It is obvious that ModelPA outperforms ModelG
across all scenarios, especially, when J is small and I is large. The improvement of the

proposed model in reducing the MSE
(
β̂1

)
is attributed to the practical importance of

the truncation of the underlying multivariate normal distribution.

2. Table 2 shows the coverage probabilities and half length of a 95% credible interval for
β1. It can be seen that ModelPA have a comparable results with ModelG in terms of
coverage probability, while it has smaller half length. That means the interval estimates
of ModelPA is more accurate than ModelG.

3. Based on Table 3, as the sample size increases or σ2 decreases the MSE of the variance
estimates provided by both methods decreases. It seems that the proposed model per-
forms as well, if not slightly worst than the group level model. Both models suffer from
under-estimating σ2 for completely different reasons. The under-estimation of σ2 occurs
when using ModelPA is a result of the truncation of the underlying multivariate normal
distribution. While, the under-estimation of σ2 occurs when using ModelG is explained
by Freedman (1999) who mentioned that aggregating smooths out the variation.

4. A cursory examination of Table 4, the prediction error decreases as the data exhibits
less variability or the sample size increases. The smallest prediction error occurs at
the median, which is expected because there are more data points in the centre than
on the boundaries. Apparently, across all scenarios, ModelPA outperforms ModelG in
predicting Y values especially at the boundaries of the X range, see when(J, I) =

Table 3: Square root MSE for σ̂2

σ2 = 10 20 30 20 30 30 30
(J, I) = (6, 8) (6, 8) (6, 8) (4, 12) (4, 20) (10, 6) (15, 6)
ModelPA 6.189 13.35 20.442 14.760 22.076 18.58 17.788
ModelG 5.607 11.58 16.917 14.071 21.179 13.73 10.880
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Table 4: Prediction error at three X locations

X(2) Median X(n−1)

σ2 = 10, J = 6, I = 8 ModelPA 17.521 9.097 18.547
ModelG 21.291 9.975 23.543

σ2 = 20, J = 6, I = 8 ModelPA 29.98 17.73 26.83
ModelG 95.52 19.93 82.54

σ2 = 30, J = 6, I = 8 ModelPA 29.335 26.729 33.164
ModelG 35.394 29.821 44.904

σ2 = 20, J = 4, I = 12 ModelPA 22.828 17.779 28.540
ModelG 31.309 18.982 45.764

σ2 = 30, J = 4, I = 20 ModelPA 48.221 28.825 38.781
ModelG 162.39 29.572 114.272

σ2 = 30, J = 10, I = 6 ModelPA 28.04 25.024 27.76
ModelG 34.11 28.35 32.21

σ2 = 30, J = 15, I = 6 ModelPA 26.120 25.457 26.043
ModelG 30.322 29.503 29.498

(4, 12) or (4, 20). The superiority of the prediction power of the proposed model could
be a result of implementing P (Y |β, σ2, Y∗, X) in ModelPA.

5. The overall picture that these results show is the superiority of the proposed Bayesian
method in estimating β and predicting Y, especially, when J is small and I is large.

4. Real dataset analysis

4.1. Data description

To illustrate our method on real data, we consider a data set concerning the relationship
between systolic blood pressure (BP) for 28 people and their ages. The complete data is
available in Kleinbaum, Kupper, Nizam, and Rosenberg (2013). Let Y be Systolic blood
pressure and X be the person age, so DC = {(Xi, Yi) , 1 ≤ i ≤ 28}. The systolic blood
pressure value is predicted given the age of the person using both ModelPA and ModelG when
applied to DPA and DG, respectively, which are shown in Table 5 and Table 6.

Table 5: The group level data DG

DG X∗(Year) Y∗(mm Hg)
Group1 329 1005
Group2 318 1010
Group3 263 887
Group4 328 979

4.2. Data results

This subsection is devoted to investigate the predictive power of the proposed model when
applied to a real data. Let ŶPA, i, ŶG, i be the predicted values of Yi (for i = 1, . . . , 28) using
ModelPA and ModelG, respectively. Since the true value, Y , is provided in DC , then we are
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Table 6: The partially aggregate data DPA

DPA X (Year) Y∗(mm Hg) Ymin Ymax

Group1 67 25 63 36 65 56 17 1005 114 170
Group2 46 19 64 39 39 44 67 1010 120 162
Group3 34 42 29 42 47 21 48 887 110 145
Group4 56 59 53 45 20 50 45 979 116 158

Table 7: Prediction Error for ModelPA and ModelG

Model Prediction Error

ModelPA
∑28

i=1

(
ŶPA, i − Yi

)2
= 2073.3

ModelG
∑28

i=1

(
ŶG, i − Yi

)2
= 6299.6

able to calculate the prediction error for each model. Apparently, from Table 6, the proposed
model, ModelPA, produces less prediction error compared with ModelG.

5. Conclusions

The present study proposed a linear regression analysis with a continuous outcome missing for
subjects but where only aggregate information is available. Two Bayesian approaches are dis-
cussed, namely the group level and the partially aggregate models. For both models, Bayesian
estimators cannot be obtained in closed forms and hence Gibbs sampling was used to sample
from the conditional posteriors of the parameters. The results of the simulation study and the
real data analysis demonstrate the superiority of the proposed Bayesian partially aggregate
model over the existed group level model in estimating β and predicting the missing observa-
tions Y. Therefore, the authors recommend applying partialy aggregate Bayesian method for
parameter estimation and prediction in linear regression with missing data. Further research
can be done to study the performance of the partially aggregate models in the presence of
missing outcomes when the errors are dependent with different structure of the covariance
matrix and/or when they follow a t-distribution rather than the normal distribution.
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