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Abstract

We introduce a new class of continuous distributions called the complementary genera-
lized transmuted Poisson-G family, which extends the transmuted class pioneered by Shaw
and Buckley (2007). We provide some special models and derive general mathematical
properties including quantile function, explicit expressions for the ordinary and incomplete
moments, generating function, Rényi and Shannon entropies and order statistics. The
estimation of the model parameters is performed by maximum likelihood. The flexibility
of the new family is illustrated by means of two applications to real data sets.

Keywords: Entropy, Generating Function, Maximum Likelihood, Order Statistic, Poisson-G
family, Transmuted Family..

1. Introduction

In the last few decades, there have been an increased interest among statisticians to define
new generators of univariate distributions by adding one or more shape parameter(s) to
a baseline distribution. The extra parameters can provide great flexibility for modelling
data in several applied areas such as reliability, engineering, economics, biological studies,
environmental and medical sciences. The extra parameters of a good generator can usually
give lighter tails and heavier tails, accommodate unimodal, bimodal, symmetric, bimodal and
right-skewed and bimodal and left-skewed density function, increase and decrease skewness
and kurtosis and, more important, yield the four types of the hazard function (increasing,
decreasing, bathtub and unimodal). There are several well-known generators such as the
following ones: the Marshall-Olkin-G by Marshall and Olkin (1997), beta-G by Eugene, Lee,
and Famoye (2002), Kumaraswamy-G by Cordeiro and de Castro (2011), McDonald-G by
Alexander, Cordeiro, Ortega, and Sarabia (2012), gamma-G by Zografos and Balakrishnan
(2009), Kumaraswamy odd log-logistic-G by Alizadeh, Emadi, Doostparast, Cordeiro, Ortega,
and Pescim (2015), beta odd log-logistic generalized by Cordeiro et al. (2015), transmuted
exponentiated generalized-G by Yousof, Afify, Alizadeh, Butt, Hamedani, and Ali (2015),
generalized transmuted-G Nofal, Afify, Yousof, and Cordeiro (2017), transmuted geometric-

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v47i4.577
www.osg.or.at


52 The Complementary Generalized Transmuted Poisson-G Family of Distributions

G by Afify, Alizadeh, Yousof, Aryal, and Ahmad (2016a), Kumaraswamy transmuted-G by
Afify, Cordeiro, Yousof, Alzaatreh, and Nofal (2016b), beta transmuted-H by Afify, Yousof,
and Nadarajah (2017), Burr X-G by Yousof, Afify, Hamedani, and Aryal (2016) and odd-Burr
generalized-G by Alizadeh, Cordeiro, Nascimento, Lima, and Ortega (2017) families, among
others.

Consider a baseline cumulative distribution function (cdf) G(x; ξ) and probability density
function (pdf) g(x; ξ) depending on a parameter vector ξ, where ξ = (ξk) = (ξ1, ξ2, . . .).
Thus, the cdf and pdf of the transmuted-G (TG) family of distributions are defined by

F (x;λ, ξ) = G (x; ξ) [1 + λ− λG (x; ξ)] (1)

and

f (x;λ, ξ) = g (x; ξ) [1 + λ− 2λG (x; ξ)] , (2)

respectively. Henceforth, let hδ(x) = δ g(x)G(x)δ−1 be the exponentiated-G (Exp-G) density
with power parameter δ > 0. Clearly, the TG density is a linear mixture of the baseline
density and Exp-G density with power parameter two. If λ = 0 in (2), we obtain the baseline
distribution. Further details were explored by Shaw and Buckley (2007).

Let p(t) be the pdf of a random variable T ∈ [a, b] for −∞ < a < b <∞ and let W [G(x)] be
a function of the cdf of a random variable X such that the following conditions hold:

(i) W [G(x)] ∈ [a, b],

(ii) W [G(x)] is differentiable and monotonically non-decreasing, and

(iii) W [G(x)]→ a as x→ −∞ andW [G(x)]→ b as x→∞.
(3)

Recently, Alzaatreh, Lee, and Famoye (2013) defined the cdf of the T-X family of distributions
by

F (x) =

∫ W [G(x)]

a
p(t) dt, (4)

where W [G(x)] satisfies the conditions (3). The pdf corresponding to 4 is given by

f(x) =

{
d

dx
W [G(x)]

}
p (W [G(x)]) . (5)

Based on the complementary power series distribution (Flores el al., 2013), the cdf and pdf
of the transmuted complementary Poisson (TCP) distribution are given by

F (x) =
eθ(1−e

−β x) − 1

eθ − 1

[
1 + λ

eθ − eθ(1−e
−β x)

eθ − 1

]

and

f(x) =
θβ e−β xeθ(1−e

−β x)

eθ − 1

[
1− λ+ 2λ

eθ − eθ(1−e
−β x)

eθ − 1

]
,

respectively, where θ > 0, β > 0 and |λ| ≤ 1.

Let W [G(x)] = − log[1−G(x; ξ)] and p(t) be the pdf of the TCP model with unity scale. We
define the cdf of the new complementary generalized transmuted Poisson-G (CGTP-G) family
by

F (x) = 1−
∫ − log[G(x;ξ)]

0

θ e−teθ(1−e
−t)

eθ − 1

[
1− λ+ 2λ

eθ − eθ(1−e
−t)

eθ − 1

]
dt

=
eθ − eθG(x;ξ)

eθ − 1

[
1 + λ

eθG(x;ξ) − 1

eθ − 1

]
, (6)
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where G(x; ξ) is the baseline cdf depending on a parameter vector ξ, G(x; ξ) = 1 − G(x; ξ),
θ > 0 and |λ| ≤ 1 are two additional shape parameters. The CGTP-G family is a wider class
of continuous distributions. It includes the TG family when θ → 0. The main advantage of
the new family relies on the fact that practitioners will have a quite flexible two-parameter
generator to fit real data from several fields. We provide a comprehensive account of some of
its mathematical properties.

