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Abstract

For a continuous-time lattice random walk XΛ =
{
XΛ

t , t ≥ 0
}

in a random envi-
ronment Λ, we study the asymptotic behavior, as t → ∞, of the normalized additive
functional ct

∫ t

0
f(XΛ

s )ds, t ≥ 0. We establish a limit theorem for it, which is similar to
that in the non-lattice case, under less restrictive assumptions.
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1. Introduction

Continuous-time random walks (CTRWs) are stochastic processes that model the pure-jump
dynamics with random waiting times between jumps. They are widely used in physics to
describe anomalous diffusion phenomena, such as transport in heterogeneous media, Hamil-
tonian chaos, Lévy flights, and have further applications in hydrology, biology, finance and
other areas.

Limit theorems for CTRWs are important tools to understand the asymptotic behavior and
scaling properties of these processes. A crucial aspect here is that, unless the distribution of
waiting times is degenerate or exponential, CTRWs are non-Markov processes. This creates
a challenge in deriving limit theorems for them and also leads to a plethora of possible limit
processes in many cases exhibiting some “fractional” kind of dynamics: fractional diffusion
processes, fractional Brownian motion, fractional stable processes etc.

A seminal result was obtained by Meerschaert and Scheffler (2004), who showed that, when
the waiting time distribution has a regularly varying tail with index α ∈ (0, 1), the scaling
limit of a CTRW is an operator Lévy motion subordinated to the hitting time process of a
classical stable subordinator. The authors also showed that the density function of the limit
process solves a fractional Cauchy problem. Since then, there was an extensive literature in
this direction, we will only mention a few articles: Barczyk and Kern (2013); Jurlewicz, Kern,
Meerschaert, and Scheffler (2012); Leonenko, Papić, Sikorskii, and Šuvak (2018); Baeumer
and Straka (2017); Straka and Henry (2011).

http://www.ajs.or.at
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Random walks in a random environment (RWRE) model the dynamics in a medium whose
properties vary randomly in space or/and time. They are relevant for many applications in
physics, biology, ecology, and computer science, such as diffusion in disordered media, popula-
tion dynamics, percolation, and load balancing. The quenched randomness of the environment
induces dependence and heterogeneity in the motion of the walker, which complicates their
study and leads to some interesting limiting objects. One of the first most important con-
tributions here is Kesten, Kozlov, and Spitzer (1975), which established the convergence of
one-dimensional RWRE to diffusion processes with random drifts under some conditions on
the environment. Since then, limit theorems for RWREs were studied by many authors for
different kinds of environments and their effects on the walker; we cite only few of these con-
tributions: Kesten and Spitzer (1979); Sinăı (1982); Guillotin-Plantard (2001); Bolthausen
(1989); Avena, den Hollander, and Redig (2011); Redig and Völlering (2013).

More recently, the article Kondratiev, Mishura, and Shevchenko (2021) investigated the
asymptotic behavior of the normalized additive functional ct

∫ t
0 f(Xs)ds for a CTRW X =

{Xt, t ≥ 0}, and showed that under certain conditions on the distribution of jumps and wait-
ing times of X, the additive functional converges in distribution to the local time at zero of an
alpha-stable Levy motion. The authors also considered a situation where X is delayed by a
random environment given by the Poisson shot-noise potential Λ(x, γ) = e−

∑
y∈γ φ(xy), where

φ is a bounded function decaying sufficiently fast, and γ is a homogeneous Poisson point
process, independent of X, and found that in this case the weak limit has both “quenched”
component depending on Λ, and a component, where Λ is “averaged”.

In this article, we extend the results of Kondratiev et al. (2021) to the case of a lattice CTRW.
This case is technically simpler, which allows us, on the one hand, to drop rather restrictive
assumptions on the distribution of jumps imposed in Kondratiev et al. (2021), and on the
other hand, to consider a very general random environment.

2. Preliminaries

2.1. Domains of attraction

We will give the basic definitions concerning the domains of attraction and stable laws, for
details see (Feller 1971, Chapter XVII) and Zolotarev (1986).

