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Abstract

This paper is devoted to establishing conditions that guarantee the existence of a p-th
moment of the time it takes for a time-inhomogeneous Markov chain to hit some set C.
We modified the well-known Drift Condition from the theory of homogeneous Markov
chains. We demonstrated that the inhomogeneous Markov chain may be polynomially
recurrent while exhibiting different dynamics from its homogeneous counterpart.
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1. Introduction

In this paper, we investigate the recurrence properties of time-inhomogeneous Markov chains.
The main object of interest is a polynomial moment of the return time σC to some specific
set C. We aim at finding conditions that ensure Ex[σpC ] <∞ for some p.

One principal application of recurrence properties of time-inhomogeneous Markov chains is
developing a coupling for two time-inhomogeneous Markov chains. The coupling method was
introduced by W. Doeblin almost a century ago, see Doeblin (1938). The classical coupling
method for homogeneous chains is described in the books of Lindvall (1991) and Thorisson
(2000). The paper Golomoziy (2015) contains results that generalize Lindvall’s Theorem
about the finiteness of the first moment of the coupling time with some practical applications.

The coupling method for inhomogeneous chains requires some modifications in its construc-
tion. See Golomoziy and Kartashov (2013a), Golomoziy and Kartashov (2013b) and Golo-
moziy and Kartashov (2016) for examples of building so-called maximal coupling on a discrete
state space with applications to stability of transition probabilities.

Coupling constructions for time-inhomogeneous Markov chains with values in general phase
space are used in Douc, Moulines, and Rosenthal (2004b) with applications to convergence
rates and Golomoziy (2014) with applications to stability. An application of these results to
actuarial mathematics can be found in Golomoziy, Kartashov, and Kartashov (2016).

Typical results involving the coupling method rely on properties of consecutive visits to some
so-called “small” set C (see Meyn and Tweedie (1993) for a detailed discussion of small sets
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and homogeneous theory overall). The shorter the renewal intervals are, the better coupling
properties are. The theory of homogeneous Markov chains has many results that describe
renewal intervals, and of course, the Key Renewal Theorem plays the central role in this
theory (see Meyn and Tweedie (1993), Douc, Moulines, Priouret, and Soulier (2018)).

In the present paper, we focused on a polynomial recurrence, a partial case of a more general
- subgeometric recurrence. It was studied in the papers Douc, Fort, Moulines, and Soulier
(2004a), Andrieu, Fort, and Vihola (2015) and Fort and Roberts (2005) and further developed
in the book Douc et al. (2018).

This paper is organized as follows. Section 2 contains the main definitions and notation. In
Section 3, we present the main result, which states the existence of a polynomial moment of
the return time. Section 4 contains an example which demonstrates how the conditions of the
main Theorem could be verified. Finally, Section 5 includes technical auxiliary results that
are used in the proof of the main Theorem.

2. Definitions and notation

Assume {Xn, n ≥ 0} is a time-inhomogeneous Markov chain defined on a probability space
(Ω,F,P) with the values in a general state space (E,E). Denote its transition probability by

Pn(x,A) = P{Xn+1 ∈ A|Xn = x}.

The sequence of transition probabilities generates a canonical probability space (E∞,E∞,Ptx)
for each t ∈ N and x ∈ N, where

Ptx{A1, . . . , Am} = P {Xt+1 ∈ A1, . . . , Xt+m ∈ Am|Xt = x} ,

and A1, . . . , Am ∈ E.

Let us fix some set C ∈ E, and denote the first return time by

σC = inf{n ≥ 1 : Xn ∈ C}. (1)

If used in context of Ptx we will understand σC as

σC = inf{n ≥ 1 : Xt+n ∈ C}.

Such a notation allows us to significantly simplify derivations by omitting unnecessary indices
at a cost of some abuse of formality.

