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Abstract

The importance of accurately forecasting extreme financial losses and their effects on
the institutions involved in a given financial market has been highlighted by recent finan-
cial catastrophes. The flexibility with which econometric models can take into account
the highly non-linear and asymmetric dependence in financial returns is a critical compo-
nent of their capacity to forecast extreme events. Therefore, this study aims to forecast
time-varying Value-at-Risk and expected shortfall dependence as a predictive density-
based regime changes over time. To achieve this, a non-stationary Markov-switching
generalized Autoregressive score model nested with copula is estimated using expecta-
tion—maximization (EM) algorithm. Extending this non-stationary model is quite chal-
lenging, as it requires specifications not only on how the usual parameters change over
time but also those with mass distribution components. Dynamics of the estimated au-
toregressive score allowed the copula parameters to respond rapidly to time-varying key
systemic parameters and risk. This is because regime changes are allowed to oscillated
between high and low regimes. This is a clear indication of a regime shift in the pa-
rameters of an estimated model. Using the minimum score combining, six extreme value
distributions are combined to the estimated MS(2)-GAS(1)-copula model and assessed the
performance of each combined model 5 days and 30 days forecasting of value-at-risk and
expected shortfall. The results of the forecasting performance indicated that the MS(2)-
GAS(1)-GPD is the best model to model and forecast Value-at-risk and expected shortfall
for the Botswana stock market. This is a promising technique for stochastic modeling of
time-varying Value-at-Risk and Expected Shortfall. In addition, a foundation is provided
for future researchers to conduct studies on emerging markets. These results are also
important for risk managers and investors.

Keywords: data mining, expectation maximization, Markov-switching, stock market, time-
varying.

1. Introduction

Recent financial catastrophes have highlighted the necessity of precisely predicting extreme
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financial losses and their effects on the institution’s financial stability and, more broadly,
on the security of broader economy. Major financial crises, like the Global Financial Crisis
(GFC) of 20072008, the European Sovereign Debt Crisis (ESDC) of 2010-2011, and 2019—
2021 COVID-19, typically affect the entire economy, causing severe downturns and recessions.
In fact, during severe crisis episodes, banks and other financial institutions frequently fail,
and their failures can set off the failure of other non—financial institutions via balance sheet
and liquidity channels, endangering the stability of real economy, see for instance Kara$ and
Szczepaniak (2017). The ability of econometric models to predict such extreme events strongly
relies on their flexibility to model highly non—linear and asymmetric dependence structure of
financial returns (McNeil, Frey, and Embrechts 2015). The simple linear correlation, despite
being widely used, is unable to capture crucial tail behavior of a joint probability distribution.
Thus, in a multivariate environment, especially in light of recent crises episodes, modeling
the tail dependence and asymmetric dependence between pairs of assets has been becoming
increasingly important. Going beyond the multivariate elliptical assumption for a joint dis-
tribution of asset returns is typically required when using a measure of dependence other
than linear correlation. The copula methodology enables the modeling of a wide range of
dependence structures in this regard (Durante and Sempi 2015). The conditional correlation
between asset returns rises during times of financial instability as a result of exposure to com-
mon shocks that affect all market participants; despite the fact that the modeling challenge
of the joint co-movement of stock returns was already present in Bollerslev (1988). More-
over, structural breaks are observed into dependence structure, which is more evident during
crisis periods and other infrequent events. As regards dependence breaks, Markov switch-
ing (MS) models have been proven to effectively capture non—smooth evolution of volatility
and correlations dynamics. Unlike Degiannakis, Dent, and Floros (2014), who used Frac-
tionally Integrated Generalized Autoregressive Conditional Heteroscedasticity (FIGARCH)
framework to forecast Value-at—Risk (VaR) and Expected shortfall (ES), a regime dependent
dynamic of copula parameters from a score driven framework is utilized in this study. Param-
eters of copula dependence are allowed to depend on the realizations of a first order Markovian
process with a specific generalized Autoregressive score (GAS) dynamic of Creal, Koopman,
and Lucas (2013) and Harvey (2013) in each regime; while retaining an appropriate arbitrary
specification conditional distribution dynamics. In this case, the natural volatility is allowed
by substituting an appropriate process for the generalized inverse Gaussian (GIG).

The main contribution of this study is the prediction, and classification of regime shifts
using MS-GAS Copula because there have been a tremendous number of recent contributions
pertaining to the modeling of stochastic parameters. Creal et al. (2013) put forth a group
of observation-driven time series models and updated the parameters of the model over time
using a scaled likelihood function score. This authors’ approach offers a streamlined and
cogent framework for adding time-varying parameters to a large class of non-linear models.
However, the MS—GAS approach used in this study takes real-time prediction systems into
account, which increases forecasting accuracy and makes it easier to spot sudden changes,
especially when dealing with economic conditions that are constantly changing over time.
Most researchers do not consider this factor when modeling regime shifts and time-varying
parameters. The remarkable ability of the GAS to filters and approximate complex non-linear
data-generating processes in a straightforward and efficient manner is particularly useful in
the case of dependency modeling using copulas discussed here. In particular, the use of a
result-oriented model helps in situations where it is not clear how to update the dynamics
of the parameters of an Archimedean link function. It is important to note that, estimating
this path dependent model is a difficult task because an exact likelihood computation is
practically impossible. Due to this challenge, estimation techniques are either simplified
or did not depend on a likelihood function. In contrast to the study of Bazzi, Blasques,
Koopman, and Lucas (2017), this study adopts the expectation maximization (EM) approach
to estimate the model; and, the EM captures uncertainty better than maximum likelihood
estimation (MLE). However, there is currently no way to obtain the maximum likelihood



Austrian Journal of Statistics 83

estimator without first altering the model. The asymptotic variance—covariance matrix and
maximum likelihood estimator of the Markov-switching-GAS model are computed using a
novel method that combines the Monte Carlo expectation-maximization (MCEM) algorithm
and importance sampling in this study.