Definition 2.1. A random variable ξ is said to have a stable distribution with index α ∈ (1, 2]
if its characteristic function has the form

ϕξ(x) = exp {iax− c|x|αω(x, α, β)} ,

where ω(x, α, β) = 1 + iβ signx tan
(
πα
2

)
; c > 0 is called the scale parameter, β ∈ [−1, 1] is

called the skewness parameter, a ∈ R is the expected value.

Definition 2.2. The distribution L is said to belong to the domain of attraction to stable
law with index α ∈ (1, 2] if there exist some sequence an ∈ R and a slowly varying function L
such that the normalized sums

ξ1 + · · ·+ ξn

L(n)n1/α
− an

of iid random variables {ξn, n ≥ 1} with distribution L converge in distribution, as n → ∞,
to a stable distribution with index α.

Definition 2.3. If in Definition 2.2, L(n) = σ for some constant σ > 0, we say that L belongs
to the domain of normal attraction to stable law with index α ∈ (1, 2].
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2.2. Symmetric local time

Definition 2.4. For a measurable real-valued stochastic process {X(t), t ≥ 0}, a symmetric
local time at a point x ∈ R on an interval [0, t] is defined as the limit in probability

`X(t, x) := P- lim
ε→0+

1

2ε

∫ t

0
1[x−ε,x+ε](Xs)ds.

2.3. Notation

For any random variable X, we denote by ϕX(λ) = E
[
eiλX

]
its characteristic function. The

symbols
P−→ and

d−→ designate the convergence in probability and in distribution, respectively.

3. Main results

Let us introduce the main object of this article. Consider a sequence ξn, n ≥ 1 of iid lattice
random variables; wlog let them be integer-valued with gcd {k ∈ Z : P(ξ1 = k) > 0} = 1. The
corresponding random walk Sn = ξ1 + · · · + ξn is then supported by Z. Given a sequence
θn, n ≥ 1, of iid positive random variables independent of ξ, a corresponding continuous-time

random walk is given by Xt = SNt , where Nt = max
{
k ≥ 0 :

∑k
i=1 θi ≤ t

}
is the number of

jumps occurring until t. Let X be further delayed by a random environment {Λ(n), n ∈ Z},
which is a positive process independent of {θn, n ≥ 1} and {ξn, n ≥ 1}. Specifically, we define
the Λ-delayed CTRW by

XΛ
t = SNΛ

t
, (1)

where

NΛ
t = max

{
k ≥ 0 :

k∑
i=1

θi/Λ(Si−1) ≤ t

}
. (2)

3.1. Law of large numbers for CTRW in a random environment

A1. The jumps satisfy P(ξn ∈ Z) = 1 and gcd({k : P (ξn = k) > 0}) = 1.

We will need the following lemma from Robbins (1953).

Lemma 3.1. Under the assumption A1, for any t ∈ R

lim
n→∞

1

n

n∑
j=1

eitSj = 1{t∈2πZ}

almost surely.

Proposition 3.1. Let the assumption A1 hold, and an L2-process Π = {Π(t), t ∈ Z} be
weakly stationary and ergodic. Then the following law of large numbers holds:

1

n

n∑
k=1

Π(Sk)
L2(Ω)−−−−→ E [ Π(0) ] , n→∞.

Proof. Write the spectral representation:

Π(t) =

∫ π

−π
eitλZ(dλ),
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where Z is an orthogonal random measure; denote its control measure by G.

Thanks to independence of Sk and Π, we may write

E

( 1

n

n∑
k=1

Π(Sk)− Z({0})

)2


= E

E

( 1

n

n∑
k=1

Π(xk)− Z({0})

)2
 ∣∣∣∣

x1=S1,...,xn=Sn


= E

E

(∫ π

−π

(
1

n

n∑
k=1

eixkλ − 1{λ=0}

)
Z(dλ)

)2
 ∣∣∣∣

x1=S1,...,xn=Sn


= E

∫ π

−π

∣∣∣∣∣ 1n
n∑
k=1

eiSkλ − 1{λ=0}

∣∣∣∣∣
2

G(dλ)

 .
The integrand here is obviously bounded, so it follows from Lemma 3.1 and the dominated
convergence theorem that

E

( 1

n

n∑
k=1

Π(Sk)− Z({0})

)2
→ 0, n→∞.