Our goal is to establish the finiteness of the p-th moment of the return time, i.e.

sup
x∈C

Etx
[
σpC
]
<∞,

and
Etx
[
σpC
]
<∞,

for some p ≥ 1. Similar results for geometric recurrence can be found in Golomoziy (2022).
We would like to emphasize that the bounds we derive are not uniform in x. Uniform in x es-
timates are related to the uniform ergodicity in time-homogeneous case, and studied in details
in Douc et al. (2018) and Meyn and Tweedie (1993) in the homogeneous case. The papers
Golomoziy (2020) and Golomoziy and Mishura (2020) are devoted to the stability of time-
inhomogeneous case when a uniform minorization condition holds true, which is equivalent
to the uniform ergodicity in the homogeneous theory.

As we mentioned in the Introduction, polynomial recurrence plays a critical role in developing
coupling for a pair of different time-inhomogeneous chains. An interested reader may find more
details on how recurrence is related to the properties of coupling in the papers Golomoziy
and Kartashov (2012), Golomoziy (2019) and Golomoziy (2017).
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3. Main result

To achieve the goal outlined above we will modify the Drift Condition or the Foster-Lyapunov
criterion which are well-known in the homogeneous theory. Generally speaking, we will fol-
low an approach described in Douc et al. (2018), Chapter 16, but adopted to the time-
inhomogeneous case. This approach requires us to introduce a special Drift Condition that
guarantees the finiteness of a p-th moment of σC (see the formal definition in (1)). For doing
so we define α ∈ (0, 1), such that p = 1

1−α , for example, p = 2 requires α = 1/2 and α = 2/3
corresponds to p = 3.

Condition D. Assume there exist a measurable function V : E → [1,∞], a constant c > 0
and a sequence of positive real numbers {αn, n ≥ 0} ⊂ (0, α], such that

PnV ≤ V − cV αn + b1C ,

and
sup
x∈C

V (x) <∞.

We assume, that “most” of αn are equal to α, but “sometimes”, αn < α.

Next, we define the sequence {nk, k ≥ 0} in the following way

n0 = min{n ≥ 0 : αn = α},

nk+1 = min{n > nk : αn = α}.

In other words, {nk, k ≥ 0} is a sequence of indices, such that αnk = α. By convention we
will assume that min{∅} =∞. We should treat the sequence {nk, k ≥ 0} in the same context
as σC with regard to the starting index t. So that, when considering a chain that starts at
Xt = x we will assume

n0 = min{n ≥ 0 : αt+n = α},

nk+1 = min{n > nk : αt+n = α}.

Theorem 1. Let {Xn, n ≥ 0} be a Markov chain described above. Assume that Condition
D holds true along with the following conditions. 1. Denote the lower limit of the sequence
{αn, n ≥ 1} by β and assume

β := limαn > max

{
2− 1

α
, 0

}
.

2. Indices j, such that αj < α are so sparse that

∞∑
k=1

k−ρmk <∞,

where mk = nk+1 − nk − 1,

ρ =

(
1− ε
1− β

− α

1− α

)(
1 +

1− ε
1− β

)−1
∈ (0, 1),

and ε is an arbitrary small constant such that

1− ε
1− β

>
α

1− α
.

Then the following inequality holds true for all x ∈ E and t ≥ 0

c
α

1−αEtx
[
((1− α)σC)

1
1−α
]

≤

[
V (x) + b(2− α)

α
1−α1C(x) + bB(x)

∞∑
k=1

(
1− α
k

+ 1

) α
1−α

k
α

1−α−
γ

1−βmk

]
<∞,
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where mk = nk+1 − nk − 1, and

B(x) = (1− β)
−1
1−β

(
V (x) + sup

y∈C
V (y) + b(2− β)

β
1−β

)
. (2)

Remark 1. Condition 2 is a condition on “sparsity” of indices i such that αi < α. A typical
example of such a sparsity is a situation in which αi < α only holds when i are equal to ns

for an appropriate s > 1. The latter clearly implies that all nk <∞ and nk →∞, k →∞.

