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Abstract

A simple exponential regression model is considered where the rate parameter of the
response variable linearly depends on the explanatory variable. We consider complica-
tions of the model: censoring of the response variable (either upper censoring or interval
observations), the additive classical error or multiplicative Berkson error in the explana-
tory variable, or a combination of censoring with Berkson errors. We construct or use
already-known estimators in the models, and verify their performance in simulations.

Keywords: exponential regression, classical generalized linear models, errors in variables, cen-
soring.

1. Introduction

The inverse exponential regression is a regression model where the dependent variable Tn has
an exponential distribution with rate parameter being a linear function of the independent
variable Xn, that is Tn ∼ Exp(β0 +β1Xn), where β0 and β1 are regression parameters. This is
a particular case of a classical generalized linear model. The log-likelihood function is easy to
produce (Carroll, Ruppert, Stefanski, and Crainiceanu 2004; Nelder and Wedderburn 1972;
Wainwright and Jordan 2008; Wedderburn 1974), and the maximum likelihood estimator can
be obtained by means of convex optimization.

Consider the setting where the independent variable (the true regressor) Xn or the dependent
variable Tn is not observed directly. For the former, consider error models. In the classical
error model with additive error, the surrogate variable Xmeas

n = Xn+δn is observed instead of
Xn. In the Berkson multiplicative model, the true regressor Xn is a random variable itself; and
Xn = X0

n exp(ε∗n), while X0
n is observed. In the model with the mixture of errors of different

types, the true regressor is a perturbed initial regressor, Xn = X0
n exp(ε∗n), and the observable

surrogate Xmeas
m is also a perturbed initial regressor — in a different way, Xmeas

n = X0
n + δn.

For the classical error, we use an additive model, where the Stefanski and Carroll conditional
maximum likelihood method is applicable. For the Berkson error, we use the multiplicative
model; thus the rate parameter for the exponential distribution is nonnegative as long as the
initial regressor and the regression coefficients are nonnegative.

For the dependent variable, we consider the cases of direct observation of Tn, censored obser-
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vation of Tn (where min(Tn, T
o.p.
n ) and 1(Tn ≤ T o.p.

n ) are observed, with T o.p. the observation
period), and interval observation of Tn. The extreme case of models with the interval obser-
vations is the binary model, where only 1(Tn ≤ T o.p.

n ) is observed.

The estimator — in particular, the estimator for the model with interval observations of the
survival time — can be used in cohort studies with repeated testing. See Section 7 of Masiuk,
Kukush, Shklyar, Chepurny, and Likhtarov (2017) and references therein for setup of the
study.

Augustin (2004) constructed a corrected score estimator in the Cox proportional hazards
model with measurement errors. The corrected empirical likelihood method for generalized
linear models with measurement errors, in particular for the gamma-inverse regression and
logistic regression, is developed in Yang, Li, and J. (2015).

In Section 2 we construct the estimators in the exponential regression without measurement
errors, with or without censoring of the response variable. In Section 3, we consider a model
with only one type of error in the explanatory variable, either an additive classical error or
a multiplicative Berkson error. In Section 4 we consider a combination of the multiplicative
Berkson error in the explanatory variable with censoring of the response variable. Simulations
are presented in Section 5, and Section 6 concludes.

2. Models without measurement errors

2.1. Model with finite observed survival time

We assume that the survival time has exponential distribution,

P(Tn > t) = exp(−(β0 + β1Xn)t), t > 0. (1)

Here Xn is a regressor. The observed variables are (Xn, Tn), n = 1, . . . , N , while (β0, β1) is a
parameter of interest. Throughout the paper, we assume that β1 > 0 and β0 + β1Xn > 0 for
all n.

The regressor Xn considered non-random, the density of Tn is

pdfTn(t) = (β0 + β1Xn) exp(−(β0 + β1Xn)t).