Since Π is weakly stationary and ergodic, we have Z({0}) = E [ Π(0) ] almost surely, which
implies the statement.

Assuming that the process is just integrable, it is possible to show the convergence in L1(Ω).

Proposition 3.2. Let the assumption A1 hold, and an ergodic integrable process Π = {Π(t), t ∈
Z} be such that Πn(t) := Π(t)1{|Π(t)|≤n} are weakly stationary for all n ≥ 1. Then,

1

n

n∑
k=1

Π(Sk)
L1(Ω)−−−−→ E [ Π(0) ] , n→∞.

Proof. From Proposition 3.1 it follows that for each n ≥ 1

1

m

m∑
k=1

Πn(Sk)
L1(Ω)−−−−→ E [ Πn(0) ] , m→∞. (3)

Note that it follows from our assumptions that E [ Π(x) ] and hence E
[

Π(x)1{|Π(x)|>n}
]

do
not depend on x. Therefore, using the independence of Π and Sk, k ≥ 1, we have

sup
m≥1

E

[ ∣∣∣∣∣ 1

m

m∑
k=1

Π(Sk)−
1

m

m∑
k=1

Πn(Sk)

∣∣∣∣∣
]

≤ sup
m≥1

1

m

m∑
k=1

E
[ ∣∣Π(Sk)1{|Π(Sk)|>n}

∣∣ ]
= sup

m≥1

1

m

m∑
k=1

E

[
E
[ ∣∣Π(x)1{|Π(x)|>n}

∣∣ ] ∣∣∣
x=Sk

]

= sup
m≥1

1

m

m∑
k=1

E
[ ∣∣Π(0)1{|Π(0)|>n}

∣∣ ]
= E

[ ∣∣Π(0)1{|Π(0)|>n}
∣∣ ]→ 0, n→∞.

(4)
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Now write

E

[ ∣∣∣∣∣ 1

m

m∑
k=1

Π(Sk)− E [ Π(0) ]

∣∣∣∣∣
]

≤ E

[ ∣∣∣∣∣ 1

m

m∑
k=1

Π(Sk)−
1

m

m∑
k=1

Πn(Sk)

∣∣∣∣∣
]

+ E

[ ∣∣∣∣∣ 1

m

m∑
k=1

Πn(Sk)− E [ Πn(0) ]

∣∣∣∣∣
]

+
∣∣E [ Πn(0) ]− E [ Π(0) ]

∣∣.
This yields, thanks to eq. (3), that

lim sup
m→∞

E

[ ∣∣∣∣∣ 1

m

m∑
k=1

Π(Sk)− E [ Π(0) ]

∣∣∣∣∣
]

≤ sup
m≥1

E

[ ∣∣∣∣∣ 1

m

m∑
k=1

Π(Sk)−
1

m

m∑
k=1

Πn(Sk)

∣∣∣∣∣
]

+
∣∣E [Π(0)1{|Π(0)|>n}

]∣∣ .
Letting n→∞ and using eq. (4), we arrive at the desired statement.

Remark 3.1. The assumption of Proposition 3.2 about Π may sound a bit artificial. A
natural sufficient condition is that Π is strongly stationary, ergodic and integrable.

3.2. Law of large numbers for counting process

We start by establishing a law of large numbers for the counting process. We will need two
additional assumptions.

A2. The process Λ−1 = {Λ−1(t), t ∈ Z} satisfies the conditions of Proposition 3.1 or Propo-
sition 3.2.

A3. The time between jumps θn is integrable:

E [ θ1 ] = µ.

The assumption A2 implies that Λ−1(t) is integrable; we denote Λ−1 := E
[

Λ−1(0)
]
.

Proposition 3.3. Let assumptions A1–A3 be satisfied and the process NΛ
t is defined by eq. (2).

Then,

1

n

n∑
k=1

θk
Λ(Sk−1)

P−→ µΛ−1, n→∞,

and
NΛ
t

t

P−→ 1

µΛ−1
, t→∞.