Proof. For a Markov chain X̃k = Xnk defined in Section 5, Theorem 2 provides an estimate

((1− α)c)
α

1−αEtx

[
σ̃C−1∑
k=0

k
α

1−α

]
≤ V (x) + br(1)1C(x) + bEtx

[
σ̃C−1∑
k=1

r(k + 1)mk

]
. (3)

In order to estimate the last term in (3) we use Lemma 4. Conditions 1 and 2 of the present
theorem applied to Lemma 4 allows us to obtain the inequality

Etx

[
σ̃C−1∑
k=1

r(k + 1)mk

]
≤ B(x)

∞∑
k=1

(
1 +

1− α
k

) α
1−α

k−ρmk.

Finally we employ the elementary inequality (16) to conclude the proof.

Remark 2. We refer the reader to the paper Golomoziy (2023) for a similar result that
guarantees geometric recurrence for time-inhomogeneous autoregression. We would like to
emphasize the similarities in behavior of time-inhomogeneous Markov chains which are poly-
nomial or geometrically recurrent. In both cases inhomogeneous chains may drift to the set
C with the varying speed. However, as long as deviations from the required (geometric or
exponential) speed are rare enough, a chain remains recurrent, even though such deviation
may occur infinitely often.

4. Random walk on a half-line

In this section we demonstrate one immediate application of Theorem 1 to a time-inhomogeneous
random walk on a half line, which extends a known homogeneous result. To this end, we will
adopt derivations from Douc et al. (2018), Example 16.1.13.

Let us consider a family of independent random variables {Wn, n ≥ 0} with values in R.
Denote by Γn the distribution of Wn. Assume that

sup
n

E [Wn] < 0, (4)

and

sup
n

E
[(
W+
n

)m]
<∞,

for some m > 1.

We are interested in properties of the process

Xn+1 = (Xn +Wn+1)
+, n ≥ 0, X0 = x ≥ 0.

Clearly, {Xn, n ≥ 0} is an inhomogeneous Markov chain. We select α = m−1
m . We will

verify Condition D with some set C of the form C = [0, z]. Thus, we demonstrate how the
properties of increments Wn are connected with recurrent properties of the chain {Xn, n ≥ 0}.
In this case Conditions 1 and 2 of Theorem 1 are automatically satisfied, since all alphas are
equal to m−1

m .



44 Polynomial recurrence

In order to verify Condition D we use (4) to find a χ > 0 satisfying

sup
n

E [Wn1Wn>−χ] < 0.

We use the test function
V (x) = (1 + x)m, x ≥ 0.

For x ≥ χ we can write

PnV (x) ≤ V (x− χ)Γn(−χ) +

∫ ∞
−x0

V (x+ y)Γn(dy). (5)

For the function V we can write the following inequalities (see Douc et al. (2018), Example
16.1.13)

V (x)− V (x− χ) ≥ χm

(χ+ 1)m−1
(x+ 1)m−1,

V (x+ y) ≤ V (x) +m(x+ 1)m−1 +m(x+ 1)m−1y +
1

2
m(m− 1)(x+ 1)m−2(y + 1)m, y ≥ 0

and

V (x+ y) ≤ V (x) +m(x+ 1)m−1 +m(x+ 1)m−1y +
1

2
m(m− 1)(x+ 1)m−2χ2, y ∈ [−χ, 0).

Plugging these into (5) we obtain

PnV (x) ≤ V (x)Γn(−χ)− χm

(χ+ 1)m−1
(x+ 1)m−1Γn(−χ) + V (x)(1− Γn(−χ))

+m(x+1)m−1
∫ ∞
−χ

(1+y)Γn(dy)+
1

2
m(m−1)(x+1)m−2

(
Γn((−χ, 0)) +

∫ ∞
0

(y + 1)mΓn(dy)

)
= V (x)− c1(x+ 1)m−1 + c2(x+ 1)m−2 = V (x)− (x+ 1)m−1

(
c1 −

c2
x+ 1

)
,

where

c1 = c1(χ,m, n) =
χm

(χ+ 1)m−1
Γn(−χ) +m

∫ ∞
−χ

(1 + y)Γn(dy),

c2 = c2(χ,m, n) =
1

2
m(m− 1)

(
Γn((−χ, 0)) +

∫ ∞
0

(y + 1)mΓn(dy)

)
.