The rest of the paper is organized as follows. In Section 2, we define the CGTP-G family.
In Section 3, we present two special models and plots of their pdfs and hazard rate functions
(hrfs). We give a very useful linear representation for the family density function in Section 4.
In Section 5, we derive some of its general mathematical properties including asymptotics, or-
dinary and incomplete moments, quantile and generating functions, residual life and reversed
residual life functions and entropies. In Section 6, we investigate the order statistics and their
moments. Maximum likelihood estimation of the model parameters is addressed in Section 7.
Simulation results to assess the performance of the maximum likelihood estimation method
are reported in Section 8. In Section 9, we provide two applications to real data to illustrate
the flexibility of the new family. Finally, we offer some concluding remarks in Section 10.

2. The CGTP-G family

The pdf corresponding to (6) is given by

f (x) =
θg(x; ξ)eθG(x;ξ)

eθ − 1

[
1− λ

(
eθ + 1

)
− 2eθG(x;ξ)

eθ − 1

]
. (7)

We denote by X ∼CGTP-G(λ, θ,ξ) a random variable having density function (7). The
reliability function (rf), hrf and cumulative hazard rate function (chrf) of X are, respectively,
given by

R(x) = 1− eθ − eθG(x;ξ)

eθ − 1

[
1 + λ

eθG(x;ξ) − 1

eθ − 1

]
, (8)

τ(x) =

θg(x; ξ)eθG(x;ξ)

[
1− λ(eθ+1)−2eθG(x;ξ)

eθ−1

]
[
eθG(x;ξ) − 1

] [
1 + λ eθG(x;ξ)−1

eθ−1

]
and

H(x) = − log

{
1− eθ − eθG(x;ξ)

eθ − 1

[
1 + λ

eθG(x;ξ) − 1

eθ − 1

]}
.

A simple motivation for this family follows if we consider independent identically distributed
(iid) random variables Z1, . . . , ZN having common cdf G(x) and let N be a random variable
with probability mass function (pmf)

P (N = n) =
1

(eθ − 1)

θn

n!
, n = 1, 2, . . . , θ > 0.

Next, we define MN = min(Z1, . . . , ZN ). The cdf of MN reduces to

Π(x) =
∞∑
n=1

P (MN ≤ x|N = n)P (N = n) =
eθ − eθG(x;ξ)

eθ − 1
.

Further, let Y1 and Y2 be iid random variables with cdf Π(x) and define Y1:2 = min(Y1, Y2),
Y2:2 = max(Y1, Y2) and

V =

{
Y1:2, with probability 1+λ

2 ;

Y2:2, with probability 1−λ
2 .
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Then,

FV (x; θ, λ, ξ) =
eθ − eθG(x;ξ)

eθ − 1

[
1 + λ

eθG(x;ξ) − 1

eθ − 1

]
,

which is identical to the cdf F (x) = 1−R(x), where R(x) is given by (8).

3. Special models

The pdf (7) will be most tractable when G (x; ξ) and g (x; ξ) have simple analytic expres-
sions. In this section, we provide two special models of the CGTP-G family corresponding to
the baseline Weibull (W) and Lindley (Li) distributions, which generalize some well-known
distributions in the literature.

3.1. The CGTPW model

Consider the cdf and pdf (for x > 0) G(x) = 1 − exp(−xβ) and g(x) = βxβ−1 exp(−xβ),
respectively, of the Weibull distribution with shape parameter β and scale one. Then, the pdf
and cdf of the CGTPW model are given by

f (x) =
θβxβ−1 e−x

β

e
θ exp

(
−xβ

)
eθ − 1

1− λ
(
eθ + 1

)
− 2e

θ exp
(
−xβ

)
eθ − 1


and

F (x) =
eθ − e

θ exp
(
−xβ

)
eθ − 1

1 + λ
e
θ exp

(
−xβ

)
− 1

eθ − 1

 ,

respectively. Some plots of the density and hrf of the CGTPW model for selected parameter
values are displayed in Figure 1.

3.2. The CGTPLi model

The Lindley distribution with shape parameter α > 0 has pdf and cdf (for x > 0) given by

g(x) = α2

1+α(1 + x) exp(−αx) and G(x) = 1 − 1+α+αx
1+α exp(−αx), respectively. Then, the pdf

and cdf of the CGTPLi model are given by

f (x) =
θ(1 + x) exp

(
1+α+αx

1+α θe−αx
)

α−2 (1 + α) (eθ − 1) eαx

1− λ

(
eθ + 1

)
− 2 exp

(
1+α+αx

1+α θe−αx
)

eθ − 1


and

F (x) =
eθ − exp

(
1+α+αx

1+α θe−αx
)

eθ − 1

1 + λ
exp

(
1+α+αx

1+α θe−αx
)
− 1

eθ − 1

 ,

respectively. Some plots of the pdf and hrf of the CGTPLi model are displayed in Figure 2
for some parameter values.

