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Abstract

The multi-armed bandit problem is a classic example of the exploration-exploitation
trade-off well suited to model sequential resource allocation under uncertainty. One of its
typical motivating applications is the adaptive designs in clinical trials which modify the
trial’s course in accordance with the pre-specified objective by utilizing results accumulat-
ing in the trial. Since the response to a procedure in clinical trials is not immediate, the
multi-armed bandit policies require adaptation to delays to retain their theoretical guar-
antees. In this work, we show the importance of such adaptation by evaluating policies
using the publicly available dataset The International Stroke Trial of a randomized trial
of aspirin and subcutaneous heparin among 19,435 patients with acute ischaemic stroke.
In addition to adapted policies, we analyze the Upper Confidence Bound policy with the
beta feedback to mitigate delays when the certainty evidence of successful treatment is
available in a relatively short-term period after the procedure.

Keywords: multi-armed bandit, upper confidence bound policy, delayed feedback.

1. Introduction

Randomized controlled trials are considered to be the most objective method to evaluate
the effectiveness of new drugs or medical treatments. As the name suggests, for such trials
participants are randomly assigned to groups, often of the same sizes, each with a different
treatment protocol. Comparing the results at the end of a trial provides valuable data for
scientific purposes. However, this way of conducting experiments does not consider the indi-
vidual well-being of participants, which can be crucial in some cases of trials on real patients
with serious medical conditions.

The collected data during clinical trials can be used dynamically to reassign the groups or
individual treatment to give more patients a chance for better care during trials. Developing
such an adaptive design for conducting clinical trials with the most health benefits for par-
ticipants is a great example of using the exploration-exploitation trade-off approach. For this
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purpose, the multi-armed bandit problem was introduced by Thompson (1933).

In many practical applications, the feedback to the decision-maker is not immediate. The
classical multi-armed bandit problem does not assume a delay of the feedback in the se-
quential decision-making process, but in such settings as clinical trials delays are inevitable.
Regrettably, the existence of delays is often omitted in simulations, which can make a study
not representative.

We consider the most common assumption is that outcomes can be dichotomized as successes
or failures to be modeled as a Bernoulli random variable. This binary value as the response to
treatment does not become available immediately. In our work, we use the publicly available
dataset of The International Stroke Trial (IST) to study the implications of neglecting delays
in designing numerical experiments in a clinical trial setting. We adapt policies to the delayed
feedback setting and study the impact on the results of experiments and asymptotic analysis.

In addition, we propose a different way of mitigating the issue with delays, when applicable.
We assume that the evidence of response to a drug can be collected in a relatively short-
term period after the procedure and can represent a certainty of successful treatment. This
information we model as a beta random variable and use instead of delayed Bernoulli feedback.
We showcase the utility of this model in the numerical experiments using the same IST dataset.
Doing asymptotic analysis, we obtain the upper bound for the proposed policy with the help
of sub-Gaussian concentration inequalities.

As our secondary contribution, we publish the framework for conducting numerical experi-
ments and analysis as an open-source project (Dzhoha 2023).

Relevant work. We consider Thompson Sampling policy (Robbins 1952) as used in the
work of Stirn and Jebara (2018); Varatharajah and Berry (2022) for performing numerical
experiments with the IST data. In our work, we adapt this policy to delays that naturally
occurred due to the significant number of patients seen per day. For that, we employ the
methodology proposed by Joulani, Gyorgy, and Szepesvari (2013) which retains theoretical
guarantees of existing policies at the cost of reducing effectiveness in an additive way with
respect to delays.

Alternatively, one can consider modifying the policy itself to adapt it to delays in a more
efficient way for some cases (Vernade, Cappé, and Perchet 2017; Pike-Burke, Agrawal, Szepes-
vari, and Grunewalder 2018; Vernade, Carpentier, Lattimore, Zappella, Ermis, and Brückner
2020). But that would imply changes in the underlying algorithm when our aim is to hold on
to the original policy for comparison.