Clearly, we can select z = max{χ, c2c1 − 1} so that c := c1 − c2
x+1 > 0 when x > z, and thus

PnV (x) ≤ V (x)− cV α(x) + b1[0,z](x),

for some constant b > 0.

5. Auxiliary results

In this section we provide some auxilliary results which play a crucial role in establishing a
polynomial recurrence.

Let us now define a random process X̃k = Xnk , k ≥ 0. Note that X̃k is an inhomogeneous
Markov chain with the transition probability

P̃k(x,A) = P
{
Xnk+1

∈ A|Xnk = x
}

=

nk+1−1∏
j=nk

Pj

 (x,A).

Let us define the sequence of functions {Vn, n ≥ 0}, Vn : E → [1,∞) such that

Vn =
(
(1− α)cn+ V 1−α) 1

1−α − ((1− α)cn)
1

1−α , (6)

where V is defined in Condition D.

We start with the following observation.
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Lemma 1. Let {Vn, n ≥ 0} be the sequence of functions defined by (6). Then the following
inequality holds true

Vn+1 − c
(
(1− α)(n+ 1)c+ V 1−α) α

1−α ≤ Vn − c((1− α)cn)
α

1−α .

Proof. First we note that

Vn =
(
(1− α)cn+ V 1−α) 1

1−α − ((1− α)cn)
1

1−α =
1

1− α

∫ V 1−α

0
((1− α)cn+ z)

α
1−α dz.

Having this equality in mind we can write

Vn+1 − Vn =
1

1− α

∫ V 1−α

0

(
((1− α)c(n+ 1) + z)

α
1−α − ((1− α)cn+ z)

α
1−α
)
dz

=
1

1− α

∫ V 1−α

0

∫ 1

0

d

ds
((1− α)(n+ s)c+ z)

α
1−α dsdz

=
αc

1− α

∫ V 1−α

0

∫ 1

0
((1− α)(n+ s)c+ z)

α
1−α−1 dsdz

= c

∫ 1

0

[(
(1− α)(n+ s)c+ V 1−α) α

1−α − ((1− α)(n+ s)c)
α

1−α
]
ds

≤ c
(
(1− α)(n+ 1)c+ V 1−α) α

1−α − c((1− α)cn)
α

1−α .

The next lemma helps us to calculate the conditional expectation E [Vn+1(Xn)|Fn].

Lemma 2. Let the sequence Vn be defined in (6), αn = α and Condition D hold true. Then
the following inequality holds true

PnVn+1(Xn) ≤ Vn(Xn)− c((1− α)cn)
α

1−α + br(n+ 1)1C(Xn),

where
r(n) = [(1− α)cn+ 1]

α
1−α . (7)

Proof. First, we note that for every n ≥ 0 the function

gn(x) = ((1− α)cn+ x1−α)
1

1−α − ((1− α)cn)
1

1−α , x ≥ 0

is concave, since for x ≥ 0

g′′n(x) = αx−α−1
(
(1− α)cn+ x1−α

) α
1−α

(
1

(1− α)cnxα−1 + 1
− 1

)
< 0.

Thus, we can use Jensen’s inequality to write

PnVn+1(Xn) = E [Vn+1(Xn+1)|Fn] = E [gn+1(V (Xn+1))|Fn] ≤ gn+1 (E [V (Xn+1)|Fn])

= gn+1 (PnVn+1(Xn)) =
[
(1− α)(n+ 1)c+ (PnV (Xn))1−α

] 1
1−α − ((1− α)(n+ 1)c)

1
1−α .