Proof. For the proof, we will use the ideas from Kondratiev et al. (2021). Define γn :=
1
n

∑n
k=1

θk
Λ(Sk−1) . First, we note that by assumption A3 we have

ϕθ1(t) = 1 + iµt+ o(t), t→ 0.

Denoting by Log the principal branch of complex logarithm (i.e. such that Log z ∈ (−π, π]
for all non-zero z on the unit circle), it is clear that

Log(1 + x)− x = o(x), x→ 0.
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Hence, we have that

r(t) := Log(ϕθ1(t))− iµt = o(t), t→ 0.

Since the random variables {θn, n ≥ 1} are jointly independent and do not depend on Λ, the
characteristic function of γn can be written as

ϕγn(λ) = E

E

[
exp

{{
iλ

n

n∑
k=1

θkxk

}} ] ∣∣∣∣∣
xk=Λ(Sk−1)−1, k=1,...,n


= E

[
n∏
k=1

ϕθ1

( λ

nΛ(Sk−1)

)]
= E

[
exp

{
n∑
k=1

Logϕθ1

( λ

nΛ(Sk−1)

)}]

= E

[
exp

{
iµλ

n

n∑
k=1

1

Λ(Sk−1)
+Rn

}]
,

where

Rn =
n∑
k=1

r
( λ

nΛ(Sk−1)

)
, r(x) = Logϕθ1(x)− iµx = o(x), x→ 0.

It follows from the Assumption A2 that

Yn :=
1

n

n∑
k=1

1

Λ(Sk−1)

P−→ Λ−1, n→∞. (5)

Therefore, in order to establish the first statement, it suffices to show that Rn
P−→ 0.

Let us first assume that the process Λ−1 is bounded by a some nonrandom constant.

Fix ε > 0. For any a > 0, there exists δ > 0, |r(x)| ≤ a|x|, with |x| < δ. According to our
assumption, for sufficiently large n, Λ(Sk)

−1 ≤ nδ/ |λ| holds, and hence,

|Rn| ≤
n∑
k=1

a
∣∣∣ λ

nΛ(Sk−1)

∣∣∣ ≤ a|λ|Yn.
Therefore,

lim
n→∞

P(|Rn| ≥ ε) ≤ lim
n→∞

P

(
Yn ≥

ε

a|λ|

)
.

Letting a→ 0+, we get

lim
n→∞

P(|Rn| ≥ ε) ≤ lim
C→∞

lim
n→∞

P(Yn ≥ C) = 0,

since the sequence {Yn, n ≥ 1} is bounded in probability by eq. (5). Therefore, Rn
P−→ 0,

n→∞. Consequently, we obtain the following convergence from Lévy’s theorem:

1

m

m∑
k=1

θk
Λ(Sk−1)

P−→ µΛ−1,m→∞.

In the general case where Λ−1 is unbounded, we define Λn(t) := Λ(t)1{|Λ(t)|≥1/n}. From the
above reasoning, it follows that

1

m

m∑
k=1

θk
Λn(Sk−1)

P−→ µΛ−1
n , m→∞,
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where Λ−1
n = E

[
Λ−1
n (0)

]
. Write∣∣∣∣∣ 1

m

m∑
k=1

θk
Λ(Sk−1)

− µΛ−1

∣∣∣∣∣
≤

∣∣∣∣∣ 1

m

m∑
k=1

θk
Λ(Sk−1)

− 1

m

m∑
k=1

θk
Λn(Sk−1)

∣∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
k=1

θk
Λn(Sk−1)

− µΛ−1
n (0)

∣∣∣∣∣+

∣∣∣∣∣µΛ−1
n (0)− µΛ−1(0)

∣∣∣∣∣.
For the first term here, we apply the same reasoning as in Proposition 3.2:

E

[ ∣∣∣∣∣ 1

m

m∑
k=1

θk
Λ(Sk−1)

− 1

m

m∑
k=1

θk
Λn(Sk−1)

∣∣∣∣∣
]
≤ 1

m

m∑
k=1

E
[ ∣∣∣θk(Λ−1(Sk−1)− Λ−1

n (Sk−1)
)∣∣∣ ]

=
1

m

m∑
k=1

E [ θk ]E
[ ∣∣Λ−1(Sk−1)

∣∣1{|Λ(Sk−1)|<1/n}
]

= µE
[ ∣∣Λ−1(0)

∣∣1{|Λ(0)|<1/n}
]
→ 0, n→∞.