Another related contribution of this paper is the implementation and evaluation of time-
varying VaR and ES risk measures. The appealing characteristic of the time-varying VaR
and ES measures is that, it inherits the flexibility of a dynamic switching copula framework
here developed. The copula approach naturally adapts to environments characterized by
different kind of upper and lower tail dependence, enabling VaR and ES as an effective
measure of extreme co—movements among financial variables. The literature on co-movement
risk measures has proliferated during the last few years, see, Bernardi, Gayraud, and Petrella
(2015), Sordo, Suarez-Llorens, and Bello (2015) and Castro and Ferrari (2014) among others
who have provided an extensive and up to date survey of systemic risk measures that have
been proposed.

2. Markov-switching generalized autoregressive score

LetY; = (Yi,4,-- -, Ya:) € R be a d-dimensional stochastic vector and let y1 1—1 = (y1,- -+ , Ys—n)
be the past history up to time ¢t — 1 of a non-stationary stochastic process {Yg, S > 0}. As-
sume also that, there exists a first-order ergodic Markov chain {Ss,S > 0} defined on a

discrete space 2 = {1,---,L} with transition probability matrix Pr{p,}, where p; =
Pr(S: =k | Si—1 =4), V4, k € Q is the probability that state k is visited at time ¢ given that
at time t—1, in the chain, was in state ¢ and initial vector of probabilities is 6 = (d1,-- - , (5L)T,

01 = Pr(S1 =¥). That is, the probability of being in state ¢ = {1,--- ,L} at time 1. Then,
let U;y = F (Yi; ;) denote the (conditional) probability integral transformation (PIT') of
Y; ¢+ The assumption is that

Us | (Vi1 =y1e1), 5~ C (oh{ ') (1)

where, Uy = (U, -+ ,Uqy) and C (ok‘f\Ifﬁ) is the copula distribution that is conditional to
regime Sy = /.

After marginalizing the latent state S; in model 1, the distribution of U; is recovered condi-
tionally on the past observations Y7.;—1 = y1,4—1. Bernardi and Catania (2019) declared that
this is a mixture of component-specific predictive cumulative distributions and it is defined
as

L
F U | Yig-1 = y1;6-1,5) = erff?_lc’ (Ut;kf, ‘I’Z) : (2)
=1

with the following mixing weights

L
¢
Trt(‘t)—l = Z Pm,@ Pr (St =m | yl;t) HA=1,--- L, (3)
m=1
where, Pr (S; = m | y1.) is the filtered probability at time ¢ for state m, which is evaluated
as

h(ye | ys—1, S = m) 7T§|T,)1

h(ye | y1;e-1) )
with A (y¢ | yi—1, St = m) being the density of y; that is conditionally on the Markov chain
St =m and h (y; | y1,.—1) being the density of y; after having marginalized out S;. Exploiting
the copula structure, h (y; | y1,4—1) can be represented as

Pr(S; | y1e) =

d

L
B (e L ye-1) = TLF e L wine—) Yol C (e g1, e = 0) (5)
=1 =1
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where C (o | y4—1,S5; = ¢) denotes the copula density that is conditional to S; = ¢ and, it
analogously

d

h(yelye-1, St =m) = [ f Wi | ine—1) C (us | yr0-1, 0 = m), (6)
=1

such that Pr (S; = m | y1,) simplifies to

C (Ut ‘ Y1;t—1, St = m) Trt(ﬁl—)l

CC (ut | y1:-1)

Pr(Si=m|yiy) = (7)

(m)
tlt—1

marginal density f (vi¢ | ¥i,14-1,7=1,---,d) but only on the copula density given by

Pr (S =m | y1;+) and consequently 7 form =1,---, L do not depend from the following

L
C (g | yro-1) = Dy C (e | g1, 8 = £), (8)
(=1

and C (ug | y14-1,5 = () for £ =1,2,-, L. It is worth noting that the copula specification is
parameterized in terms of kf and U! for £ =1,2,3,---, L. In Markov-switching generalized
Autoregressive score model, kf allows an AR (herein referenced Autoregressive) where the
score of the conditional distribution of the data defined in model 5 acts as a forcing variable.
Firstly, AR™ — Dy, is defined as an absolutely continuous deterministic vector valued function
that maps R" into the natural parameter space Dj. A possible choice for A is the hyper-
spherical coordinate transformation introduced by Catania (2021), where a similar scheme is
used. The process of kf for £ =1,---, L is defined as

kf = Nt
kit = wh +a+ 574 + Bk,
St = Ity (s ki, 00)