4. Linear representation

We provide a useful representation for (7) using the concept of exponentiated distributions.
The pdf (7) can be expressed as

f (x) =
θ (1− λ) g(x)eθG(x)

eθ − 1
+

2λθg(x)e2θG(x)

(eθ − 1)
2 .
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Figure 1: Plots of the CGTPW density and hazard rate.
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Figure 2: Plots of the CGTPLi density and hazard rate.
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Expanding the quantities exp
[
θG(x)

]
and exp

[
2θG(x)

]
in power series, we can write

f(x) = g(x)
∞∑
i=0

[
(1− λ) θi+1

(eθ − 1) i!
+

λ (2θ)i+1

(eθ − 1)
2
i!

]
[1−G(x)]i .

Applying the binomial expansion to [1−G(x)]i, we have

f(x) = g(x)
∞∑
i=0

i∑
k=0

(−1)k

[
(1− λ) θi+1

(eθ − 1) i!
+

λ (2θ)i+1

(eθ − 1)
2
i!

] (
i

k

)
G(x)i .

By changing the sums over the indices k and i, we obtain

f(x) = g(x)

∞∑
k=0

i∑
i=k

(−1)k

[
(1− λ) θi+1

(eθ − 1) i!
+

λ (2θ)i+1

(eθ − 1)
2
i!

] (
i

k

)
G(x)i .

Then, the pdf of the CGTP-G family reduces to

f(x) =

∞∑
k=0

bk hk+1(x), (9)

where hk+1(x) = (k + 1) g(x)G(x)k is the Exp-G pdf of a random variable Yk+1 with power
parameter k + 1 and

bk =

∞∑
i=k

(−1)k

(k + 1)

(
i

k

) [
λ (2θ)i+1

i! (eθ − 1)
2 +

(1− λ)θi+1

i! (eθ − 1)

]
.

Equation (9) reveals that the CGTP-G density function is a linear combination of Exp-G
densities. Thus, some mathematical properties of the new family can be derived from those
properties of the Exp-G class.

By integrating (9), we obtain the same linear representation for the cdf of X

F (x) =
∞∑
k=0

bkHk+1(x),

where Hk+1 (x) is the cdf of the Exp-G family with power parameter k + 1.

5. Mathematical properties

The formulae derived throughout the paper can be easily handled in most symbolic computa-
tion platforms such as Maple, Mathematica and Matlab. These platforms have currently
the ability to deal with analytic expressions of formidable size and complexity. Established
explicit expressions to obtain some statistical measures can be more efficient than computing
them directly by numerical integration.

5.1. Asymptotics

Let a = inf{x|G(x) > 0}, the asymptotics of F (x), f (x) and τ (x) as x→ a are given by

F (x) ∼ (1 + λ) θG(x)

eθ − 1
as x→ a,

f (x) ∼ (1 + λ) θg(x)

eθ − 1
as x→ a,

τ (x) ∼ (1 + λ) θg(x)

eθ − 1
as x→ a.
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The asymptotics of F (x), f (x) and τ (x) as x→∞ are given by

1− F (x) ∼ θG(x)

eθ − 1
as x→∞,

f (x) ∼ θg(x)

eθ − 1
as x→∞,

τ (x) ∼ g(x)

G(x)
as x→∞.

These equations show the effect of parameters on tails of distribution.

5.2. Moments

The nth ordinary moment of X, say µ′n, can be determined from (9) as

µ′n = E(Xn) =
∞∑
k=0

bk E(Y n
k+1). (10)

For δ > 0, E(Y n
δ ) = δ

∫∞
−∞ x

n g(x; ξ)G(x; ξ)δ−1 dx, which can be obtained numerically from

the baseline quantile function (qf) QG(u; ξ) = G−1(x; ξ) as

E(Y n
δ ) = δ

∫ 1

0
QG(u; ξ)n uδ−1du.

Setting n = 1 in (10), we have the mean of X. The central moments (µs) and cumulants (κs)
of X follow from (10) as µs =

∑s
k=0 (−1)k

(
s
k

)
µ′k1 µ

′
s−k and κs = µ′s −

∑s−1
k=1

(
s−1
k−1
)
κk µ

′
s−k,

respectively, where κ1 = µ′1. The skewness and kurtosis of X are the third and fourth

standardized cumulants given by γ1 = κ3/κ
3/2
2 and γ2 = κ4/κ

2
2, respectively.

5.3. Incomplete moments

Here, we determine the nth incomplete moment of X defined by mn(y) =
∫ y
−∞ x

n f(x)dx. We
have

mn(y) =

∞∑
k=0

bkmn,k+1(y), (11)

where

mn,δ(y) =

∫ G(y; ξ)

0
QG(u; ξ)n uδ−1 du.

The integral mn,δ(y) can be obtained analytically for special models with closed-form expres-
sions for QG(u; ξ) or evaluated at least numerically for most baseline distributions.

An important application of the first incomplete moment of X in (11), say m1(y), refers
to the Bonferroni and Lorenz curves. These curves are very useful in economics, reliability,
demography, insurance and medicine.

For a given probability π, the Bonferroni and Lorenz curves are given by B(π) = m1(p)/(pµ
′
1)

and L(p) = m1(p)/µ
′
1, where p = Q(π) = F−1(π) can be determined numerically by inverting

F (x) = 1−R(x) from equation (8).