This also shows that the third term converges to 0. For the second term, fix arbitrary ε > 0
and write

lim
m→∞

P

(∣∣∣∣∣ 1

m

m∑
k=1

θk
Λ(Sk−1)

− µΛ−1(0)

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣ 1

m

m∑
k=1

θk
Λ(Sk−1)

− 1

m

m∑
k=1

θk
Λn(Sk−1)

∣∣∣∣∣ > ε/3

)
+ P

(∣∣∣∣∣µΛ−1
n (0)− µΛ−1(0)

∣∣∣∣∣ > ε/3

)

≤
1
m

∑m
k=1 E

[ ∣∣∣ θk
Λ(Sk−1) −

θk
Λn(Sk−1)

∣∣∣ ]
ε/3

+ P

(∣∣∣∣∣µΛ−1
n (0)− µΛ−1(0)

∣∣∣∣∣ > ε/3

)

≤
3µθE

[ ∣∣Λ−1(0)
∣∣1{|Λ−1(0)|<1/n}

]
ε

+ P

(∣∣∣∣∣µΛ−1
n (0)− µΛ−1(0)

∣∣∣∣∣ > ε/3

)
.

Letting n→∞, we arrive at the first statement.

To show the second statement, note that whenever x <
(
µΛ−1

)−1
,

P
(
NΛ
t ≤ tx

)
= P

btxc∑
i=1

θi
Λ(Si−1)

≥ t

 = P

(
γbtxc ≥

t

btxc

)
→ 0, t→ +∞,

since limt→∞
t
btxc = 1

x < µΛ−1. Similarly, for any x >
(
µΛ−1

)−1
, we get P

(
NΛ
t ≥ tx

)
→ 0,

t→∞, concluding the proof.

Before formulating the basic law, let us formulate one more condition, namely the condition
on the distribution of jumps and an auxiliary statement that will determine the properties of
the additive functional:

A4. The jump values {ξn, n ≥ 1} are centered and belong to the domain of attraction of an
α-stable distributions with α ∈ (1, 2]. In this case (see e.g. (Resnick 1986, Proposition
3.4), there is a weak convergence in D[0,∞) with Skorohod’s topology{

1

L(n)n1/α

[nt]∑
k=1

ξk, t ≥ 0

}
d−→ {Zα(t), t ≥ 0} , n→∞,

to an α-stable Lévy process Zα.

We denote ct = L(t)t1/α−1 for t > 0; observe that it is regularly varying of index 1/α− 1.
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Theorem 3.1 ((Borodin and Ibragimov 1995, Theorems 2.2. and 4.2)). Under the assump-
tions A1 and A4, for any function f such that

∑∞
k=−∞ |f(k)| < ∞, the convergence in law

holds:

cn

n∑
k=1

f(Sk)
d−→ `α(1, 0)

∞∑
k=−∞

f(k), n→∞,

where `α(1, 0) is the symmetric local time at zero of the process Zα on the interval [0, t].

3.3. Limit theorem for additive functional of CTRW

The main result of this article is the following theorem.

Theorem 3.2. Let the conditions A1-A4 be satisfied,
∑∞

n=−∞ |g(n)| <∞. Then, the finite-
dimensional distributions of the process

ct

∫ tu

0
g(XΛ

s )ds, u ≥ 0,

converge as t→∞ to those of

µ1/α
(
Λ−1

)1/α−1
∞∑

k=−∞

g(k)

Λ(k)
`α(u, 0), u ≥ 0,

where `α is the symmetric local time of an α-stable Lévy motion Zα, independent of Λ.

Remark 3.2. Since

E

[ ∞∑
n=−∞

|g(n)|
Λ(n)

]
= E

[
Λ−1(0)

] ∞∑
n=−∞

|g(n)| <∞,

the series
∑∞

n=−∞
g(n)
Λ(n) converges almost surely.