9

and it is the score of the density defined in model 5 with respect to k7 that is evaluated in
U, V'~ (ut; k‘/\Ifé), but, pre-multiplied by a positive definite scaling matrix, I f. Therefore,
Creal et al. (2013) suggested that

rf =1~ (k;‘qﬂ)]_g (9)

where I™ (k‘tN Z\V) is the information matrix of k¢ and ¢ is a scalar that is chosen in {0,1}

or {2,1}. In this way, if £ = 1, the score is scaled by its variance-covariance matrix. But,
if & = %, it is then scaled by its square root; and, if £ = 0, there is no scaling such that
I'f = I,, where I, is the identity matrix (Bernardi and Catania 2019). Note that, if the
model is correctly specified, E;_; [S;7] = 0,V¢t. That is, {S2", Z > 0} is a martingale difference

sequence with S;” = (StN te=1,--- ,L). Furthermore, if £ = %, the additional conditional

-1
moment E;_ (StN x ST = In) holds. If (In — ﬁg) exists, then, the third component of
process 2 can be written as

Kt = (1,-8Y) o+ (1, 8°B) " As, (10)

with B being a back-shift operator such that B*zy = 2, 4,k € Z which implies that
—1
E (KtN€> = (In — ﬁe> w’. Applying chain rule in model 10, the score and the Fisher infor-

mation matrix of K[ are now recovered by
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v~ (ws ki we) = J (k1) v (K W) (1)

~ (k) = (/-c;;f)TI (kfwt) g (k) (12)
where v~ (ut;kﬂ, \IJg) and [ (k:g‘llf) are the score and a Fisher information matrix with

respect to the original vector of parameters k;™*. ~t These latter quantities are then defined as

olnh (y; | yl;t—l) . oInC (yi | ye—1)

~bal)
v (w0t = o = oK (13)
T
IO s | e (wis k., 00) x 9 (wrsf, 00) | (14)
e G )
6)\1 0)\1
~ k‘ - k:
) [ o
J (k7 ):W: : : (15)
t oA (k) |
il Vgt 205 e
T
denotes the Jacobian of the mapping function A (e) that is evaluated at (k;“ Z) (k‘ . k?f)

An interesting feature of the MS-GAS model nested with copulas, which also differentiates it
from the usual MS models with a dynamic state-dependent conditional density, is that, the
MS-GAS embeds a natural mechanism which suggests updating the parameters in each state
of the chain according to the posterior probability of being in that state; that is, for state £,

Pr (S; = | y14). Indeed, the score v/ (ut; k!, \Ile) is then given by

(0)
7 C(u Y1, 71,5 =/
V (ut;kqulf) _ =1 ( t ‘ ¢ ¢ )

VO (e kf, ) = Pr (S, = €| yr) v (s b, )

C (ut | y1-1) 1)
16
where, 7 (ut;kf,\1ﬂ> = mnc("t‘gg’l’stﬂ), is a score of the i*" regime copula distribution.

Rewriting the third portion of process 2 and fixing for simplicity of £ = 0, then

bt =+ T (W) AP (S = 0| yig 1) O (wons by, W) + 8RS, (17)

is obtained. It is now evident how the information provided by wu;_; is shared across the
Markovian regimes according to the following posterior probabilities Pr (S;—1 = £ | y14—1) for
¢ =1,2,3,---,L. In this way, if a state has not been visited by the circuit, the dynamic
system will not automatically update the parameters until the state is revisited, that is, until
the relevant information about the state is updated. Catania (2021) and Bazzi et al. (2017)
made similar arguments in related contexts where the conditional distribution of the data is
still a mixture of distributions.

2.1. A novel approach to estimate MS—GAS model

A two-step procedure described in the work of Maaziz and Kharfouchi (2018) is followed for
estimating the parameters of a model. The first step consists of estimating parameters that
include the following marginals (¢1,--- ,v,), followed by a second step where the parame-

L
ters governing the evolution of the dependence ({we AL Bt \Ijz}eﬂ , Q) are jointly estimated

along with the latent Markovian states ({St =/{,t >0} zL:1)' Nicolas (2022) has demonstrated
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the asymptotical consistency of the proposed two-step procedure of Blazsek, Escribano, and
Licht (2020) for conditional copulas. The EM algorithm of Figueroa-Zuniga, Niklitschek-Soto,
Leiva, and Liu (2022) is modified in this study to estimate the dependence parameters subject
to both the GAS dynamic and the Markovian structure. Assuming that parameters of the
marginal distribution ¢; have been consistently estimated by maximum likelihood (see, for
example Asheri, Hosseini, and Araabi (2021)), then, the EM algorithm is presented in this

N ~\\T
study by replacing the pseudo-observation u; by iy = (F (th; 191> oo, F (ydﬁt; ﬁd)) where,

¥ is the maximum likelihood estimate of ¥1Vi = 1,2,3,--- ,d. To apply an EM algorithm, the
vector of observations yi.7 where 71" is the sample size, is regarded as being incomplete. Follow-
ing the implementation described in work of Simgek and Topaloglu (2018), two missing data
structures are now introduced. Let Z; = (Z;1, -+ ,Zyr) and ZZy = (ZZ 11, - ,ZZLL’L)T
to be defined as

7 1 if St = f;
Y 0 otherwise.

and
1 if St—l = é, St = k,

ZZt’M{ 0 otherwise.