Another application is related to the mean deviations about the mean (δ1 = E(|X − µ′1|))
and about the median (δ2 = E(|X −M |)) of X given by

δ1 = 2µ′1 F (µ′1)− 2m1(µ
′
1) and δ2 = µ′1 − 2m1(M),

respectively, where M = Q(0.5) is the median of X, µ′1 = E(X) comes from equation (10),
F (µ′1) is easily evaluated from (8) and m1(z) is obtained from (11) with n = 1.
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5.4. Residual and reversed residual life functions

For n = 1, 2, . . ., the nth moment of the residual life of X, say vn(t) = E[(X − t)n | X > t],
uniquely determines F (x) and it is given by

vn(t) =
1

R(t)

∫ ∞
t

(x− t)n dF (x).

Then,

vn(t) =
1

R(t)

n∑
r=0

(−t)n−r
(
n

r

) ∞∑
k=0

bk

∫ ∞
t

xr hk+1 (x) .

Another interesting function is the mean residual life (MRL) function or the life expectation
at age t just given by v1(t) = E [(X − t) | X > t], which represents the expected additional
life length for a unit which is alive at age t. The MRL of X can be obtained by setting n = 1
in the last equation.

The nth moment of the reversed residual life Mn(t) = E [(t−X)n | X ≤ t], for t > 0 and
n = 1, 2, . . ., uniquely determines F (x) and follows from vn(t). The mean inactivity time
(MIT) of X given by M1(t) represents the waiting time elapsed since the failure of an item
on condition that this failure had occurred in (0, t).

5.5. Quantile and generating functions

The qf of X is obtained by inverting F (x) = 1−R(x) in (6), say Q(u) = F−1(u), for 0 < u < 1.
If U is a uniform variate on the unit interval (0, 1), then the random variable X = Q(U) has
density (7).

We can also simulate the CGTP-G distribution as follows: if u ∼ U(0, 1), the solution of the
nonlinear equation, for λ 6= 0, is given by

G(xu) = 1− 1

θ
log

eθ −

(
eθ − 1

) [
1 + λ−

√
(1 + λ)2 − 4λu

]
2λ

 .
For λ = 0, we obtain

G(xu) = 1− 1

θ
log
[
u+ eθ (1− u)

]
.

The moment generating function (mgf) of X, say M(t) = E(etX), can be obtained from (9)
as

M(t) =
∞∑
k=0

bkMk+1(t; ξ),

where Mδ(t;ξ) is the mgf of Yδ given by

Mδ(t; ξ) = δ

∫ ∞
−∞

exp (t x) G(x; ξ)δ−1 g(x; ξ)dx = δ

∫ 1

0
exp[tQG(u; δ )]uδ−1du.

The last two integrals can be computed numerically for most parent distributions.

5.6. Entropies

The Rényi entropy of a random variableX represents a measure of variation of the uncertainty.
It is defined by

Iδ (X) =
1

1− δ
log

[∫ ∞
−∞

f (x)δ dx

]
, δ > 0 and δ 6= 1.

Using the pdf in (7), we can write
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f (x)δ =
θδg(x)δeδθG(x)

(eθ − 1)
δ

1− λ1− eθG(x)

eθ − 1
− λ

eθ
[
1− e−θG(x)

]
eθ − 1


δ

.

Let (δ)n = Γ(δ)/Γ(δ − n) be the falling factorial. Then,

f (x)δ =
∞∑
k=0

uk g(x)δG(x)k,

where

uk =
∞∑

i,j,w,m,h=0

(−1)i+j+w+m+h (δ + 1)i (m+ 1)i (h+ 1)j
i! j!w!m!h! k!

×
(w + 1)k (δ −m+ 1)h λ

h+mθδ+w (δ + j +m)w+k (δ + j − i)k

(eθ − 1)
δ+m+h

.

Then, the Rényi entropy of the CGTP-G family is given by

Iδ (X) =
1

1− δ
log

{ ∞∑
k=0

uk

∫ ∞
−∞

g(x)δG(x)kdx

}
,

where the integral can be determined numerically for any parent distribution.

The δ-entropy, say Hδ (X), for δ > 0 and δ 6= 1, is defined by

Hδ (X) =
1

δ − 1
log

{
1−

∫ ∞
−∞

f (x)δ dx

}
,

and then

Hδ (X) =
1

δ − 1
log

{
1−

[ ∞∑
k=0

uk

∫ ∞
−∞

g(x)δG(x)kdx

]}
.

The Shannon entropy, say SI, of a random variable X is given by

SI = E {− [log f (X)]} .

It is the special case of the Rényi entropy when δ ↑ 1.

6. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let
X1, . . . , Xn be a random sample from the CGTP-G family. The pdf of the ith order statistic,
say Xi:n, is given by

fi:n (x) = K

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1,

where K = n!/[(i− 1)!(n− i)!].
After some algebra, we can write

fi:n(x) = K
n−i∑
j=0

(−1)j
(
n− i
j

)[ ∞∑
r=0

(1 + r)brG(x)rg(x)

][ ∞∑
k=0

bkG(x)k+1

]j+i−1
.
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Further, we have [ ∞∑
k=0

bkG(x)k+1

]j+i−1
=

∞∑
k=0

ϕj+i−1,k G(x)j+i+k−1,

where ϕj+i−1,0 = bj+i−10 and (for k ≥ 1)

ϕj+i−1,k = (k b0)
−1

k∑
m=1

[m(j + i)− k] bmϕj+i−1,k−m.

Hence,

fi:n(x) =
n−i∑
j=0

∞∑
k,r=0

dj,k,r hi+j+k+r(x), (12)

where

dj,k,r =
(−1)j n!