Proof. To establish the claim, we use the same ideas as in Kondratiev et al. (2021). For
technical simplicity we will show the convergence of one-dimensional distribution at u = 1;
the proof in general case is similar. We will actually establish a slightly stronger result.
Namely, denoting

AΛ
t = ct

∫ t

0
g(XΛ

s )ds,BΛ = µ1/α
(
Λ−1

)1/α−1
∞∑

k=−∞

g(k)

Λ(k)
`α(1, 0),

we will show that, conditionally on Λ, AΛ
t

d−→ BΛ, t → ∞, in probability. The latter

convergence is the convergence in probability E
[
F (AΛ

t ) | Λ
] P−→ E

[
F (BΛ) | Λ

]
, t→∞, for

any continuous bounded F (if the convergence were almost sure, we would have the so-called
quenched convergence).

For n ≥ 0, denote τn =
∑n

k=1
θk

Λ(Sk−1) , n ≥ 0, the time of nth jump of XΛ
t . Then,

ct

∫ t

0
g(XΛ

s )ds = ct

NΛ
t∑

k=1

θk
g(Sk−1)

Λ(Sk−1)
+ ct

(
t− τNΛ

t

)
g(SNΛ

t
).

Let us deal with the first sum. We start by looking at

ζn =

n∑
k=1

θk
g(Sk−1)

Λ(Sk−1)
.
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For a non-random function h : Z→ (0,∞), denote by

ϕn(λ, h) = E
[
eiλcnζn

∣∣ Λ = h
]

the conditional characteristic function of cnζn given Λ = h; in view of Remark 3.2, we can
assume that

∑∞
n=−∞

|g(n)|
h(n) <∞. Thanks to independence of ξ, θ and Λ, we can write for any

λ 6= 0 that

ϕn(λ, h) = E

E

[
exp

{
iλcn

n∑
k=1

θkxk

}] ∣∣∣∣
xk=

g(Sk−1)

h(Sk−1)
, k=1,...,n


= E

[
n∏
k=1

ϕθ

(λcng(Sk−1)

h(Sk−1)

)]

= E

[
exp

{
n∑
k=1

Logϕθ

(λcng(Sk−1)

h(Sk−1)

)}]

= E

[
exp

{
iµλcn

n∑
k=1

g(Sk−1)

h(Sk−1)
+Rn

}]
,

where

Rn =
n∑
k=1

r
(
λcn

g(Sk−1)

h(Sk−1)

)
, r(x) = Logϕθ(x)− iµx = o(x), x→ 0.

It follows from Theorem 3.1 that

cn

n∑
k=1

g(Sk−1)

h(Sk−1)

d−→
∞∑

k=−∞

g(k)

h(k)
`α(1, 0), n→∞.

As in Proposition 3.3, we need to show that Rn
P−→ 0, n→∞. To this end, fix ε > 0 and let

δ > 0 be such that |r(t)| < ε|t| for any |t| < δ. Then, we can write

|Rn| ≤ ε|λ|cn
n∑
k=1

∣∣∣∣∣g(Sk−1)

h(Sk−1)

∣∣∣∣∣.
Hence, thanks to eq. (6), for any η > 0,

lim
n→∞

P (|Rn| ≥ η) ≤ P

( ∞∑
k=−∞

∣∣∣∣∣g(k)

h(k)

∣∣∣∣∣`α(1, 0) ≥ η

ε|λ|

)
.

Letting ε → 0+, we obtain that limn→∞ P (|Rn| ≥ η) = 0, which gives us the required con-
vergence.