For the beta reward case, we adapt the Upper Confidence Bound (UCB) policy (Auer, Cesa-
Bianchi, and Fischer 2002a) and provide an asymptotic analysis. As another option, one can
consider a variation of UCB based on the Kullback–Leibler divergence, KL-UCB (Garivier and
Cappé 2011; Cappé, Garivier, Maillard, Munos, and Stoltz 2013). With the same probability
coverage, this policy can have tighter confidence intervals than UCB. Though it comes with
the cost of more complicated implementation as one has to solve an additional optimization
problem of computing the index with the inequality where Kullback–Leibler divergence is
involved.

Another way to model beta rewards is to consider the exponential-weighting policy Exp3
(Auer, Cesa-Bianchi, Freund, and Schapire 2002b) which is based on the importance-weighted
estimation. This policy was built for the adversarial setting relaxing the assumption on the
stochastic environment, so no assumptions are made about the mechanism that generates the
rewards.

The structure of this paper is as follows. We start with a formulation of the problem and an
overview of the policies in Section 2. Section 3 provides an asymptotic analysis of the UCB
policy with beta feedback. Section 4 introduces the environment with delays. In Section 5
we evaluate the performance of the policies in the environment under delays by conducting
numerical experiments with the IST data. Conclusions are given in Section 6.



28 Beta Upper Confidence Bound Policy for the Design of Clinical Trials

2. Multi-armed bandit problem

The stationary stochastic multi-armed bandit problem is a sequential interaction between a
decision-maker (policy) and an environment over discrete-time horizon T . In each time step
t ∈ {1, . . . , T} the policy chooses an action At from an available set of N actions. Each
action i ∈ {1, . . . , N} is associated with the same parametric probability distribution but
with different parameters unknown to the policy. In return to action choice At at time step
t, the environment samples a reward Xt ∈ R≥0 from a corresponding probability distribution
with mean µAt . These are the reward distributions of the corresponding actions. The most
common objective of the policy in this setting is to maximize the expected cumulative reward

E
[∑T

t=1Xt

]
over the whole horizon. The sequential action selection depends on the history

of previously chosen actions and their results in terms of rewards:

Ht−1 = (A1, X1, A2, X2, . . . , At−1, Xt−1).

Hence, the parametric stationary stochastic multi-armed bandit model is denoted by a col-
lection of distributions (Pθ1 , . . . , PθN ), where θi is an unknown parameter of action i.

2.1. Regret

The objective to maximize the cumulative reward is equivalent to the so-called regret min-
imization introduced by Robbins (1952). The (expected) regret is a common performance
measure in the asymptotic analysis of the policies. It is defined as the difference between
the expected reward after choosing an optimal action at all times and the policy’s expected
cumulative reward (choosing the actions with respect to the policy π):

R(T ) = T max
i=1,...,N

µi − Eπ

[
T∑
t=1

Xt

]
,

where arg maxi=1,...,N µi is the optimal action.

As a variation of the regret form defined above, in analysis, it is often more useful to use the
regret decomposition which is expressed as a function of the expected number of times each
action is chosen multiplied by its suboptimality with respect to the best action mean.

Let IB(x) denote the indicator function of a set B and it is defined as

IB(x) =

{
1 x ∈ B
0 x /∈ B.

Then, the regret decomposition is defined as follows (Lai and Robbins 1985):

R(T ) =

N∑
i=1

∆i E

[
T∑
t=1

I{i}(At)

]
, (1)

where ∆i is called a suboptimality gap of action i and expressed as

∆i = max
j=1,...,N

µj − µi.

2.2. Asymptotic analysis

The asymptotic analysis of the stationary stochastic multi-armed bandit model was pioneered
by Lai and Robbins (1985). The authors stated that any policy suffers at least logarithmic
regret on any parametric problem. One objective in designing an efficient policy is to achieve
a sublinear regret in the upper bound:

lim
T→∞

R(T )

T
= 0.
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If the lower bound asymptotically matches the upper bound, a policy is considered asymp-
totically optimal, formally such that:

sup
T→∞

R(T )

log(T )
≤

N∑
i=2

∆i

KL(Pθi , Pθ1)
,

where KL is Kullback-Leibler divergence, and assuming without a loss of generality that the
first action (i = 1) is optimal. A significant part of the research on the multi-armed bandit
problem has focused on finding such policies.