(i− 1)!(n− i)!

(
n− i
j

)
(1 + r)br ϕj+i−1,k
j + i+ k + r

.

Equation (12) is the main result of this section. Thus, the density function of the CGTP-G
order statistics is a triple linear combination of Exp-G distributions. Based on equation (12),
we can obtain some structural properties of Xi:n from those of the Exp-G model.

The qth moment of Xi:n is given by

E(Xq
i:n) =

n−i∑
j=0

∞∑
k,r=0

dj,k,r E(Y q
i+j+k+r). (13)

Based upon the moments in equation (13), we can derive explicit expressions for the L-
moments of X as infinite weighted linear combinations of the means of suitable Exp-G densi-
ties. These moments are analogous to the ordinary moments but can be estimated by linear
combinations of order statistics. They are given as linear functions of expected order statistics,
namely

λr =
1

r

r−1∑
d=0

(−1)d
(
r − 1

d

)
E(Xr−d:r), r ≥ 1.

7. Maximum likelihood estimation

Several approaches for parameter estimation were proposed in the literature but the maximum
likelihood method is the most commonly employed. We consider the estimation of the un-
known parameters of the proposed family from complete samples only by maximum likelihood,
although we provide a summary of the least squares method. Let x1, . . . , xn be a random
sample from the CGTP-G family with parameters λ, θ and ξ. Let ζ = (λ, θ, ξintercal)intercal

be the p× 1 parameter vector. Then, the log-likelihood function for ζ is given by

` = `(ζ) = n log θ − n log
(

eθ − 1
)

+

n∑
i=0

log g(xi; ξ) + θ

n∑
i=0

G(xi; ξ) +

n∑
i=0

log qi,

where qi =
(

1− λpi
eθ−1

)
− λeθsi

eθ−1 , pi = 1− eθG(xi;ξ) and si = 1− e−θG(xi;ξ).

The equation for `(ζ) can be maximized either directly by using the MATH-CAD program, SAS
(PROC NLMIXED), R (optim function) and Ox program (sub-routine MaxBFGS), or by solving
the nonlinear likelihood equations obtained by differentiating this equation.
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The components of the score vector

U(ζ) =

(
∂`

∂λ
,
∂`

∂θ
,
∂`

∂ξk

)intercal
= (Uλ, Uθ, Uξk)intercal

are given by

Uλ =
n∑
i=1

−1

qi

(
pi + sie

θ

eθ − 1

)
, Uθ =

n

θ
− n

eθ − 1
+

n∑
i=0

G(xi; ξ) +
n∑
i=0

λeθ (pi + si)

qi (eθ − 1)
2

and

Uξk =
n∑
i=0

g′k(xi; ξ)

g(xi; ξ)
− θ

n∑
i=0

G′k(xi; ξ)− 2λθ
n∑
i=0

G′k(xi; ξ)

qi (eθ − 1)
eθG(xi;ξ),

where

g′k(xi; ξ) = ∂g(xi; ξ)/∂ξk andG′k(xi; ξ) = ∂G(xi; ξ)/∂ξk.

Setting the nonlinear system of equations Uλ = Uθ = 0 and Uξk = 0 (for the components

of ξ) and solving them simultaneously yields the maximum likelihood estimate (MLE) ζ̂ =
(λ̂, θ̂, ξ̂intercal)intercal. It is usually more convenient to adopt nonlinear optimization methods
such as the quasi-Newton algorithm to maximize ` numerically. For interval estimation of the
parameters, we obtain the p× p observed information matrix J(ζ) = {− ∂2`

∂r ∂s} (for r, s = λ, θ
and varying on the components of ξ), whose elements can be evaluated numerically.

Under standard regularity conditions when n → ∞, the distribution of ζ̂ can be approxi-
mated by a multivariate normal Np(0, J(ζ̂)−1) distribution to construct confidence intervals

for the parameters. Here, J(ζ̂) is the total observed information matrix evaluated at ζ̂, whose
elements are given in Appendix A.

An alternative approach to the maximum likelihood method is the least square estimation.
For the CGTP-G model, the least square estimates (LSEs) λ̃, θ̃ and ξ̃ of λ, θ and ξ are defined
as those arguments that minimize the objective function:

Q(λ, θ, ξ) =

n∑
i=1

[
F (xi:n) − i

n+ 1

]2
,

where xi:n is a possible outcome of the ith order statistic based on a n-points random sample
and F (xi:n) = 1−R(xi:n) is obtained from (8).

The minimum point λ̃, θ̃ and ξ̃ can also be given as a solution in the following system of
non-linear equations:

∂Q(λ, θ, ξ)

∂λ
=
∂Q(λ, θ, ξ)

∂θ
=
∂Q(λ, θ, ξ)

∂ξk
= 0,

where k varies over the components of ξ.