The class membership is unknown and conveniently treated as the value taken by a latent
multinomial variable with one trial and L classes, where the temporal evolution of class
membership is driven by a hidden Markov chain Sy for ¢ = 1,--- ;7. This is similar to
latent class approaches. Augmenting the observations y;.,7 with the following latent variables
Zy, L7y, t = 1,--- T, this replaces the log-likelihood function with a complete—data log—
likelihood which now becomes

log L (2) = ZZL:I Zi,z log (61) + ZEL=1 21€=1 2%21 Z Zt ok log (qe, k)
+ 341 X Ziglog C (i E) + Sy S Ziglog C (s )
+ 3 X0 log fi (yi;t; 191')

L : / AN
where, = = {Ef}e_l with = = (wé , (ZO , (ﬁg ,\Ile) being a vector containing parame-

ters of the GAS dynamics for the copula dependence parameters kf and ¥* for £ =1,--- | L.
According to Ahmad and Bladt (2022), the EM algorithm alternates between carrying out
a desired (E) step, which develops a function for the desire of the log-likelihood evaluated
using the current assessment for the parameters, and an intensification (M) step, which pro-
cesses parameters by boosting the expected log-likelihood found in the E-step. The dis-
tribution of the latent variables in the accompanying E—step is then selected using these
parameter-estimates. On the (m + 1)th iteration, the EM algorithm proceeds as follows:

Algorithm 1: EM algorithm for Markov-switching GAS Nested Copula model

Input: Observations {4, --- , 47}, number of regimes K;
Output: Parameter estimates ()
Then;

E—step: QT = arg maxq F (Q,0") given the observed data and the current
parameters. Then, estimate

Q (EE(m)) — pp%ilviran) log L (2) s y1,7) - (18)

M-Step: chose 2™t such that the preceding expected values are maximized with
respect to = to obtain

[1]

(m+1) — arg;naxQ (E, E(m)) . (19)
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The E-step requires the computation of the so called the ()—function which calculates the con-
ditional expectation of the complete-data log-likelihood given the observations and the current
estimate of the parameter vector 2™ . Therefore, the following representation of the function
Q@ is obtained

L L T L T
Q {E, E(m)} = ppZthr=m) Z ZAl’g log (5)—1—2 Z Z ZZAM’k log (Qg,k)—i-z Z ZiologC (lit; E£> ,

=1 0=1k=11t=1 £=11t=1
(20)
Zie = Pr (St =1y, ™), ZZ4es = Pr (S =068 =k | yrr=™) for Lk = 1, L
and Vt = 1,--- ,T denote the current smoothed probabilities of the states evaluated using the

well-known forward-filtering backward-smoothing (FFBS) algorithm. The M-step in model 19
maximizes the function (E, E(m)) with respect to = to determine the next set of parameters
=2(m+1) The updated estimates of the hidden Markov model (HMM); that is, the elements of

the transition probability matrix of the hidden Markov chain QQ are available in closed form
as

e Y
.7z
Gy P AN
0,k - — )
Sl St Z 2k
for £ = 1,...,L while the parameters Z can be obtained as the function of the following
optimization problem
=D = arg maxz Z Zt,g log C (ﬁt; Ee) ) (21)
r=1t=1

Since the last optimization step provides parameter updates that increase the log-likelihood
function, convergence of the algorithm with the ML estimator is guaranteed. After running the
direct maximum likelihood estimator of the hidden Markov model, the MS—GAS dependence
and standard errors of the marginal parameters can be estimated numerically. However, this
procedure does not take into account the estimation errors of the boundary parameters.
Therefore, the fixed bootstrap procedure of Shang (2018) can be used as an alternative to the
above procedure. In the empirical application, this study take the former approach.

2.2. Time—varying risk measures

Risk measures are statistical measures that are historical predictors of investment risk and
volatility, and they are also major components in modern portfolio theory (MPT). The MPT
is a standard financial and academic methodology for assessing the performance of a stock
or a stock fund as compared to its benchmark index. The economic relevance of this topic
follows partly from the Basel Accords (currently the Basel III Accords), which impose that
banks and financial institutions have to meet capital requirements, and must rely on state-of-
the-art risk systems. In particular, they must assess uncertainty about future values of their
portfolios and estimate the extent and the likelihood of potential losses using a risk measure.
Nowadays, VaR and ES risk measures are the standards (Ardia, Boudt, and Catania 2018).
The estimation of the VaR and ES thus requires first to accurately estimate the conditional
distribution of future portfolios’ or assets’ returns. Formally, assuming a continuous cumu-
lative density function (cdf) with time-varying parameters 6; € R?¢ d and additional static
parameters ¥ € RY, F (-;604,1), for the logarithmic returns at time ¢, r, € R, VaR; («) is
given by

VaR; (o) = F~ (a;04,9), (22)
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where, F~! () denotes the inverse of the cdf, that is, the quantile function. It follows that
VaR; (a) is nothing more than the a—quantile of the return distribution at time t.! The ES
metric measures the expected loss after a violation of VaR level and it is defined as

VaR:
ES: () = é / SdF (2, 00,1)). (23)

It follows that a crucial point for a correct VaR and ES assessment is the determination of
F (-) and its parameters 6; and . For a general overview of existing methods, the reader is
referred to Nieto and Ruiz (2016). In this study, this is illustrated on how it can be achieved
using the framework of Markov-switching Generalized Autoregressive Score model introduced
by Bernardi and Catania (2019) and Blazsek, Ho, and Liu (2018). The GAS models are
also referred to as score driven (SD) and dynamic conditional score (DCS) models and have
been used extensively for financial risk management purposes. For a comparison between
the accuracy of VaR and ES estimates obtained by the GAS approach against alternative
volatility models, see Ardia et al. (2018), Gao and Zhou (2016) and Bernardi and Catania
(2016) among others.