Next we use the fact that gn+1 is increasing along with Condition D to derive

PnVn+1(Xn) ≤ gn+1 (PnV (Xn)) ≤ gn+1 (V (Xn)− cV α(Xn) + b1C(Xn))

=
[
(1− α)(n+ 1)c+ (V (Xn)− cV α(Xn) + b1C(Xn))1−α

] 1
1−α − ((1− α)(n+ 1)c)

1
1−α ,
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Next, we make the following observation. For any differentiable, concave function g(x), x ≥ 0
the following inequality holds true

g(x+ y) ≤ g(x) + yg′(x), (8)

as long as x ≥ 0 and x+ y ≥ 0. We put x = V (Xn) and y = −cV α(Xn) + b1C(Xn) and apply
inequality (8) to the function gn+1. So we have

PnVn+1(Xn) ≤
[
(1− α)(n+ 1)c+ V 1−α(Xn)

] 1
1−α − ((1− α)(n+ 1)c)

1
1−α

+ (−cV α(Xn) + b1C(Xn))
[
(1− α)(n+ 1)c+ V 1−α(Xn)

] α
1−α V −α(Xn)

= Vn+1(Xn)− c
[
(1− α)(n+ 1)c+ V 1−α(Xn)

] α
1−α + b1C(Xn)

[
(1− α)(n+ 1)c

V 1−α(Xn)
+ 1

] α
1−α

.

Next we use Lemma 1 and the fact V ≥ 1 to get the inequality

PnVn+1(Xn) ≤ Vn − c((1− α)n)
α

1−α + b1C(Xn) [(1− α)(n+ 1)c+ 1]
α

1−α .

Lemma 2 demonstrates the presence of a “drift of the size” O
(
n

α
1−α
)

towards the set C, at

the transition from time n to n+ 1 whenever αn = α. As we see later, this fact is crucial for

establishing the finiteness of Ex

[
σ

1
1−α
C

]
. However, in the case αn < α, one may only expect a

drift of smaller size, namely O(n
αn

1−αn ), which is insufficient for establishing the finiteness of a
desired moment. To solve this problem, we will “skip” the timesteps n such that αn < α, and
require that such timesteps are rare enough (see Condition 2 of Theorem 1). The following
Lemma demonstrates how to execute such a “skip”.

Lemma 3. Let the sequence Vn be defined in (6), m > 0 be some integer, αn = α, αn+i < α
for i = 1,m and αn+m+1 = α. Assume also that Condition D holds true. Then the following
inequality holds true for any k ≥ 1m−1∏

j=0

Pn+j

Vk(Xn) ≤ Vk−1(Xn)−c((1−α)(k−1)c)
α

1−α +br(k)

 m∑
i=0

i−1∏
j=0

Pn+j

 (Xn, C)

 ,

where

(
−1∏
j=0

Pn+j

)
(x,C) = 1C(x) by convention and r(n) is defined in (7).

Proof. To simplify the notation, let us denote the n-th step transition probability by

Pn,i =
i−1∏
j=0

Pn+j .

We start with Pn+m−1 and, following the line of the proof of Lemma 2, we apply the Jensen
inequality and Condition D to get the following inequality

Pn+m−1Vk(Xn)

≤
[
(1− α)ck + (V (Xn)− cV αn+m−1(Xn) + b1C(Xn))1−α

] 1
1−α − ((1− α)ck)

1
1−α .

Next, we apply elementary inequality (8) to obtain

Pn+m−1Vk(Xn) ≤
[
(1− α)ck + V 1−α(Xn)

] 1
1−α − ((1− α)ck)

1
1−α
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+ (−cV αn+m−1(Xn) + b1C(Xn))
[
(1− α)ck + V 1−α(Xn)

] α
1−α V −α(Xn)

= Vk(Xn)− c
[
(1− α)ck + V 1−α(Xn)

] α
1−α V αn+m−1−α(Xn)

+b1C(Xn)

[
(1− α)ck

V 1−α(Xn)
+ 1

] α
1−α
≤ Vk(Xn) + br(k)1C(Xn).

Now we put

Ai = Pn,i−1Vk(Xn).

We have then the following inequality

Am ≤ Pn,m−1 (Vk(Xn) + br(k)1C(Xn)) = Am−1 + br(k)Pn,m−2(Xn, C).