8. Simulation study

We evaluate the performance of the maximum likelihood method to estimate the parameters
using Monte Carlo simulations. We choose the CGTPW model, a total of twelve parameter
combinations and sample sizes (SSs) n=50, 100 and 300. The process is repeated 1,000 times
and the biases (estimate - actual) and mean square errors (MSEs) of the estimates are reported
in Table 1. We perform the simulations using the R software. The small values of the biases
and MSEs indicate that the maximum likelihood method performs quite well to estimate the
model parameters.
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Table 1: Biases and MSEs for simulation data

SS Actual values Bias MSE

n β λ θ β̂ λ̂ θ̂ β̂ λ̂ θ̂

50 0.5 0.5 1.0 0.992 0.433 1.876 0.997 0.217 1.326
1.5 0.7 1.0 0.362 −0.787 0.274 0.304 1.217 0.515
0.5 −0.5 1.0 1.719 1.478 1.121 1.986 1.195 2.631
0.5 −1.0 1.0 0.331 1.353 1.0974 0.124 1.279 1.112

100 0.5 0.5 1.0 0.972 0.423 1.764 0.953 0.216 0.455
1.5 0.7 1.0 0.188 −0.569 0.278 0.117 0.921 0.422
0.5 −0.5 1.0 0.689 0.494 0.502 2.869 0.235 0.642
0.5 −1.0 1.0 0.316 0.329 0.107 0.107 0.206 0.179

300 0.5 0.5 1.0 0.099 0.041 0.028 0.003 0.156 0.017
1.5 0.7 1.0 0.032 −0.036 0.089 0.014 0.029 0.014
0.5 −0.5 1.0 0.674 0.500 0.053 0.007 0.025 0.096
0.5 −1.0 1.0 0.309 0.058 0.064 0.098 0.051 0.003

9. Applications

In this section, we provide two applications to real data to prove empirically the flexibility of
the CGTPLi model introduced in Section 3.2. The goodness-of-fit statistics for this model are
compared with other competitive models and the MLEs of the model parameters are deter-
mined numerically. For the two real data sets, we compare the fits of the CGTPLi distribution
with the Kumaraswamy Lindley (KwLi) (Çakmakyapan and Kadilar (2014)), beta Lindley
(BLi) (Merovci and Sharma (2014)), McDonald modified Weibull (McMW) (Merovci and El-
batal (2013)), Kumaraswamy-transmuted exponentiated modified Weibull (KwTEMW) (Al-
Babtain, Fattah, Ahmed, and Merovci (2017)), transmuted modified Weibull (TMW) (Khan
and King (2013)) and power Lindley (PoLi) (Ghitany, Al-Mutairi, Balakrishnan, and Al-Enezi
(2013)) models with corresponding densities (for x > 0):

• The KwLi density is given by

f (x) = abα2(1+x)
(1+α) e−αx

(
1− 1+α+αx

1+α e−αx
)a−1

×
[
1−

(
1− 1+α+αx

1+α e−αx
)a]b−1

.

• The BLi density is given by

f (x) = α2(1+x)
B(a,b)(1+α)e

−αx
(
1+α+αx

1+α e−αx
)b−1

.

• The McMW density is given by

f(x) = cα+cγβxβ−1

B(a/c,b) e−αx−γx
β
(

1− e−αx−γx
β
)ac−1

×
[
1−

(
1− e−αx−γx

β
)c]b−1

.

• The KwTEMW density is given by

f (x) =
(
α+ γβxβ−1

)
e−αx−γx

β

[
1 + λ− 2λ

(
1− e−αx−γx

β
)δ]

×abδ
(

1− e−αx−γx
β
)aδ−1 [

1 + λ− λ
(

1− e−αx−γx
β
)δ]a−1

×
{

1−
(

1− e−αx−γx
β
)aδ [

1 + λ− λ
(

1− e−αx−γx
β
)δ]a}b−1

.
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Figure 3: The estimated CGTPLi pdf and other estimated pdfs for active repair times (left
panel) and cancer data (right panel).

• The TMW density is given by

f (x) =
(
α+ γβxβ−1

)
e−αx−γx

β
(

1− λ+ 2λe−αx−γx
β
)
.

• The PoLi density is given by

f (x) = βα2

1+α(1 + xβ)xβ−1e−αx
β
.

The parameters of the above densities are all positive real numbers except for the KwTEMW
and TMW distributions for which |λ| ≤ 1.

In order to compare the fitted models, we consider some goodness-of-fit statistics, namely
the Akaike information criterion (AIC), consistent Akaike information criterion (CAIC),
Hannan-Quinn information criterion (HQIC), Bayesian information criterion (BIC) and−2̂̀,
where ̂̀ is the maximized log-likelihood. Moreover, we use the Anderson-Darling (A∗) and
the Cramer-von Mises (W ∗) statistics in order to compare the fits of the two new models with
other nested and non-nested models. The statistics are widely used to determine how closely a
specific cdf fits the empirical distribution of the data set. The smaller these statistics are, the
better the fit is. Upper tail percentiles of the asymptotic distributions of these goodness-of-fit
statistics were tabulated by Nichols and Padgett (2006).

These following numerical results are obtained using the MATH-CAD program. Furthermore,
the R codes to compute the cdf, pdf and maximum likelihood estimates for the CGTPLi
distribution are given in Appendix B.

9.1. Active repair times data

The first data set represents the active repair times (h) by Jorgensen (2012)) for an airborne
communication transceiver. These data consist of 40 observations (see Appendix C).

Tables 2 and 3 provide the MLEs and their standard errors (in parentheses) of the model
parameters for some distributions and the goodness-of-fit statistics for the current data, re-
spectively. The plots of the fitted CGTPLi pdf and other fitted pdfs defined before, for the
two data sets, are displayed in Figure 3.