2.3. Evaluating downside risk forecasts and backtesting risk measures

The recursive prediction method is usually used to backtest the appropriateness of a statistical
model, and to perform model comparisons in terms of VaR and ES predictions (Ardia et al.
2018). The purpose of a backtesting analysis is to verify the accuracy of the prediction by
separating the estimation window and the evaluation period. The goal of a model comparison
analysis is usually to sort the models according to a loss function. For this purpose, the full
sample of returns T is split into an in-sample period of length S and an out-of-sample period
of length H. First, parameters of the model are estimated over the in-sample period, then
the h—step forward forecast of the distribution of returns at time S + h is generated along
with the associated VaR and ES measures. These steps are repeated, recursively expanding
the period in the sample with new observations until the end of the series T is reached. If
previous observations are eliminated during the data amplification phase, a moving window is
considered; otherwise an expanding window is considered. In this study, a standard approach
is followed in the day—to—day risk management of a typical trading desk and use the floating
window setup with h = 1.

Once a series of VaR predictions is available, forecasts adequacy is assecssed through back-
testing procedures. VaR backtesting procedures usually check the correct coverage of the
unconditional and conditional left-tail of the log-returns distribution. Correct unconditional
coverage (UC) was first considered by Kupiec (1995), while correct conditional coverage (CC)
by Christoffersen (1998). The main difference between UC and CC concerns the distribu-
tion that one focuses onto. For instance, UC considers correct coverage of the left-tail of
the unconditional log-return distribution f (r;) while CC deals with the conditional density
f(r¢ | —1). From an inferential perspective, UC looks at a ratio between the number of real-
ized VaR violations that are observed from the data and expected number of VaR violations
implied by the chosen risk level oo during the forecast period; that is, « H. To investigate CC,
Christoffersen (1998) proposed a test on the series of VaR exceedance {d;,t =1,--- ,s+ H}
where d; = {r; < VaR;(«)} or d; = {ry < ESi(«)}, which is usually referred to as the hitting
series. Specifically, if a correct conditional coverage is achieved by the model, VaR exceedances
should be independently distributed over time. For more readings on backtesting VaR and
ES, the reader is referred to Bayer and Dimitriadis (2022).

Nevertheless, Escanciano and Olmo (2010) showed that the use of standard unconditional
and independence backtesting procedures can be misleading, because they do not take into
account uncertainty associated with parameter estimation. They quantify this risk in a very

'Sometimes VaR is defined with respect to the loss variable £, = —r;. All the arguments of this paper can
be easily adapted to this case.
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general class of dynamic parametric VaR models and propose a correction of the standard
backtest(s) that takes it into account. This authors showed that one of the main determi-
nants of the corrected asymptotic variance is the forecasting scheme used to generate VaR
forecasts, i.e., whether one uses recursive, rolling, or fixed parameter estimates. The back-
testing methodologies described above focus only on the number of VaR and ES exceptions,
and totally disregard their magnitudes. Hence, Nieto and Ruiz (2016) criticizes the statistics
proposed by Christoffersen (1998) because they are two-tailed, and, as a consequence, can re-
ject a risk model for being over conservative. As it was mentioned above, risk models can also
be rejected for being over conservative because this is not desirable for financial institutions.
Alternatively, the tail risk statistic is proposed and is defined as

TR = — (Rt — Oé) I (Rt — Oé) . (24)

1

Nl

T
1=
The TR statistic in model 24 tells risk managers the size of the aggregate tail losses that
a portfolio may incur over the period considered. The asymptotic distribution of the TR
statistic is derived under the assumption of normal returns. The Dynamic Quantile (DQ)
test by Engle and Manganelli (2004) assesses the joint hypothesis that E[d;] = « and the
hit variables are independently distributed. The implementation of the test involves the
de-meaned process Hit{' = d; — «. Under correct model specification, unconditionally and
conditionally Hit{" has zero mean and is serially uncorrelated. The DQ test is then the
traditional Wald test of the joint nullity of all coefficients in the following linear regressions

Hite — do + Zi:l O1Hity ) +p1VaRi1 (o) + &

t 0o+ iy 1 HitY | + 6p4+1ESi—1 (o) + 4.
Under the null hypothesis of correct unconditional and conditional coverage, the Wald test

statistic is asymptotically a chi-square distributed with L + 2 degrees of freedom. Engle and
Manganelli (2004) set L = 4 lags, which has become the standard choice.

With the Kupiec likelihood ratio test, the assumption is that the frequency follows the fol-
lowing binomial theorem
n
P — T
r(z) <x> p*q

Hence, the Kupiec LR statistic is given by

(1—p)""p" 2

(-5 Gy o

where % is the rate of violation observed under the null hypothesis. Reject the null hypothesis
if the calculated probability value is less than the observed significance level at 1%, 5% and
10% and conclude that the model is not correct, implying that the risk computed from the
risk model either both the VaR and ES is unreliable. This means it can give false signals to
risk managers.

LRyc =2Iln

The Christoffersen test is defined as a new backtesting tool that is based on the length of time
between VaR violations. The main insight is that where the VaR model is properly indicated
for coverage, p, the expected duration of infringements should be a constant 1/7 days. The
fact that a test aims at establishing the dependence of violation, the notation 7;; is used to
present the number of days where the j* condition occurred given that the i** condition
previously occurred. The Christoffersen test statistic can be represented by

(1 —7) mi1 + mamn2 + 122

LRcc=—2In
(1 — 1) nuuminer (1 — m2) migmanee

(26)

89
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where, m;; presents a violation probability that occurs conditionally on state 7 at time ¢ — 1.
Reject the null hypothesis if the calculated probability value is less than the observed 1%,
5% and 10% significance level and conclude that the estimated risk measure is not a good
measure for a specified risk.