In this paper, we consider two asymptotically optimal policies, Thompson Sampling and
Upper Confidence Bound, described and analyzed further.

2.3. Thompson sampling policy

As a baseline in our experiments, we use Thompson Sampling policy with Bernoulli rewards.
Kaufmann, Korda, and Munos (2012) showed that this policy is asymptotically optimal and it
is considered one of the best performers for a stationary stochastic environment with Bernoulli
rewards (see Granmo (2010)).

In this setting, each action draw is considered a Bernoulli trial with the output set {0, 1}.
Rewards {Xt ∈ {0, 1} : t ∈ {1, . . . , T} ∧ At = i } are Bernoulli random variables with the
probability of success θi of the action i, and θ̂i is its estimator by previously observed data.

The policy is based on the Bayesian principles. First, a prior distribution on means (µi)i is
assigned. At each time step, the policy samples θ̂i ∼ πi for each action i from the posterior
distribution πi on the parameter µi:

πi = Beta(αi, βi),

with the beta distribution as a conjugate prior for the Bernoulli distribution. The parameter
αi is the number of successes (event {1}, meaning successful treatment in our case) when
choosing action i, and βi is the number of failures. Then, the action At is chosen in accordance
with its posterior probability of being optimal:

At = arg max
i=1,...,N

θ̂i.

The posterior concentrates towards the true environment with more data collected.

Agrawal and Goyal (2012) showed that in the stationary stochastic multi-armed bandit model,
the distribution-dependent regret of Thompson Sampling policy using a uniform prior satisfies:

R(T ) ≤

(
N∑
i=2

1

∆2
i

)2

log(T ), (2)

assuming without a loss of generality that the first action is optimal.

The algorithm of Thompson Sampling is summarized in Algorithm 1.

2.4. Upper confidence bound policy

In addition to the Bernoulli rewards setting, we consider a new model with the beta rewards
Xt ∈ [0, 1]. Each action i is associated with the beta distribution with the same mean θi as
in the Bernoulli setting. We model the certainty of successful treatment, which we assume is
estimated from the observation of the response to a drug in a relatively short-term period.
For simplicity, we assume an accurate and in-time provided estimation. In the discussion of
Section 5, we elaborate on how those assumptions can be relaxed to make it practical.

For this setting, we will use Upper Confidence Bound policy. It is based on the principle of
”optimism in the face of uncertainty”, which makes you assume a ”nice” environment where
each action is as good as plausibly possible given the observations so far.
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Algorithm 1 Thompson Sampling

For each i ∈ {1, . . . , N} set αi = 1, βi = 1
for time step t = 1, . . . , T do

for action i = 1, . . . , N do
θ̂i ∼ Beta(αi, βi)

end for
Draw action At = arg maxi=1,...,N θ̂i and observe reward Xt

αAt ← αAt +Xt

βAt ← βAt + (1−Xt)
end for

Auer et al. (2002a) shaped and analyzed this policy for bounded rewards. The authors showed
that it is asymptotically optimal.

UCB belongs to the index-based family of policies, as at each time step t they compute an
index Ui(t) for each action i. Then, an action with the largest index is chosen. This index
represents with high probability an overestimate of the unknown action’s mean. It is taken
as the upper confidence bound using Hoeffding’s inequality to build confidence intervals. The
index Ui(t) is computed as a sum of the average reward from observations collected so far and
a confidence radius:

Ui(t) =
1∑t

p=1 I{i}(Ap)

t∑
p=1

I{i}(Ap)Xp +

√
α

log(1/δ)∑t
p=1 I{i}(Ap)

, (3)

where α and δ are constant parameters to additionally control the exploration-exploitation
trade-off. The policy chooses the largest index Ui(t) to select a corresponding action as At.
The action i can be chosen because of the large average reward which converges towards the
true (potentially large) mean with more observations, or because the confidence interval is
large (wide margin of error) indicating an insufficient sample size. Hence, the first term in
(3) represents the exploitation part, while the second one is the exploration.