With the observation Tn substituted for the argument t, and argument (b0, b1) substituted
for the parameter (β0, β1), this can be considered a one-observation (elementary) likelihood
function. The likelihood function is

L(b0, b1) =
N∏
n=1

(b0 + b1Xn)e−(b0+b1Xn)Tn ,

− log(L(b0, b1)) =
N∑
n=1

(b0 + b1Xn)Tn −
N∑
n=1

log(b0 + b1Xn).

The maximum likelihood estimator is a solution to equations

N∑
n=1

Tn =

N∑
n=1

1

β̂0 + β̂1Xn

, (2)

N∑
n=1

XnTn =
N∑
n=1

Xn

β̂0 + β̂1Xn

. (3)

The linear combination of equations (2) and (3) with coefficients β̂0 and β̂1 is

N∑
n=1

(β̂0 + β̂1Xn)Tn = N, (4)
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The maximum likelihood estimator satisfies (4), which is a linear equation in β̂. This allows
to reduce the problem of finding the solution to one-variable optimization or one-variable
one-equation solving.

2.2. Model with survival times censored from above

Let (1) still hold true. However, the survival time Tn is not always observed. On each
observation, we know the regressor Xn, the observation period T o.p.

n , whether Tn ≤ T o.p.
n or

Tn > T o.p.
n . We also observe Tn if Tn ≤ T o.p.

n . In this model,

pdfTn(t) = (β0 + β1Xn) exp(−(β0 + β1Xn)t),

P(Tn > T o.p.
n ) = exp(−(β0 + β1Xn)T o.p.

n ).

These expressions are used to construct the likelihood function, for Tn ≤ T o.p
n and Tn > T o.p

n

respectively:

L(b0, b1) =
∏

n :Tn≤T o.p.
n

(b0 + b1Xn)e−(b0+b1Xn)Tn
∏

n :Tn>T
o.p.
n

e−(b0+b1Xn)T o.p.
n

The minus log-likelihood function is

− log(L(b0, b1)) =
∑

n :Tn≤T o.p.
n

(b0 + b1Xn)Tn −
∑

n :Tn≤T o.p.
n

log(b0 + b1Xn) +

+
∑

n :Tn>T
o.p.
n

(b0 + b1Xn)T o.p.
n

=

N∑
n=1

(b0 + b1Xn) min(Tn, T
o.p.
n )−

∑
n :Tn≤T o.p.

n

log(b0 + b1Xn).

The maximum likelihood estimator is a solution to equations

N∑
n=1

min(Tn, T
o.p.
n ) =

∑
n :Tn≤T o.p.

n

1

β̂0 + β̂1Xn

,

N∑
n=1

Xn min(Tn, T
o.p.
n ) =

∑
n :Tn≤T o.p.

n

Xn

β̂0 + β̂1Xn

.

The linear combination of these equations with coefficients β̂0 and β̂1 is

N∑
n=1

(β̂0 + β̂1Xn) min(Tn, T
o.p.
n ) =

N∑
n=1

1(Tn ≤ T o.p.
n ).

Similar the case where the survival times Tn are observed without censoring, this allows to
reduce the calculation of the maximum-likelihood estimator to one-dimensional equation.

2.3. Model with interval observations of survival times

Let (1) hold true, the variable Tn is not observed directly. Instead, let Tmin
n and Tmax

n be
known such that Tmin

n < Tn ≤ Tmax
n . (We might observe the stochastic process {1(Tn ≤ t),

t> 0} in a finite number of points. Then we choose the ends of the interval where the process
jumps from 0 to 1. If 1(Tn > t) = 1 at all observations, then we choose Tmax

n =∞.) Then

P[Tmin
n < Tn ≤ Tmax

n ] = e−(β0+β1Xn)Tmin
n − e−(β0+β1Xn)Tmax

n if Tmax
n <∞,

P[Tmin
n < Tn ≤ Tmax

n ] = e−(β0+β1Xn)Tmin
n if Tmax

n =∞.
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The likelihood function is

L(b0, b1) =
∏

n :Tmax
n <∞

(e−(b0+b1Xn)Tmin
n − e−(b0+b1Xn)Tmax

n )
∏

n :Tmax
n =∞

e−(b0+b1Xn)Tmin
n .