Following the same derivations as before we obtain

Am ≤ A1 + br(k)

m−1∑
j=1

Pn,j(Xn, C)

 .

But since αn = α we can apply Lemma 2 to A1 and obtain

A1 = PnVk(Xn) ≤ Vk−1 − c ((1− α)(k − 1)c)
α

1−α + br(k)1C(Xn).

In the next theorem we establish the finiteness of the α
1−α -th moment of σ̃C .

Theorem 2. Assume Condition D holds true, and nk < ∞ for all k ≥ 0. Then for all
x ∈ E and t ≥ 0

((1− α)c)
α

1−αEtx

[
σ̃C−1∑
k=0

k
α

1−α

]
≤ V (x) + br(1)1C(x) + bEtx

[
σ̃C−1∑
k=1

r(k + 1)mk

]
, (9)

where mk = nk+1 − nk − 1.

Proof. Without loss of generality, we will assume that t = 0 and omit the upper index t for
brevity.

Vk =
(
(1− α)ck + V 1−α(Xnk)

) 1
1−α − ((1− α)ck)

1
1−α .

Clearly {Vk, k ≥ 0} is a Markov chain.

In order to establish the desired result we will use the Comparison Theorem (see Douc et al.
(2018), Chapter 4). To verify its condition we consider two cases.

1. Assume nk+1 = nk + 1, so that αnk = αnk+1 = α. In this case

Vk =
(
(1− α)ck + V 1−α(Xnk

) 1
1−α − ((1− α)ck)

1
1−α ,

and

Vk+1 =
(
(1− α)(k + 1)c+ V 1−α(Xnk+1)

) 1
1−α − ((1− α)(k + 1)c)

1
1−α .

We can apply Lemma 2 and arrive at the inequality

E
[
Vk+1|F̃k

]
≤ Vk − ((1− α)ck)

α
1−α + br(k + 1)1C(Xnk). (10)

2. Assume nk+1 = nk +m+ 1, so that αnk = α, αnk+i < α, i = 1,m, αnk+1
= αnk+m+1 = α.

In this case

Vk =
(
(1− α)ck + V 1−α(Xnk

) 1
1−α − ((1− α)ck)

1
1−α ,
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and

Vk+1 =
(
(1− α)(k + 1)c+ V 1−α(Xnk+m+1)

) 1
1−α − ((1− α)(k + 1)c)

1
1−α .

We can apply Lemma 3 and obtain

E
[
Vk+1|F̃k

]
≤ Vk − ((1− α)ck)

α
1−α + br(k + 1)

 m∑
i=0

i−1∏
j=0

Pnk+j

 (Xnk , C)

 . (11)

Combining inequalities (10) and (11) we come to the following inequality

E
[
Vk+1|F̃k

]
+ Zk ≤ Vk + Yk, (12)

where
Zk = ((1− α)ck)

α
1−α ,

Yk = br(k + 1)

nk+1−nk−1∑
i=0

i−1∏
j=0

Pnk+j

 (Xnk , C)

 .

Since all Vk, Zk and Yk are non-negative, (12) allows us to apply the Comparison Theorem,
which renders

((1− α)c)
α

1−αEx

[
σ̃C−1∑
k=0

k
α

1−α

]
≤ V0 + Ex

[
σ̃C−1∑
k=0

Yk

]

≤ V (x) + br(1)1C(x) + bEx

[
σ̃C−1∑
k=1

r(k + 1)(nk+1 − nk − 1)

]
.

Next we want to establish the finiteness of the last term in (9).

Lemma 4. Assume the conditions of Theorem 2 hold. Assume additionaly that
1. The lower limit β of the sequence {αn, n ≥ 0} is positive and satisfies (1− β)−1 > α

1−α , or
in other words

β := limαn > max

{
2− 1

α
, 0

}
,

2. Indices j, such that αj < α are so sparse that

∞∑
k=1

k−ρmk <∞,

where mk = nk+1 − nk − 1,

ρ =

(
1− ε
1− β

− α

1− α

)(
1 +

1− ε
1− β

)−1
∈ (0, 1),

and ε is an arbitrary small constant such that

1− ε
1− β

>
α

1− α
.

