Gravity Models in R

  • Anna-Lena Wölwer Trier University
  • Martin Breßlein Bundesnetzagentur
  • Jan Pablo Burgard Trier University

Abstract

Gravity models are used to explain bilateral flows related to the sizes of bilateral partners, a measure of distance between them and other influences on interaction costs. The underlying idea is rather simple. The greater the masses of two bodies and the smaller the distance between them, the stronger they attract each other. This concept is applied to several research topics such as trade, migration or foreign direct investment. Even though the basic idea of gravity models is rather simple, they can become very complex when it comes to the choice of models or estimation methods. The package \textbf{gravity} targets to provide \proglang{R} users with the functions necessary to execute the most common estimation methods for gravity models, especially for cross-sectional data.

 

Gravitätsmodelle werden verwendet, um bilaterale Ströme zu erklären. Dabei werden sowohl die Größen und die Distanz der jeweiligen Partner als auch weitere Einflussfaktoren zur Erklärung herangezogen. Die zugrundeliegende Idee dieser Modelle beruht auf dem Gravitätsprinzip. Je schwerer zwei Körper und je kleiner deren Distanz zueinander, desto stärker ist ihre gegenseitige Anziehungskraft. Dieses Konzept wird auf verschiedene Forschungsreiche angewendet, so zum Beispiel Handel, Migration und ausländische Direktinvestitionen. Auch wenn die zugrundeliegende Idee von Gravitätsmodellen eher einfach ist, so kann deren Schätzung je nach Wahl des zugrundegelegten ökonomischen Zusammenhangs komplex werden. Das Paket \textbf{gravity} ermöglicht es \proglang{R}-Nutzern die gängigsten Verfahren für Gravitätsmodelle in der Querschnittsanalyse zu verwenden.

References

Anderson JE (1979). “A Theoretical Foundation for the Gravity Equation.” American Eco-

nomic Review, 69(1), 106–16.

Anderson JE (2010). “The Gravity Model.” NBER Working Papers 16576, National Bureau

of Economic Research, Inc.

Anderson JE (2010). “The incidence of Gravity.” In The Gravity Model in International Trade:

Advances and Applications, chapter 3, pp. 71–87. Cambridge University Press, Cambridge.

Anderson JE, van Wincoop E (2003). “Gravity with Gravitas: A Solution to the Border

Puzzle.” American Economic Review, 93(1), 170–192.

Anderson JE, van Wincoop E (2004). “Trade Costs.” Journal of Economic Literature, 42(3),

–751.

Baier SL, Bergstrand JH (2009). “Bonus vetus OLS: A simple method for approximating inter-

national trade-cost effects using the gravity equation.” Journal of International Economics,

(1), 77–85.

Baier SL, Bergstrand JH (2010). “Approximating general equilibrium impacts of trade liber-

alizations using the gravity equation: applications to NAFTA and the European Economic

Area.” In van Bergeijk, PAG and Brakman, S (ed.), The Gravity Model in International

Trade: Advances and Applications, chapter 4, pp. 88–134. Cambridge University Press,

Cambridge.

Baldwin R (2007). “Trade Effects of the Euro: a Comparison of Estimators.” Journal of

Economic Integration, 22, 780–818.

Bergeijk PAGv, Brakman S (2010). “Introduction: The comeback of the gravity model.”

In van Bergeijk, PAG and Brakman, S (ed.), The Gravity Model in International Trade:

Advances and Applications, chapter 1, pp. 1–26. Cambridge University Press, Cambridge.

Burger M, Van Oort F, Linders GJ (2009). “On the specification of the gravity model of

trade: zeros, excess zeros and zero-inflated estimation.” Spatial Economic Analysis, 4(2),

–190.

Cameron AC, Gelbach JB, Miller DL (2011). “Robust inference with multiway clustering.”

Journal of Business & Economic Statistics, 2, 238–249.