Then

− log(L(b0, b1)) =

N∑
n=1

(b0 + b1Xn)Tmin
n −

∑
n :Tmax

n <∞
log(1− e−(b0+b1Xn)(Tmax

n −Tmin
n )).

3. Models with single-type measurement errors

3.1. Model with additive classical error

Sufficiency estimator

Let this variation of (1) hold true:

P(Tn > t) = exp(−(β0 + β1X
true
n )t), t > 0.

However, Xtrue is not observed directly: it is observed with an error. Assume that Xtrue is
assumed with an additive error δ, which is a zero-mean Gaussian variable. The observation
is

Xmeas
n = Xtrue

n + δn, δn ∼ N(0, σ2
δ,n).

Here and hereafter, N(µ, σ2) denotes the normal distribution with mean µ and variance σ2.
We also assume that Tn and δn are independent.

On each observation, we know Tn, Xmeas and σ2
δ,n. The parameter of interest is (β0, β1).

The error-free model is a classical generalized linear model. Thus, in the model with Gaussian
classical measurement error, conditional score methods are applicable. The conditional distri-
bution of Tn given Xmeas

n − Tnσ2
δ,nβ1 depends only on the parameters and observed variables.

Denote the density of this conditional distribution as

p(T ; Xmeas
n − Tnσ2

δ,nβ1, β, σ
2
δ,n).

The sufficiency estimator is defined from equation

N∑
n=1

∂

∂b

(
log p(Tn; ∆,b, σ2

δ,n)
)∣∣∣

∆=Xmeas
n −Tnσ2

δ,nβ̂1, b=β̂
= 0.

Denote
m(Xmeas

n − Tnσ2
δ,nβ1, β, σ

2
δ,n) = E[Tn | Xmeas

n − Tnσ2
δ,nβ1].

Shklyar (2014, Section 5) shows that the sufficiency estimator satisfies the equations

N∑
n=1

m(Xmeas
n − Tnσ2

δ,nβ1X
meas
n , β̂, σ2

δ,n) =

N∑
n=1

Tn,

N∑
n=1

(β̂0 + β̂1X
meas
n ) = N.

Sufficiency score estimators in classical generalized linear models with classical errors added
are developed in Stefanski and Carroll (1987). For concrete exponential regression model, the
estimator is developed in Shklyar (2014).
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Conditional score estimator

The approach based on unbiased estimation functions can be used to obtain conditional score
estimators and corrected score estimators. A conditional score estimator is defined as a
solution to the equation

N∑
k=1

(m(Xmeas
n − Tnσ2

δ,nβ1X
meas
n , β̂, σ2

δ,n)− Tn)k(Xmeas
n − Tnσ2

δ,nβ1X
meas
n , β̂, σ2

δ,n) = 0

for some vector-valued function k(∆, b, σ2). Different versions of the conditional score esti-
mator, such as linear estimator and optimal estimator, are obtained in Stefanski and Carroll
(1987).

Corrected score estimator

In the corrected score method, first the deconvolution equation is solved. Define the function

g(Xmeas, T ; b, σ2) =

 √
2π
|b1σ| exp

(
− (b0+b1Xmeas)2

2b21σ
2

)
Φ
(
− b0+b1Xmeas

|b1σ|

)
− T

1
b1
−
√

2π b0
b1 |b1σ| exp

(
− (b0+b1Xmeas)2

2b21σ
2

)
Φ
(
− b0+b1Xmeas

|b1σ|

)
− TXmeas

 .

The function g is a solution to the following deconvolution equation:

E g(X + δ, T ; b, σ2) =

(
1

b0 + b1X
− T

)(
1
X

)
, δ ∼ N(0, σ2).