The Basel committee on banking supervision required internal banking or financial market
backtesting procedures in 2007. Financial institutions need to regulate their capital require-
ments and this is done by backtesting in order to cover market risk due to their trading
activities. The capital requirement size by Mwamba, Hammoudeh, and Gupta (2014) is
computed as

159
Cap = Fact x max |VaR;(0.01), 50 Z VaR:(0.01) ], (27)
=0

where Fact is the multiplication factor reported in Table 1. In other words, the required
capital is equal to the multiplication factor that is multiplied by the highest value between
today’s 99% VaR and the mean of the last 60 days’ 99% VaR. Subsequently, a good market
risk model will produce four or fewer exceptions during a trading-day period. Should the
number of exceptions fall into the green zone, as shown in Tablel, that is an indication that
the market risk model is probably good. If it falls into the yellow zone, there is uncertainty
about the correctness of a market risk model.

Table 1: The Basel III zones and the exceptions

Zone Confidence Level Multiplicative Factor
90% 95% 99%
Green | 0-32 0-17 0-4 3
Yellow | 33-43 18-26 5-9 | 3.40, 3.50, 3.65, 3.75 or 3.85
Red > 44 > 27 > 10 4

Source: Best (2021)

3. Results and data analysis

A five-day financial time series exchange Botswana stock exchange/Domestic Company index
(FTSE/BSE-DCI) for the period of January 2010 to June 2023 is fitted with the MS(k) —
GAS(p) in this empirical analysis. The use of a five day(s) frequency is based on the fact
that, on weekends and holidays, stock markets are closed. Therefore, Botswana stock ex-
change is not an exception. No trading on these days. Hence the recorded market prices
are from Monday(s)-Friday(s). To avoid any exchange rates fluctuations, Makatjane and
Moroke (2021) suggested that the index should be kept in its original currency; hence, the
FTSE/BSE-DIC used in this study is kept in its BWP (i.e Botswana Pula) currency. As
shown in Table 2, the distribution of FTSE/BSE-DCI returns is asymmetric and has fat tails.
This suggests that the M S(k) — GAS(p) model follows a skewed distribution in terms of the
results of skewness; while normality tests used all rejects the null hypothesis of normality
concluding that the returns on FTSE/BSE-DCI is not normally distributed. By assuming
asymmetry for the regime differences in this situation, the MS(k) — GAS(p) model would
perform more accurately in predictions than the conventional generalized Autoregressive con-
ditional Heteroscedasticity (GARCH) or GAS models.

3.1. Markov-switching generalized autoregressive score framework

To begin the main analysis, the Ms(k) — GAS(p) is fitted to FTSE/BSE-DCI returns. It
is assumed that every regime shift in the parameters is valid and that, during the sample
period of the study, an model would be correct 95% to 99% of the time; otherwise, regime
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Table 2: Descriptive statistics

Skewness Kurtosis J-B S-W K-S
FTSE/BSE-DCI -1.399 17.065 32930.9422 * x *  0.89808 * x x 0.4846 * x *
Codes:x x x0.001, x x 0.01, x0.05, N

classifiers would be useless. To address unit root and number of regime shift in the non—linear
time series, a modified Wald test of Giirig (2019) is applied on the basis of non-linear unit
root test by Kapetanios, Shin, and Shell and a likelihood ratio test (LR) of Kasahara and
Shimotsu (2018) is also utilized for testing number of regime shifts. The FTSE/BSE-DCI
does not contain any non—linear unit roots, therefore, a stationary non-linear time series is
achieved. This is in accordance with the results of proposed modified Wald test reported in
Table 3. In addition, the null hypothesis of 1 regime shift is rejected and that of k£ > 2 is also
rejected concluded that there is at least 2 regime shifts in BSE-DCI index.

Table 3: Modified Wald and likelihood ratio tests

Wald statistic df p-value | Likelihood ratio statistic df p-value
FTSE/BSE-DCI 16.341 2 0.001 22.002 2 0.003

Moreover, regime dependence is for the following parameters {«, 3} and {7y} to derive a
Markov—Switching behavior of dependence structure. The results strengthen and provided
strong evidence of regime dependence. At both extremes, there is corroboration of state de-
pendence. Because these parameters are significant, as reported in Table 4, this is a clear indi-
cation of Markovian structure where returns on FTSE/BSE-DCI display significant switches
in both the unconditional mean and persistence of the dependence parameter. 5 represent a
posterior unconditional volatility mean that has a 96.8% acceptance rate. This implies that
the mean is clustered around the rate at which FTSE/BSE-DCI regime switches from low
to high regime. This resulted in stable probabilities of 23% in regime 1 and 77% in regime
2. The location parameter in unconditional parameters, which denotes an asymmetric and
stable distribution, further supports this. The volatility of a study series is therefore said to
be centered on the mean.