By virtue of Lévy’s theorem, we get that, conditionally on Λ = h,

cnζn
d−→ µ

∞∑
k=−∞

g(k)

h(k)
`α(1, 0), n→∞. (6)

The next step is to show a similar convergence for ζNΛ
t

. Thanks to Proposition 3.3, for any
ε > 0,

P

(∣∣∣∣NΛ
t

t
− a
∣∣∣∣ ≥ ε)→ 0, t→∞,

where a =
(
µΛ−1

)−1
, whence

P

(∣∣∣∣NΛ
t

t
− a
∣∣∣∣ ≥ ε ∣∣∣∣ Λ

)
P−→ 0, t→∞. (7)
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Observe that

cat

∣∣∣ζNΛ
t
− ζbatc

∣∣∣ ≤ cat ∑
k:|k−at|<εt+1

θk
|g(Sk−1)|
Λ(Sk−1)

whenever
∣∣∣NΛ

t
t − a

∣∣∣ < ε. Therefore, for any η > 0,

P
(
cat

∣∣∣ζNΛ
t
− ζbatc

∣∣∣ ≥ η | Λ
)

≤ P

cat ∑
k:|k−at|<εt+1

θk
|g(Sk−1)|
Λ(Sk−1)

≥ η
∣∣∣∣ Λ

+ P

(∣∣∣∣NΛ
t

t
− a
∣∣∣∣ ≥ ε ∣∣∣∣ Λ

)
.

(8)

Similarly to eq. (6), it can be shown that, conditionally on Λ,

cat
∑

k:|k−at|<εt+1

θk
|g(Sk−1)|
Λ(Sk−1)

d−→ µ

∞∑
k=−∞

|g(k)|
Λ(k)

(
`α(1 + ε/a, 0

)
− `α(1− ε/a, 0)

)
. (9)

Due to eq. (7), from any positive sequence tn → ∞, we can extract a subsequence tnl such
that

P

(∣∣∣∣NΛ
tnl

tnl
− a
∣∣∣∣ ≥ ε ∣∣∣∣ Λ

)
→ 0, t→∞,

almost surely. Combining this with eq. (8), we get

lim sup
l→∞

P

(
catnl

∣∣∣∣ζNΛ
tnl

− ζbatnlc
∣∣∣∣ ≥ η | Λ

)

≤ lim sup
l→∞

P

catnl ∑
k:|k−atnl |<εtnl+1

θk
|g(Sk−1)|
Λ(Sk−1)

≥ η
∣∣∣∣ Λ


almost surely. Further, using eq. (9) and the portmanteau theorem, we obtain

lim sup
l→∞

P

(
catnl

∣∣∣∣ζNΛ
tnl

− ζbatnlc
∣∣∣∣ ≥ η | Λ

)
≤ P

(
µ

∞∑
k=−∞

|g(k)|
Λ(k)

(
`α(1 + ε/a, 0

)
− `α(1− ε/a, 0)

)
≥ η

∣∣∣∣ Λ

)

= P

(
µ

∞∑
k=−∞

|g(k)|
h(k)

(
`α(1 + ε/a, 0

)
− `α(1− ε/a, 0)

)
≥ η

)∣∣∣∣∣
h=Λ

almost surely. Finally, letting ε→ 0 and noticing that the process ` is continuous, we obtain

P

(
catnl

∣∣∣∣ζNΛ
tnl

− ζbatnlc
∣∣∣∣ ≥ η ∣∣∣ Λ

)
→ 0, l→∞

almost surely. Since the sequence tn was arbitrary, it follows that

P
(
cat

∣∣∣ζNΛ
t
− ζbatc

∣∣∣ ≥ η | Λ
)

P−→ 0, t→∞.

Combining this with eq. (6), we get that conditionally on Λ = h,

catζNΛ
t

d−→ µ

∞∑
k=−∞

g(k)

h(k)
`α(1, 0), t→∞,
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in probability. Since ct is regularly varying of index 1/α− 1, then, conditionally on Λ = h,

ctζNΛ
t

d−→ µa1−1/α
∞∑

k=−∞

g(k)

h(k)
`α(1, 0)

= µ1/α
(
Λ−1

)1/α−1
∞∑

k=−∞

g(k)

h(k)
`α(1, 0), t→∞,

in probability.

To complete the proof, it remains to show that ct
(
t−τNΛ

t

)
g(SNΛ

t
)

P−→ 0, t→∞. This follows

from the boundedness of (t − τNΛ
t

) and Λ(SNΛ
t

) in probability, boundedness of g, and the
convergence ct → 0 as t→∞.
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