The parameter α can be derived directly from Hoeffding’s inequality or tuned according to
expectations. The confidence level δ is recommended to be chosen a bit smaller than 1/T .

The algorithm of UCB is summarized in Algorithm 2.

Algorithm 2 Upper Confidence Bound

for time step t = 1, 2, . . . , N do
Draw action At = t and observe reward Xt

end for
for time step t = N + 1, N + 2, . . . , T do

for action i = 1, . . . , N do

Ui(t) = 1∑t
p=1 I{i}(Ap)

∑t
p=1 I{i}(Ap)Xp +

√
α log(1/δ)∑t

p=1 I{i}(Ap)

end for
Draw action At = arg maxi=1,...,N Ui(t) and observe reward Xt

end for

3. Beta upper confidence bound analysis

In this section, we show an upper bound for UCB policy with beta rewards with the help of
sub-Gaussian concentration inequalities. A random variable X with E[X] = 0 and a positive
parameter σ is said to be σ-sub-Gaussian if for all λ ∈ R, it holds that

E [exp(λX)] ≤ exp

(
λ2σ2

2

)
.
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The exponential estimate of σ-sub-Gaussian random variable X for any ε ≥ 0 satisfies

P(X ≥ ε) ≤ exp

(
− ε2

2σ2

)
,

and is applicable to any compactly supported random variable such as a centered beta random
variable. Let X have a support on the interval [a, b], then for all λ ∈ R Hoeffding’s lemma
(Hoeffding 1963) states the following:

E [exp(λX)] ≤ exp

(
λE[X] +

λ2(b− a)2

8

)
,

applying it to a centered beta random variable gives us that X is 1/2-sub-Gaussian. Then, for
independent beta random variables X1, X2, . . . , XT with mean µ, it holds that the difference
between sample and population means

1

T

T∑
t=1

Xt − µ =

T∑
t=1

(Xt − µ)/T (here Xt − µ is 1/2-sub-Gaussian)

is 1/2
√
T -sub-Gaussian. It can be shown by applying additive properties of σ-sub-Gaussian

random variables (Kozachenko, Pogorilyak, Rozora, and Tegza 2016), that
∑T

t=1Xt − µ is√
Tσ2-sub-Gaussian.

Therefore, we have bounds on the tails of 1
T

∑T
t=1Xt−µ with (Xt)

T
t=1 being independent beta

random variables with mean µ as follows:

P

(
1

T

T∑
t=1

Xt ≥ µ+ ε

)
≤ exp

(
−2Tε2

)
and

P

(
1

T

T∑
t=1

Xt ≤ µ− ε

)
≤ exp

(
−2Tε2

)
.

(4)

We will use these sub-Gaussian characteristics to upper bound the expected regret for our use
case with beta rewards. The technique of obtaining the upper bound, that follows, is common
for such policies and can be found in Bubeck (2012); Lattimore and Szepesvári (2020).

For more details on sub-Gaussian random variables and their properties, we refer the readers
to Buldygin and Kozachenko (2000).

Theorem 1. Consider the stationary stochastic multi-armed bandit problem with beta re-
wards. Assume without a loss of generality that the first action (i = 1) is optimal. For UCB
policy with the confidence level δ = 1/T 2, the distribution-dependent regret satisfies

R(T ) ≤ 2

N∑
i=2

∆i +

N∑
i=2

log(T )

2∆i
.

Proof. Let (Xt)
T
t=1 be a sequence of independent beta random variables with mean µ. We will

use a common deviation form of (4) in the form of the confidence interval. For any δ ∈ [0, 1],
with probability at least 1− δ, we have

µ ∈

[
1

T

T∑
t=1

Xt −
√

log(1/δ)

2T
,

1

T

T∑
t=1

Xt +

√
log(1/δ)

2T

]
,

which gives us an upper bound for UCB policy with beta rewards to construct the index.
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Thus, according to Algorithm 2, we express an upper bound estimate of action i at time step
t over subsequence of all rewards (Xp)

t
p=1 as the following index:

Ui(t) =

∞ if
∑t

p=1 I{i}(Ap) = 0

1∑t
p=1 I{i}(Ap)

∑t
p=1 I{i}(Ap)Xp +

√
log(T 2)

2
∑t

p=1 I{i}(Ap)
otherwise.