Table 4: Parameter estimates

Coefficient Regime 1 Regime 2
il 0.016(0.025) * * * 0.003(0.0016)* *
a 0.341(0.004) * x 0.235(0.0155) * x
B 0.9432(0.055) * * 0.987(0.008)* * *
3 0.623(0.011)%  x 0.112(0.011)% * x
6 2.254(0.034)% * * 4.3334(0.035)% * *

Unconditional Parameter Estimates
fi o £
-2.0036 0.372 9.236

Markov Probabilities

Py Py
0.624 0.888

Codes:* * %0.001, * % 0.01, %0.05, N, values in (.) are standard errors

Assessing the goodness of fit (GoF), the mean, kurtosis, skewness and Jarque—Bera for nor-
mality test are performed on the residuals of a fitted model. It is worth noting that these
results as reported in Table 5 confirms that residuals of a fitted MS(2)-GAS(1) are not nor-
mally distributed, confirming the preliminary results reported in Table 2. Additionally, it is
discovered that these residuals follow heavy tailed distributions due to observed kurtosis that
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is above three and they are also negatively skewed as the reported by a measure of skewness
which is -3.0895.

Table 5: Residual analysis

Mean Skewness Kurtosis JB Test
Residuals | 0.006066  -3.0895 54.670  6758.5% % %
Codes:x x x0.001, *x * 0.01, x0.05, N

3.2. Forecasting performance of value-at-risk and expected shortfall using
heavy-tailed distributions

Using Minimum score combining proposed by Trucios and Taylor (2020), the following dis-
tributions: the generalized extreme value (GEV) distribution, the generalized Pareto distri-
bution (GPD), the generalized Logistic distribution (GLD), the log-Pearson-3,a Phased Bi-
Exponential, and finally Wakeby, are combined with an estimated MS(2)-GAS(1). Based on
the estimates of combined models, an out-of-sample analysis evaluates the ability of regime-
switching methods coupled with these fat-tailed distributions for VaR and ES forecasting.
Volatility predictions and extremes are performed for five, and thirty days steps-ahead fore-
casts. An out-of-sample data concern the last 5% of FTSE/BSE-DCI log-returns series, using
a 168 log-returns sample for the rolling-window estimation with an iterated strategy. This
method is suggested by Maciel (2021). The parameters of combined model(s) are updated
at every observation for the out-of-sample data, producing the following Value—at—Risk and
expected shortfall forecasts: hiq5 and heyso.

Table 6 to Table 8 present the combined forecasts VaR and ES estimates, number of VaR and
ES violations, tail risk test, dynamic quantile test, Kupiec Likelihood ratio test, Christoffersen
test and Basel III zones results for the different model combinations on the BSE index. All
VaR, and ES computation are performed at the common 95%, and 99%, for short positions of
trade. These results are vital in the determination of VaR and ES forecasting adequacy for dif-
ferent distributions that are coupled with MS-GAS copula model discussed in section 2. Addi-
tionally, it allows comparison across these distributions that are not necessarily fitted over the
same part of the data. In this case, the GEV distribution and GPD are compared with other
distributions. This empirical analysis is different from that of Huang, Huang, and Chinhamu
(2014) who employed both short and long-term trading positions. For the GEV distribution,
a block size of 5 is used and this produced weekly maxima. While the GPD is estimated at
a threshold of 95% quantile locating the 5% of observations as exceedances. The negative
tails are fitted using the relation M,, = min{X;,--- , X} = —M,, = — [max [Xy,--- , X,]]. It
should be noted that, as one might anticipate given the leptokurtic nature of these data se-
ries, normality is rejected almost everywhere. Therefore, the normal distribution assumption
frequently results in underestimates of VaR, ES and an excess of violations. The standard
Student’s t-distribution, which is frequently advised, is a better candidate for VaR and ES
estimation, but it is still (in most cases) comparably weaker to the heavy-tailed distributions
discussed here (Huang et al. 2014).

For BSE-DCI (Table 6) there is a varying pattern of VaR and ES estimates. According to
TR, DQ, Kupiec and Christoffersen test(s), the best model(s) at 95% and 99% VaR level is
MS-GAS-GPD; the best model at 95% and 99% ES is MS-GAS-GEV. It can then be observed
that the clustering of VaR and ES violations start to occur at lesser extreme VaR and ES
levels (lower p-values for the Christoffersen test). This may be simply caused by an increase in
the number of observations that exceed these risk measures’ estimates. Similar observations
can be found in the study of Huang et al. (2014).

