A Parsimonious Hedonic Distributional Regression Model for Large Data with Heterogeneous Covariate Effects
DOI:
https://doi.org/10.17713/ajs.v54i2.1904Abstract
Modeling real estate prices in the context of hedonic models often involves fitting a Generalized Additive Model, where only the mean of a (lognormal) distribution is regressed on a set of variables without taking other parameters of the distribution into account. Thus far, the application of regression models that model the full conditional distribution of the prices, has been infeasible for large data sets, even on powerful machines. Moreover, accounting for heterogeneity of effects regarding time and locale, is often achieved by naive stratification of the data rather than on a model basis.
A novel batchwise backfitting algorithm is applied in the context of a structured additive distributional regression model, which enables us to efficiently model all distributional parameters of the price distribution. Using a large German dataset of apartment asking prices with over one million observations, we employ a model-based clustering algorithm to capture the heterogeneity of covariate effects on the parameters with respect to dwelling locale. We thus identify clusters that are homogeneous with respect to the influence of dwelling locale on price. A boosting type algorithm of the batchwise backfitting algorithm is then used to automatically determine the variables relevant for modelling the location and scale parameters in each regional cluster. This allows for a different influence of variables on the distribution of prices depending on the locale and price segment of the dwelling.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Julian Granna, Wolfgang Brunauer, Stefan Lang, Nikolaus Umlauf

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.