Egger P, Pfaffermayr M (2003). “The proper panel econometric specification of the gravity

equation: A three-way model with bilateral interaction effects.” Empirical Economics,

(3), 571–580.

Egger PH, Staub KE (2016). “GLM estimation of trade gravity models with fixed effects.”

Empirical Economics, 50(1), 137–175.

Feenstra RC (2002). “Border effects and the gravity equation: consistent methods for estima-

tion.” Scottish Journal of Political Economy, 49(5), 491–506.

Feenstra RC (2004). Advanced International Trade - Theory and Evidence, volume 1. Prince-

ton University Press, Princeton, New Jersey.

Gómez-Herrera E (2013). “Comparing alternative methods to estimate gravity models of

bilateral trade.” Empirical Economics, 44(3), 1087–1111.

Head K, Mayer T (2014). “Chapter 3 - Gravity Equations: Workhorse,Toolkit, and Cook-

book.” In Gita Gopinath, Elhanan Helpman and Kenneth Rogoff (ed.), Handbook of In-

ternational Economics, volume 4 of Handbook of International Economics, pp. 131 – 195.

Elsevier.

Head K, Mayer T, Ries J (2010). “The erosion of colonial trade linkages after independence.”

Journal of International Economics, 81(1), 1–14.

Kareem FO, Martinez-Zarzoso I, Brümmer B (2016). “Fitting the Gravity Model when Zero

Trade Flows are Frequent: a Comparison of Estimation Techniques using Africa’s Trade

Data.” Technical Report 77, GlobalFood Discussion Papers.

Leibrecht M, Riedl A (2012). “Modelling FDI based on a spatially augmented gravity model:

Evidence for Central and Eastern European Countries.” Working Paper Series in Economics

, University of Lüneburg, Institute of Economics.

Martı́nez-Zarzoso I, Nowak-Lehmann D F, Vollmer S (2007). “The log of gravity revisited.”

Center for European, Governance and Economic Development Research Discussion Pa-

pers 64, University of Goettingen, Department of Economics.

Mayer T, Head K (2002). “Illusory Border Effects: Distance Mismeasurement Inflates Esti-

mates of Home Bias in Trade.” Working Papers 2002-01, CEPII.

Möhlmann LJ, Ederveen S, de Groot HLF, Linders GJM (2010). “Intangible barriers to

international trade: a sectoral approach.” In Peter A G van Bergeijk and Steven Brakman

(ed.), The Gravity Model in International Trade - Advances and Applications, chapter 8,

pp. 224–251. Cambridge University Press.

Newton I (1729). The mathematical principles of natural philosophy. By Sir Isaac Newton.

Translated into English by Andrew Motte. To which are added, The laws of the moon’s

motion, according to gravity. By John Machin Astron. Prof. Gresh. and Secr. R. Soc. In

two volumes. Benjamin Motte, at the Middle-Temple-Gate, in Fleetstreet.

Orlova D, Jost T (2006). “Zur Erklärung der Zuwanderungen nach Deutschland: ein Grav-

itationsmodell.” Arbeitspapiere des Instituts für Statistik und Ökonometrie 36, Johannes

Gutenberg-Universität Mainz, Institut für Statistik und Ökonometrie.

Ravenstein EG (1889). “The Laws of Migration.” Journal of the Royal Statistical Society,

LII, 241–301.

Santos-Silva JMC, Tenreyro S (2006). “The Log of Gravity.” The Review of Economics and

Statistics, 88(4), 641–658.

Tinbergen J (1962). Shaping the World Economy - Suggestions for an International Economic

Policy. Twentieth Century Fund, New York.

Wang J (2011). “Wavelet-based Traffic Matrix Modeling.” Thesis at the Department of

Electrical- & Computer Engineering McGill University, Montreal, Canada.

Published
2018-06-08
How to Cite
Wölwer, A.-L., Breßlein, M., & Burgard, J. P. (2018). Gravity Models in R. Austrian Journal of Statistics, 47(4), 16-35. https://doi.org/10.17713/ajs.v47i4.688