9.2. Cancer patient data

The second data set refers to the remission times (in months) of a random sample of 128
bladder cancer patients given in Appendix C (Lee and Wang, 2003). These data have been
used by Nofal et al. (2016) and Mead and Afify (2016) to fit the generalized transmuted
log-logistic and Kumaraswamy exponentiated Burr XII distributions, respectively.
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Table 2: MLEs and their standard errors (in parentheses) for active repair times

Model Estimates

CGTPLi
α̂= 0.2194

(0.065)
θ̂= 2.8054

(1.616)
λ̂= 0.4213

(0.413)

TMW
α̂= 0.1705

(0.047)
β̂= 1.225
(0.484)

γ̂= 3.5176 · 10−5

(3.824 · 10−3)

λ̂= 0.6733
(0.338)

McMW
α̂= 0.2498

(0.087)
β̂= 0.6972

(0.266)

γ̂= 1.4439 · 10−6

(5.671 · 10−4)

â= 1.2604
(1.039)

b̂= 1.0682
(0.401)

ĉ= 0.8792
(0.63)

KwTEMW
α̂= 0.072

(0.11)
β̂= 0.837
(0.238)

γ̂= 2.908 · 10−7

(2.552 · 10−4)

λ̂= −0.381
(0.682)

â= 7.44
(7.334)

δ̂= 0.1
(0.091)

b̂= 3.547
(5.285)

KwLi
α̂= 0.037
(0.061)

â= 0.6046
(0.072)

b̂= 11.7528
(21.385)

BLi
α̂= 0.0303

(0.017)
â= 0.5015

(0.092)
b̂= 30.1304

(28.342)

PoLi
α̂= 0.5867

(0.099)
β̂= 0.7988

(0.082)

Table 3: Goodness-of-fit statistics for active repair times

Model −2̂̀ AIC CAIC HQIC BIC W ∗ A∗

CGTPLi 188.7 194.7 195.4 196.6 199.8 0.12264 0.86344
TMW 189.2 197.2 198.4 199.7 203.9 0.14761 1.04929

McMW 190.9 202.9 205.5 206.6 213.1 0.14948 1.0737
KwTEMW 191.7 205.7 209.2 209.9 217.5 0.15634 1.12275

PoLi 191.9 195.9 196.2 197.1 199.3 0.16151 1.15216
KwLi 197.2 203.2 203.9 205.1 208.3 0.21112 1.47435
BLi 203.7 209.7 210.3 211.5 214.7 0.28765 1.93883
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Table 4: MLEs and their standard errors (in parentheses) for the cancer patient data

Model Estimates

CGTPLi
α̂= 0.0989

(0.022)
θ̂= 2.7639

(1.204)
λ̂= 0.4131

(0.301)

TMW
α̂= 0.0612

(0.01)
β̂= 1

(5.522 · 10−4)

γ̂= 7.0091 · 10−7

(6.158 · 10−5)

λ̂= 0.8616
(0.175)

McMW
α̂= 0.0649

(0.029)
β̂= 0.6719

(0.217)

γ̂= 0.0008

(4.837 · 10−3)

â= 0.8583
(0.322)

b̂= 1.9183
(0.781)

ĉ= 1.3349
(0.322)

KwTEMW
α̂= 0.044
(0.028)

β̂= 0.618
(0.146)

γ̂= 1.437 · 10−7

(3.436 · 10−5)

λ̂= −0.47
(0.267)

â= 2.287
(1.627)

δ̂= 0.37
(0.242)

b̂= 3.036
(2.065)

KwLi
α̂= 0.0238

(0.028)
â= 0.6201

(0.039)
b̂= 8.5854
(11.134)

BLi
α̂= 0.0232
(0.007305)

â= 0.5357
(0.055)

b̂= 14.4662
(7.422)

PoLi
α̂= 0.2944

(0.037)
β̂= 0.8301

(0.047)

Table 5: Goodness-of-fit statistics for the cancer patient data

Model −2̂̀ AIC CAIC HQIC BIC W ∗ A∗

CGTPLi 821.3 827.3 827.5 830.7 835.8 0.06923 0.45551
PoLi 826.7 830.7 830.8 833.0 836.4 0.10248 0.62961

TMW 826.9 834.9 835.3 839.6 846.4 0.06054 0.5588
McMW 827.1 839.1 839.8 846.1 856.3 0.12897 0.77078

KwTEMW 829.5 843.5 844.4 851.6 863.5 0.1502 0.89817
KwLi 834.9 840.9 841.2 844.4 849.5 0.19746 1.19401
BLi 846.9 852.9 853.2 856.4 861.5 0.37053 2.19822

The MLEs and their corresponding standard errors (in parentheses) of the model parameters
and the values of −2̂̀, AIC, CAIC, HQIC, BIC, W ∗ and A∗ are given in Tables 4 and 5,
respectively.

In Tables 4 and 5, we compare the fits of the CGTPLi model with the TMW, McMW,
KwTEMW, PoLi, KwLi and BLi models. We note that the CGTPLi model has the lowest
values for the −2̂̀, AIC, CAIC, HQIC, BIC, W ∗ and A∗ statistics (for the two real data
sets) among the fitted models. So, the CGTPLi model could be chosen as the best model.
It is quite clear from the values in Tables 3 and 5 that the CGTPLi model provides the
best fits to these data sets. So, we prove empirically that this distribution can be a better
model than other competitive models. Further, the plots in Figure 3 reveal that the CGTPLi
distribution provide the best fits. In fact, it can be considered a very competitive model to
other distributions with positive support.
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10. Conclusions