The corrected score estimator is a solution to the equation

N∑
n=1

g(Xmeas
n , Tn; β̂, σ2

δ,n) = 0.

As the estimation equation might have multiple solutions, the appropriate one should be
chosen. The corrected-score method was developed in Nakamura (1990) and Stefanski (1989).
The explicit expression for the corrected score function g is obtained in Shklyar (2014).

3.2. Model with multiplicative Berkson error

Let the real regressors Xn be known up to a multiplicative measurement errors

Xtrue
n = X0

n exp(ε∗n), ε∗n ∼ N(0, σ2
ε∗n). (5)

As the true regressor is random, the relation (1) should be changed into the following:

P[Tn > t | Xtrue
n ] = exp(−(β0 + β1X

true
n )t), t > 0. (6)

The conditional density of Tn given X0
n is

pTn|X0
n=x(t) = p(t, x;β, σ2

ε∗n) =

=
1√
2π

∫ ∞
−∞

(β0 + β1xe
σε∗nu)e−(β0+β1x exp(σε∗nu))t−0.5u2 du. (7)

On each observation, Tn, X0
n and σ2

ε∗n are known. As for other models, β = (β0, β1) is the
parameter of interest.

Maximum likelihood estimator

The maximum likelihood estimator is a point where the likelihood function

L(b) =
N∏
n=1

p(Tn, X
0
n; b, σ2

ε∗n)
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attains its maximum.

The computation of the integral in (7) might be problematic. We used numerical integration.
More specifically, we used the scheme

1√
2π

∫ ∞
−∞

f(u) exp(−0.5u2) du ≈ 1

K

K∑
k=1

f(ζk/(K+1)),

where ζk/(K+1) are quantiles of the standard normal distribution.

In the binary regression model where the odds ratio linearly depends on the explanatory vari-
able, with multiplicative Berkson error, the full maximum likelihood estimator is constructed
in Masiuk et al. (2017), Section 6.4.1.

Unbiased estimating equation

Another method is based on unbiased score functions. Denote

m(X0; b, σ2) = E
1

b0 + b1X0 exp(ε)
, ε ∼ N(0, σ2),

so that ETn = m(X0;β, σ2
ε∗n). The estimator is sought from the equation

N∑
n=1

(m(X0
n; β̂, σ2

ε∗n)− Tn)k(X0
n; β̂, σ2

ε∗n) = 0, (8)

where k(X0; (b), σ2) is a vector-valued function; e.g., k(X0; (b), σ2) = (1, X0). In Masiuk,
Shklyar, Kukush, Carroll, Kovgan, and Likhtarov (2016) (see Appendix C there), this method
is used for the binary model.

4. Combination of multiplicative Berkson error in regressor

and censoring or interval observation of the response

Assume that (5) and (6) are still true. Similarly to Section 3.2, X0
n and σ2

ε∗n are assumed to
be known for all observations. However, Tn might be censored, or might be known to belong
to an interval.

The distribution of the response Tn as a function of X0
n is the following

P(Tn > T o.p. | X0
n) =

1√
2π

∫ ∞
−∞

e−(β0+β1X0
n exp(σε∗nu))T o.p.−0.5u2 du;

P(Tmin < Tn ≤ Tmax | X0
n) =

1√
2π

∫ ∞
−∞

(
e−(β0+β1X0

n exp(σε∗nu))Tmin −

− e−(β0+β1X0
n exp(σε∗nu))Tmax

)
e−u

2/2 du.

The likelihood function has the form

L(b) = (2π)−N/2
N∏
n=1

∫ ∞
−∞
Ln.e.
n (b; exp(σε∗nu)X0

n)e−u
2/2 du, (9)

where Ln.e.
n (b;x) = (b0 + b1x) exp(−(b0 − b1x)Tn) if the survival time is observed directly,

which is true if Tn ≤ T o.p.
n in the model with censoring; Ln.e.

n (b;x) = exp(−(b0− b1x)T o.p
n ) for

right-censored observations, i.e. where Tn > T o.p.
n . In the model with interval observations,

Ln.e.
n (b;x) = exp(−(b0 + b1x)Tmin

n )− exp(−(b0 + b1x)Tmax
n ).
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The likelihood function is obtained by substitution of the relevant expression for Ln.e.
n (b;x)

into (9).