To obtain the upper bound, we will use the regret decomposition definition (1) in which
our goal is to bound the expected number of times a suboptimal action i > 1 gets chosen
over the whole horizon T . Recall that the policy’s objective is to maximize the total reward∑T

t=1Xt which leads to identifying the optimal action as early as possible, hence, minimizing

the required number of samples
∑T

t=1 I{i}(At) for i > 1.

Let Bi define the event when the upper bound estimate of action i > 1 after ci samples
is below the optimal mean and the upper bound estimate of the optimal action is never
underestimated with respect to its mean:

Bi =

{
Ui(T ) < µ1 |

T∑
t=1

I{i}(At) = ci

}
∩
{
µ1 < min

t=1,...,T
U1(t)

}
.

We are naturally interested in high-probability event Bi with a small as possible sample size
ci. Then, using the law of total expectation, we can bound the regret decomposition (1) in
the following way:

R(T ) =
N∑
i=2

∆i E

[
T∑
t=1

I{i}(At)

]

=

N∑
i=2

∆i

(
E

[
T∑
t=1

I{i}(At) | Bi

]
P(Bi) + E

[
T∑
t=1

I{i}(At) | Bc
i

]
P(Bc

i )

)

≤
N∑
i=2

∆i (ci + P (Bc
i )T ) ,

(5)

where Bc
i is the complement of Bi and by its definition,

Bc
i =

{
Ui(T ) ≥ µ1 |

T∑
t=1

I{i}(At) = ci

}
∪
{
µ1 ≥ min

t=1,...,T
U1(t)

}
. (6)

The probability of the second set from (6) is decomposed and bounded by (4):

P
(
µ1 ≥ min

t=1,...,T
U1(t)

)
≤

T∑
t=1

P (µ1 ≥ U1(t))

=
T∑
t=1

P

µ1 ≥
1∑t

p=1 I{1}(Ap)

t∑
p=1

I{1}(Ap)Xp +

√
log(T 2)

2
∑t

p=1 I{1}(Ap)


≤

T∑
t=1

exp

−2

√
log(T 2)

2
∑t

p=1 I{1}(Ap)

2 t∑
p=1

I{1}(Ap)


=

1

T
,

putting it into (5) gives us

R(T ) ≤
N∑
i=2

∆i

(
ci + 1 + P

(
Ui(T ) ≥ µ1 |

T∑
t=1

I{i}(At) = ci

)
T

)
. (7)
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The remaining randomness, the probability of the first set from (6), we bound in a similar
way with the help of exponential estimation (4) and then choose ci. For that, we use the
definition of suboptimality gap ∆i from regret decomposition (1):

P

(
Ui(T ) ≥ µ1 |

T∑
t=1

I{i}(At) = ci

)

= P

(
Ui(T ) ≥ µi + ∆i |

T∑
t=1

I{i}(At) = ci

)

= P

(
1∑T

t=1 I{i}(At)

T∑
t=1

I{i}(At)Xt +

√
log(T 2)

2
∑T

t=1 I{i}(At)
≥ µi + ∆i |

T∑
t=1

I{i}(At) = ci

)

≤ exp

−2ci

∆i −

√
log(T 2)

2ci

2 .

We know that the regret bound of UCB in general case is logarithmic in T . In order to get
rid of linear complexity in (7), let us solve the following equation:

exp

−2ci

∆i −

√
log(T 2)

2ci

2 =
1

T
,

from elementary calculus gives us ci =
(3±2

√
2) log(T )

2∆2
i

. We take the smallest integer rounding

up to log(T )/2∆2
i . Placing it together with the bound 1/T into (7) completes the proof.

4. Environment with delays

Classical multi-armed bandit policies assume no delays in rewards to retain their theoretical
guarantees. The next decision on At+1 happens after receiving a realization of Xt from the
environment. Hence, the algorithms need to be adapted to the environment with delays.