Then the following inequality holds true for all x ∈ E and t ≥ 0

Etx

[
σ̃C−1∑
k=1

r(k + 1)mk

]
≤ B(x)

∞∑
k=1

(
1 +

1− α
k

) α
1−α

k−ρmk,

where B(x) is defined in (2) and V, b are from Condition D.
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Remark 3. Note, that ρ was selected in such a way that

(1− ε)(1− ρ)

1− β
− α

1− α
= ρ. (13)

We will use this equation later in the proof.

Proof. In this proof we will follow the notations from Theorem 2 and omit the upper index
t. We start with the representation

Ex

[
σ̃C−1∑
k=1

r(k + 1)mk

]
=

∞∑
k=1

r(k + 1)mkPx {σ̃C > k} . (14)

Note, that

PnV + V β ≤ PnV + V αn ≤ V + b1C .

Thus, we may conclude that Condition D holds true when all αn are replaced with β. In
such case all mk = mk(β) = 0 and Theorem 2 renders

Ex

[
σ

1
1−β
C

]
≤ (1− β)

− 1
1−β

(
V (x) + b(2− β)

β
1−β 1C(x)

)
. (15)

Here we used an elementary inequality

x
1

1−β =
1

1− β

∫ x

0
y

β
1−β dy ≤ 1

1− β

x∑
k=0

k
β

1−β =
1

1− β

x−1∑
k=0

(k + 1)
β

1−β . (16)

In order to prove the finiteness of (14) we would like to bound Px{σ̃C > k} by Px{σC > f(k)}
for some function f , and then apply the Markov inequality and (15) to write a bound of the
form

Px{σC > f(k)} ≤ Ex

[
σ

1
1−β
C

]
(f(k))

− 1
1−β .

The idea behind finding an appropriate function f comes from Condition 2. Since
∞∑
k=0

k−ρmk

is finite and ρ < 1 we may conclude that a set {k : mk > 0} is very sparse. One may expect
(informally, of course) that mk > 0 only for indices of the form k = js, where s > 1 is some
fixed constant. This, in turn, implies that intervals of indices i such that mi = 0 should be
long enough so that we will be looking for a function f of the form f(N) = Nγ for some
constant γ to be defined. To execute this plan, we will introduce a special notation for the
maximal number of indices in a row, smaller than N , such that mi = 0.

Let us denote by Lk = max{nj − ni + 1, k ≥ j > i, αnj = . . . = αni = α} - the length of a
maximal time subinterval of [0, k] in which all αj = α. In order to illustrate the notation, let
us consider the following example.

n: 1 2 3 4 5 6 7 8 9 10 11
is αn = α + + + - - + + + + - +

nk 1 2 3 x x 4 5 6 7 x 8
mk 0 0 2 x x 0 0 0 1 x 0

In this example we have k = 8, nk = 11, α1 = α2 = α3 = α6 = α7 = α8 = α9 = α11 = α and
α4, α5, α10 are all smaller than α. Here Lk = n7 − n4 + 1 = 9 − 6 + 1 = 4, and all mk = 0
except m3 = 2 and m9 = 1. Assume we are interested in the event {σ̃C > k} (k = 8 in this
example). This means that the chain (Xnk)k≥0 never hits C for k = 1, 8. But (Xn)n≥0 may
still visit C at the moments n ∈ {4, 5, 10}. However, we know that during at least Lk = 4
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timesteps in the [0, nk] = [0, 11] time interval, the chain (Xn)n≥0 never hits C. Should it
never hit C until n = n4 = 6 we will have the inequality

Px{σ̃C > k} ≤ Px{σC > k} ≤ Px{σC > Lk}.