The idea of generating new extended models from classic ones has been of great interest among
researchers in the past decade. We propose a new complementary generalized transmuted
Poisson-G (CGTP-G) family of distributions, which extends the transmuted class (Shaw
and Buckley (2007)) by adding one extra shape parameter. Many well-known distributions
emerge as special cases of the proposed family. We provide some mathematical properties of
the new family including explicit expressions for the ordinary and incomplete moments, mean
deviations, generating function, Rényi and q-entropies and order statistics. The maximum
likelihood estimation of the model parameters is investigated and the observed information
matrix is determined. By means of two real data sets, we verify that a special case of the
CGTP-G family can provide better fits than other models generated from well-known families.
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Appendix A

The elements of the observed matrix J(ζ) are given below:

Uλλ =

n∑
i=1

q−2i

(
pi + sie

θ

eθ − 1

)2

, Uλξk = −
n∑
i=1

pi + sie
θ

q2i (eθ − 1)
,

Uλθ =
n∑
i=1

−eθ (si + pi)

qi (eθ − 1)
2 −

n∑
i=1

pi + sie
θ

q2i (eθ − 1)

[
λeθ

(
pi + si − 2sie

θ
)

(eθ − 1)
2

]
,

Uθθ =
−n
θ2

+
neθ

(eθ − 1)
2 − λ

n∑
i=0

eθ
(
eθ − 1

) (
1− 3eθ

)
pi

qi (eθ − 1)
4 + λ

n∑
i=0

sie
θ

qi (eθ − 1)
2

+λ
n∑
i=0

2si
(
eθ − 1

)2 − sieθ
qie−2θ (eθ − 1)

4 −
n∑
i=0

q−2i

[
λeθ

(
pi + 2sie

θ − si
)

(eθ − 1)
2

]2
,
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Uθξk = −
n∑
i=0

G′k(xi; ξ) +
n∑
i=0

λθeθ
(
3− eθ

)
G′k(xi; ξ)e

θG(xi;ξ)

qi (eθ − 1)
2

+2λ2
n∑
i=0

eθ (pi + si)
[
θG′k(xi; ξ)e

θG(xi;ξ)
]

qi (eθ − 1)
3

and

Uξkξr = −θ
n∑
i=0

[
∂G′k(xi; ξ)/∂ξr

]
+

2λθ

(eθ − 1)

n∑
i=0

G′k(xi; ξ)e
θG(xi;ξ) (∂qi/∂ξr)

q2i

+
n∑
i=0

g(xi; ξ) [∂g′k(xi; ξ)/∂ξr]

[g(xi; ξ)]
2 −

n∑
i=0

g′k(xi; ξ) [∂g(xi; ξ)/∂ξr]

[g(xi; ξ)]
2

− 2λθ

(eθ − 1)

n∑
i=0

{
θG′k(xi; ξ)

[
∂G(xi; ξ)/∂ξr

]
+ [∂G′k(xi; ξ)/∂ξr]

}
qie−θG(xi;ξ)

.

Appendix B

In this appendix we provide the R codes to compute cdf, pdf and maximum likelihood esti-
mates:

# define cdf of CGTPLi distribution

cdf_CGTPLi <- function(alpha, theta, lambda,x) {

G = 1-(1+(alpha*x/(1+alpha)))*exp(-alpha*x)

g = alpha\symbol{94}2/(alpha+1)*(1+x)*exp(-alpha*x)

F = ((exp(theta)-exp(theta*(1-G)))/(exp(theta)-1))

*(1+lambda*((exp(theta*(1-G))-1)/(exp(theta)-1)))

f =theta*g*exp(theta*(1-G))*(1-lambda+2*lambda

*((exp(theta*(1-G))-1)/(exp(theta)-1)))/(exp(theta)-1)

return(F)

}

# define pdf of CGTPLi distribution

pdf_CGTLi <- function(alpha, theta, lambda,x) {

G = 1-(1+(alpha*x/(1+alpha)))*exp(-alpha*x)

g = alpha\symbol{94}2/(alpha+1)*(1+x)*exp(-alpha*x)

F = ((exp(theta)-exp(theta*(1-G)))/(exp(theta)-1))
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*(1+lambda*((exp(theta*(1-G))-1)/(exp(theta)-1)))

f =theta*g*exp(theta*(1-G))*(1-lambda+2*lambda

*((exp(theta*(1-G))-1)/(exp(theta)-1)))/(exp(theta)-1)

return(f)

}

# Calculate the maximum likelihood estimators of CGTPLi distribution

library(bbmle)

x <- c(X) # X is the data set

n <- length(x)

z <- (1+alpha+alpha*x)/(1+alpha)

s <- exp(-alpha*x)

p <- theta*z*s

q <- ((exp(theta)+1)-2*exp(p))/(exp(theta)-1)

ll_CGTPLi <- function(alpha, theta, lambda){

n*log(theta)-n*log(exp(theta)-1)+2*n*log(1+alpha)-alpha*sum(x)

+ sum(log(1+x))+sum(log(p))+sum(log(1-lambda*q))

}

mle.res <- mle2(ll_CGTPLi, start=list(alpha=alpha, theta=theta, lambda=lambda),

hessian.opt=TRUE)

summary(mle.res)

# variance covariance matrix of CGTPLi distribution

vcov(mle.res)

Appendix C

Active repair times data are: 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00,
1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00,
4.50, 4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

Cancer patient data are: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98,
6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32,
10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
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15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12,
46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40,
3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,
8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36,
6.93, 8.65, 12.63, 22.69.
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