Joulani et al. (2013) provided the framework to encapsulate the existing policies without
their adaptation in the stochastic environment with stochastic delays at the cost of reducing
effectiveness in an additive way with respect to delays. The framework is placed between
the policy and the environment with delays. When a delay occurs, the framework does not
use the policy on the next time step for decision-making. Instead, the framework re-uses the
policy’s action choice from the previous step. It does so until one of the reward realizations
of that action is accessible. With time, the framework accumulates the delayed rewards
and uses them further to feed the policy without interaction with the environment. Due to
the stochasticity of delays, the order and completeness of the sequence of realizations are
not guaranteed. However, the authors showed that such circumstances have no impact on
the policy since the rewards in the given subsequence are still independent and identically
distributed.

The final upper bound is expected to increase in an additive way with respect to the maximum
delay τi in time steps occurred per action:

R(T ) ≤ RPolicy(T ) +
N∑
i=1

∆i E [τi] .

In our experiments, we use Thompson Sampling policy with Bernoulli rewards by placing
it into Joulani et al.’s framework. We consider that our beta UCB policy is not impacted
by delays because of an assumption that an accurate estimation of the reward is provided
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Table 1: The upper bounds of the variants for the experiments. Assuming without a loss of
generality that the first action is optimal.

Policy Expected Regret Upper Bound

Uniformly at Random R(T ) = T
N

∑N
i=1 ∆i

Bernoulli Thompson Sampling with delays R(T ) ≤
(∑N

i=2
1

∆2
i

)2
log(T ) +

∑N
i=1 ∆i E [τi]

Beta Upper Confidence Bound R(T ) ≤ 2
∑N

i=2 ∆i +
∑N

i=2
log(T )
2∆i

promptly before the next patient arrives. To simulate the traditional randomized controlled
trial, we use a uniform policy that chooses an action uniformly at random. The expected
regret is linear:

R(T ) =
N∑
i=1

∆i E

[
T∑
t=1

I{i}(At)

]
=

N∑
i=1

∆iT P (A1 = i) =
T

N

N∑
i=1

∆i.

The upper bounds of the variants for the experiments are summarized in Table 1.

5. Numerical experiments

In this section, we conduct numerical experiments using data from a randomized clinical trial
(Sandercock, Niewada, Cz lonkowska, and the International Stroke Trial Collaborative Group
2011). The International Stroke Trial (IST) studied the effects of aspirin and heparin on stroke
victims recording short-term (discharged alive in 14 days) and long-term (fully recovered at
6 months) outcomes. The objective was to establish whether the early administration of
aspirin or heparin influenced the clinical course of acute ischemic stroke. The IST dataset
contains outcomes for all 19,435 admitted patients. It was stated in the report (IST 1997)
that aspirin-allocated patients had significantly fewer recurrent ischaemic strokes within 14
days with a significant reduction in death or non-fatal recurrent stroke, so it was suggested
that the aspirin treatment should begin as soon as possible after the onset of ischaemic stroke.
For the other findings, we refer the readers to the report itself.

As in the work of Stirn and Jebara (2018); Varatharajah and Berry (2022), we simulate the
experiment by empirically computing the true reward parameters across all subjects from
the available results and consider the survival outcome as a Bernoulli reward variable. The
main difference in the methodology is that we take into account delays that occur because
the survival (or not) confirmation depends on the study term (or fatal event date).

For simplicity and explanatory reasons, we focus on the elderly group of patients analyzing
their short-term results (within 14 days) of aspirin treatment (control is no aspirin), which
gives us the following means for the Bernoulli multi-armed bandit model:

µ1 = 0.868, (control)

µ2 = 0.882. (treatment)

In the same way, we calculate parameters αi and βi for the model with beta rewards:

α1 = 5498, β1 = 836, (control)

α2 = 5584, β2 = 750. (treatment)

During the trial, there were daily registered on average 11 patients in our groups. Therefore,
we use τi = 11 ·14 = 154 time steps as a delay for the successful treatment reward Xt = 1. For
the reward of Xt = 0, we sample a delay in accordance with the distribution of the remaining
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Figure 1: Results of the experiments using The International Stroke Trial dataset. (a) Accu-
mulative regret of the policies. (b) 95% confidence interval error bars of action parameters
per experiments A, B, and C.

lifetime in the case of death provided by data. This distribution can be approximated by the
Weibull distribution with the shape parameter γ = 1.2 and scale parameter β = 11.7 obtained
by performing distribution fitting with maximum likelihood. Lastly, having 6334 patients per
group constitutes horizon T = 12, 668 for our experiments.