Otherwise, say if X4 ∈ C we have

Px{σ̃C > k} ≤ sup
y∈C

Py{σC > u+ Lk} ≤ sup
y∈C

Py{σC > Lk},

where u is the length of the time interval between the hitting time and the “beginning” of Lk
(in our example, this is n4 = 6, and u = 1). Clearly, such derivations are valid for any k and
do not depend on a particular selection of {nk, k ≥ 0}. So we have the inequality

Px{σ̃C > k} ≤ Px{σC > Lk}+ sup
y∈C

Py{σC > Lk}. (17)

Next, we show that Lk is asymptotically bigger than k(1−ε)(1−ρ) for all ε ∈ (0, 1). To do so,
we prove that for any ε ∈ (0, 1)

Lk
k(1−ε)(1−ρ)

→∞, k →∞. (18)

In fact, we are only interested in ε from Condition 2, but (18) is valid for all ε ∈ (0, 1). Yet,
from now on, we will assume that ε is a specific value selected in Condition 2.

Assume that (18) is not valid, so that

lim
Lk

k(1−ε)(1−ρ)
<∞,

which implies the existence of some constant c > 0 and subsequence {kj , j ≥ 0}, kj → ∞,
j →∞ such that

Lkj ≤ ck
(1−ε)(1−ρ)
j .

In this case, for a sufficiently large k ∈ {kj , j ≥ 0}, time interval [0, k] contains at least
k

ck(1−ε)(1−ρ)
= c−1kρ+ε(1−ρ) subintervals of lengths ck(1−ε)(1−ρ), so that every such interval

contains at least one mi > 0. From the latter, we may derive

k∑
i=1

i−ρmi ≥
c−1kρ+ε(1−ρ)∑

i=1

(
ick(1−ε)(1−ρ)

)−ρ
=

1

cρk(1−ε)(1−ρ)ρ

c−1kρ+ε(1−ρ)∑
i=1

i−ρ

≥ 1

cρk(1−ε)(1−ρ)ρ

∫ c−1kρ+ε(1−ρ)

0

dx

(x+ 1)ρ
=

(
1
ck

ρ+ε(1−ρ) + 1
)1−ρ − 1

(1− ρ)cρk(1−ε)(1−ρ)ρ

=
1

(1− ρ)cρ

(
k(1−ρ)(ρ+ε(1−ρ))−(1−ε)(1−ρ)ρ

(
1

c
+

1

kρ+ε(1−ρ)

)1−ρ
− 1

k(1−ε)(1−ρ)ρ

)

=
1

(1− ρ)cρ

(
k(1−ρ)ε

(
1

c
+

1

kρ+ε(1−ρ)

)1−ρ
− 1

k(1−ε)(1−ρ)ρ

)
→∞, k →∞.

Recall, that we selected k from the sequence {kj , j ≥ 0} and kj →∞, j →∞. Thus we may
conclude that

∞∑
i=1

i−ρmi = lim
j→∞

kj∑
i=1

i−ρmi =∞,

which contradicts Condition 2. Thus, (18) holds true and Lk is bigger than k(1−ε)(1−ρ) for all
sufficiently large k > 0. Using this fact and inequality (17) we may write

Px{σ̃C > N} ≤ Px{σC > N (1−ε)(1−ρ)}+ sup
x∈C

Px{σC > N (1−ε)(1−ρ)}. (19)
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Using (15), (19) and Markov inequality we may derive the following bound

Px {σ̃C > N} ≤ B(x)N
− (1−ε)(1−ρ)

1−β ,

where B(x) is defined in (2). Substituting this into (14) and using (13) we come to the
following bound

Ex

[
σ̃C−1∑
k=1

r(k + 1)mk

]
≤ B(x)

∞∑
k=1

r(k + 1)mkk
− (1−ε)(1−ρ)

1−β

= B(x)

∞∑
k=1

(
(1− α) +

1

k

) α
1−α

k
α

1−α−
(1−ε)(1−ρ)

1−β mk ≤ αB(x)

∞∑
k=1

k−ρmk <∞.

due to Condition 2.
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