5. Simulations

For the model without errors in the explanatory variable (Section 2), we partially use the setup
of Shklyar (2014). The explanatory variable is simulated to have a lognormal distribution,
logX ∼ N(0, 1). The dependent variable has an exponential conditional distribution, T |
X ∼ Exp(β0 + β1X), with the true parameters β0 = 2 and β1 = 5.

We consider the cases of direct observations of T , censoring of T and interval observations of
T . For censoring, we consider the censoring times T o.p. = 1 (where about 1% of observations
are right-censored) and T o.p. = 0.1 (where about 46% of observations are right-censored). For
interval observations, we assume that only the integral part of T (T rounded downwards to
the whole number) is used in estimation.

The sample size is N = 10000 or N = 1 000 000. We simulate 1000 samples {(Xn, Yn),
n = 1, . . . , N}, with a shared sample of X and conditionally independent (given X’s) samples
of T . The means and standard deviations of the maximum likelihood estimates over 1000
simulations are given in Table 1. The simulations demonstrate adequate performance of the
maximum likelihood estimator in these models for this set of parameters.

Table 1: Means and standard deviations of the maximum likelihood estimates in error-free
models

True value: β0 = 2 β1 = 5
Sample Means and standard deviations of
size estimates over 1000 simulations

of β0 of β1
N mean std mean std
with times observed directly

10 000 2.0017 0.0765 5.0010 0.1020
1 000 000 1.9999 0.0076 4.9998 0.0100

with censoring, T o.p. = 1.0
10 000 2.0018 0.0781 5.0010 0.1027

1 000 000 1.9999 0.0077 4.9998 0.0101

with censoring, T o.p. = 0.1
10 000 2.0014 0.1252 4.9998 0.1250

1 000 000 1.9997 0.0123 4.9999 0.0121

with interval observations
10 000 2.0029 0.1798 5.0463 0.5617

1 000 000 1.9995 0.0179 5.0012 0.0533

For the model with the classical additive error in the explanatory variable and directly ob-
served response variable, the simulations of the sufficiency estimator and the corrected-score
estimator are performed in Shklyar (2014). The simulations show that the sufficiency esti-
mator is more stable and more efficient than the corrected score estimator. That result is
expected, since the linear conditional estimator and the corrected score estimator were nu-
merically compared by Stefanski (1989) in the Poisson regression model with measurement
errors.

In Table 2, the simulation results for the model with Berkson error are presented. The initial
regressor X0 is simulated to have a lognormal distribution, logX0 ∼ N(0, 1). 1000 con-
ditionally independent (given X0’s) samples {(Xn, Tn), n = 1, . . . , N} are simulated, with
Xn = X0

n exp(ε∗n), ε∗n ∼ N(0, σ2
ε∗), and [Tn | X0

n, Xn] ∼ Exp(β0 +β1Xn). The parameters used
during the simulations are β0 = 2, β1 = 5 and σ2

ε∗ = 0.6. The statistics for the maximum
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likelihood estimator and the estimator obtained from the unbiased estimating equation (8)
are presented in Table 2. For comparison, the statistics for the estimator that uses a par-
tially unobservable sample of (X,T ) is also presented. The estimators perform adequately
in the setting used, and the maximum likelihood estimator is slightly more efficient than the
estimator obtained by solving an unbiased estimating equation.