We run four experiments in the following multi-armed bandit model and policy settings:

A. Uniform at Random policy with Bernoulli rewards. There is no impact of delays on the
policy. It is a simulation of a randomized controlled trial.

B. Thompson Sampling policy with Bernoulli rewards adapted to delays.

C. UCB policy with beta rewards. We assume no delays in the beta rewards setting.

D. Thompson Sampling policy with Bernoulli rewards neglecting delays for illustrative
purposes of not-properly designed simulation.

The results of each experiment are averaged over 2000 independent runs and presented in
Figure 1. To analyze the results, we use a two-sample t-test for a two-sided test with a
significance level set at 5%.

5.1. Results and discussion

Bernoulli rewards. As expected, Thompson Sampling with Bernoulli rewards neglecting
delays (D) performed the best in terms of regret. Unfortunately, this setting is not represen-
tative for such studies’ simulation because of the significant impact of delays that occur(ed)
in reality. Thompson Sampling adapted to delays (B) resulted in significantly fewer alloca-
tions toward the superior treatment (55% vs 82%). The contributing factor to this difference
is the second term in Thompson Sampling regret (see Table 1). Compared to the Uniform
at Random policy (A), the adapted Thompson Sampling still brings an improvement in the
average number of successes (55% vs 50%) with approximately the same ad-hoc (observed)
power (88% vs 90%).

Beta rewards. Both adaptive design methods (B and C) performed well judging solely on
patient outcomes compared to the traditional fixed randomized controlled trial approach (A).
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The Beta UCB method (C) improved the allocation towards the superior treatment further
(71% vs 55%) compared to B but at the cost of reducing the power to detect a significant
treatment effect (78% vs 88%), which can be observed in Figure 1 (wider confidence intervals).
This is an illustration of the natural tension between the two conflicting goals of maximizing
the superior treatment allocation (health of the patients) and maximizing the statistical power
to detect a significant treatment effect. In sum, both methods were able to solve the trade-off
successfully, in the sense of achieving ∼80% power.

Reviewing the beta UCB setting, we admit that the assumption of an accurate and in-time
provided estimation of reward is overconfident. The setting is more to show room for im-
provement. This assumption can be relaxed, and as a further enhancement, one can consider
making a backward correction of the policy’s estimations when the true reward gets materi-
alized. We can not change the chosen actions in the past, but nothing stops us from changing
observed reward values which are incorporated into the action estimations.

In the case of the contextual multi-armed bandit problem, when a reward is additionally con-
ditioned on side information, we can utilize the beta UCB algorithm per context as described
by Dzhoha and Rozora (2023). In clinical trials, such property as context (group) can be
well inherited by patients and has a significant impact on the outcome. For example, in the
considered IST experiment, one can take into account patient characteristics similar to the
work of Varatharajah and Berry (2022).

We publish our framework for the numerical experiments of all studied policies, their results,
and the exploratory analysis of the IST dataset as an open-source project (Dzhoha 2023).
Python (Van Rossum and Drake Jr 1995) and R (R Core Team 2022) are used.

6. Conclusion

In this paper, we showed the impact of delays on the performance of the policies. A pol-
icy, adapted to the delays, can retain its theoretical guarantees but at the cost of reducing
effectiveness in an additive way with respect to delays. Evaluating the policies using The Inter-
national Stroke Trial dataset, we confirmed that the delays can be a significant contributing
factor to their performance. To mitigate delays when the certainty evidence of successful
treatment is available in a relatively short-term period after the procedure, we analyzed the
Upper Confidence Bound policy with beta rewards. This policy can provide benefits in lower
regret giving more patients a chance for better care during trials. Additionally, the correction
for Bernoulli reward or estimation error can be considered.
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