Table 2: Means and standard deviations of estimates in the model with Berkson error

True value: β0 = 2 β1 = 5
Sample Error Means and standard deviations of
size variance estimates over 1000 simulations

of β0 of β1
N σ2

ε∗ mean std mean std
The maximum likelihood estimator that uses (X,T )

10 000 N.A. 2.0022 0.0645 5.0006 0.0878
1 000 000 N.A. 1.9993 0.0061 5.0015 0.0089

The maximum likelihood estimator that uses (X0, T )
10 000 0.6 1.9595 0.0788 5.0114 0.1296

1 000 000 0.6 1.9595 0.0073 5.0068 0.0123

Unbiased estimation equation method
10 000 0.6 2.0024 0.0900 5.0022 0.1639

1 000 000 0.6 2.0000 0.0085 4.9999 0.0158

We also simulate study numerically the performance of maximum likelihood estimator in pres-
ence of both Berkson error and censoring or interval observations. The sample of (X0, X, T )
is simulated as described above, in the model with multiplicative Berkson error. However,
neither X nor T is observed directly. The initial values of X0 are observed, and T is observed
with either censoring or rounding, the same way as in the model without errors. For the
censoring level T o.p = 1.0 about 1.4% of observations are right-censored, while for T o.p. = 0.1
about 45.1% of observations are right-censored. In the model with the interval observations,
two integers closest to T are observed instead of T .

The results are presented in Table 3. The estimators have significant inaccuracy, as the
simulations expose the bias which cannot be explained by insufficient sample size. That is
more prominent for the interval observation: the parameter β0 is 6% overestimated, and β1

is 15% underestimated.

Simulations for another model, namely for the binary regression model with linear odds ratio,
with classical and/or Berkson error, are presented in Masiuk et al. (2016, 2017). It was
noted (Masiuk et al. 2017, p. 206) that the Berkson multiplicative error has an effect on the
estimators for geometric standard deviation of the multiplicative error greater than 2, which
corresponds to σ2

ε∗ > 0.5.

6. Conclusion

We consider a classic generalized linear model and its further developments to cover various
forms of errors and incomplete data. The base model is the simple exponential regression
where the rate parameter of the response variable linearly depends on the explanatory vari-
able. This model is complicated by adding the censoring of the response variable and/or
measurement errors in the explanatory variable.

For the model without measurement errors, the maximum likelihood estimator is constructed
for different types of censoring, namely for upper censoring and for interval observations.

For the model with additive classic measurement error in the explanatory variable, the suf-
ficiency estimator, conditional-score estimators and the corrected score estimator are con-
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Table 3: Means and standard deviations of the maximum likelihood estimates in the model
with Berkson error in the explanatory variable and censoring or interval observations of the
response variable

True value: β0 = 2 β1 = 5
Sample Error Means and standard deviations of
size variance estimates over 1000 simulations

of β0 of β1
N σ2

ε∗ mean std mean std
with censoring, T o.p. = 1.0

10 000 0.6 1.9668 0.0792 5.0029 0.1347
1 000 000 0.6 1.9636 0.0078 5.0042 0.0129

with censoring, T o.p. = 0.1
10 000 0.6 2.0739 0.1444 5.0132 0.1612

1 000 000 0.6 2.0708 0.0148 5.0124 0.0154

with interval observations
10 000 0.6 2.1275 0.1747 4.2434 0.6162

1 000 000 0.6 2.1229 0.0181 4.2135 0.0638

structed in Shklyar (2014) by methods described in Stefanski and Carroll (1987); Stefanski
(1989); Nakamura (1990).

In the model with multiplicative Berkson error in the explanatory variable, we construct the
maximum likelihood estimator and the unbiased score function estimator by methods used in
Masiuk et al. (2017, 2016) for another model.

We also construct the maximum likelihood estimator in the model where the censoring of the
response variable is combined with Berkson error in the explanatory variable.

The performance of the constructed estimators is verified in simulations. It is adequate in
case of one type of uncertainty. In the model with combination of Berkson error in the ex-
planatory variable and censoring of survival time the estimates are inaccurate; the inaccuracy
is even more prominent in the model with with the combination of Berkson error and interval
observations. Improving numerical integration might help to beat the inaccuracy.
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