The values in Table 8 show the number of times in backtests, which are used in 5 days and 30
days by VaR and ES in all three zones. The test is ranked as follows (1) a green zone, if in a
window of 5 and 30 trade days the number of exceptions reported is 0 to 4, (2) a yellow area,
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Table 6: VaR and ES Estimates using heavy-tailed
VaR ES
Distribution 95%  99% 99.9% 95%  99%  99.9%
MS-GAS-GEV 0.775 0.625 0.775 0.075 0.725 0.775
MS-GAS-Logistic 0.419 0.072 0.419 0.519 0.272 0.439
MS-GAS-GPD 0.727 0.781 0.270 0.566 0.657 0.523
MS-GAS-Log-Pearson3 0.572 0.077 0.573 0.105 0.145 0.502
MS-GAS-Phased Bi-Exponential 0.195 0.195 0.582 0.195 0.195 0.582
MS-GAS-Wakeby 0.310 0.891 0.372 0.070 0.874 0.592
Table 7: Backtesting five-step and thirty-step ahead value-at-risk and expected shortfall
Value-at-Risk 5 days
Model Proportion | Violations | TR Test DQ Test Kupiec Christoffersen
MS-GAS-GEV 95% 10 0.062 0.9025 0.8781  0.0058
MS-GAS-Gen.Logistic 95% 26 0.052 0.5305 0.6871  0.0120
MS-GAS-GPD 95% 8 0.6582 0.9525 0.6961  0.0079
MS-GAS-Log.Pearson 3 95% 19 0.0032 0.9872 0.8890  0.1820
MS-GAS-Bi-Exponential 95% 15 0.0062 0.9385 0.8102  0.1890
MS-GAS-Wakeby 95% 25 0.0083 0.9193 0.1387  0.3420
Expected Shortfall 5 days
MS-GAS-GEV 95% 14 0.5964 0.2648 0.5195  0.0391
MS-GAS-Gen.Logistic 95% 23 0.4108 0.3937 0.5281  0.0126
MS-GAS-GPD 95% 19 0.3885 0.3991 0.089 0.4084
MS-GAS-Log.Pearson 3 95% 17 0.096 0.3909 0.3989  0.3895
MS-GAS-Phased-Bi-Exponential | 95% 20 0.088 0.3049 0.2146  0.2012
MS-GAS-Wakeby 95% 26 0.0108 0.2048 0.2123  0.3047
Value-at-Risk 30 days
Model Proportion | Violations | TR Test DQ Test Kupiec Christoffersen
MS-GAS-GEV 99% 5 0.082 0.9955 0.8611  0.0120
MS-GAS-Gen.Logistic 99% 8 0.0182 0.8381 0.2291  0.0145
MS-GAS-GPD 99% 3 0.7872 0.1258 0.4342  0.0984
MS-GAS-Log.Pearson 3 99% 10 0.0232 0.5139 0.2799  0.0420
MS-GAS-Phased-Bi-Exponential | 99% 9 0.0083 0.8504 0.9306  0.0580
MS-GAS-Wakeby 95% 7 0.8772 0.1255 0.8433  0.0596
Expected Shortfall 30 days
MS-GAS-GEV 99% 3 0.9552 0.9785 0.963 0.0242
MS-GAS-Gen.Logistic 99% 7 0.3768 0.6796 0.4963  0.0937
MS-GAS-GPD 99% 5 0.5934 0.8897 0.8963  0.0508
MS-GAS-Log.Pearson 3 99% 4 0.7761 0.3879 0.8661  0.0420
MS-GAS-Phased-Bi-Exponential | 99% 6 0.9682 0.7768 0.9661  0.0720
MS-GAS-Wakeby 99% 8 0.9123 0.9508 0.9188  0.0108

if there are 5-9 exceptions, and a red zone, if there are more than 9 exceptions. Neither of
the risk measures avoids a regulatory penalty, with all of them slipping into the yellow zone,
which imposes a penalty between 0.40 and 0.85 times the VaR for calculation of the market
risk charge (Bee and Trapin 2018).

Interestingly, the hybrids with 5 and 30 days of data performed uniformly throughout all the
risk measures. This gives an average penalty that ranges from 4.3% to 28%. Generally, all
the risk measures showed that both the MS-GAS-GEV and MS-GA-GPD distributions are
good estimator models for extreme losses for FTSE/BSE-DCI stock returns. At 95% and 99%
confidence level, both VaR and ES from MS-GAS-GEV and MS-GAS-GPD did not produce
the most worrying results. For example, MS-GAS-GEV only produced zero exceptions out
of 30 observations. While MS-GAS-GPD produced zero exception out of 5 observations.
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Pigildin (2009) noted there is only a very small likelihood, which is less than 0.01%, that
is an accurate model with a correct coverage of 99% would produce as much as 10 or more
exceptions. Hence, the current study found that the risk models had estimated extreme
tail losses with adequate accuracy for all FTSE/BSE-DCI. It is further worth noting that
for five and thirty days penalties, both the MS-GAS-GEV and MS-GAS-GPD, produce less
penalties. For the MS-GAS-GEV at five days VaR forecasting, only 8.7% penalty is observed
while for ES gave 4.3%. The same interpretation can be made for thirty days and for other
distributions.

Table 8: Basel III zones backtest results

Distribution Zone 5 days VaR 5 days ES 30 days VaR 30 days ES

MS-GAS-GEV Green Zone 3 3 5 6
Yellow Zone 2 2 1 3
Red Zone 2 1 0 0

penalty 0.087 0.043 0.055 0.054
MS-GAS-Logistic Green Zone 5 3 4 4
Yellow Zone 3 1 1 3
Red Zone 1 1 1 0

penalty 0.172 0.176 0.251 0.175
MS-GAS-GPD Green Zone 3 4 5 7
Yellow Zone 1 2 3 2
Red Zone 0 0 1 1

penalty 0.027 0.024 0.024 0.079
MS-GAS-Log-Pearson3 Green Zone 5 6 5 6
Yellow Zone 2 2 3 1
Red Zone 2 0 0 1

penalty 0.179 0.249 0.248 0.289
MS-GAS-Phased Bi-Exponential | Green Zone 5 4 5 6
Yellow Zone 1 1 2 4
Red Zone 1 0 1 1

penalty 0.314 0.766 0.234 0.276
MS-GAS-Wakeby Green Zone 5 4 5 6
Yellow Zone 1 1 2 4
Red Zone 1 0 1 1

penalty 0.241 0.266 0.234 0.276

3.3. Comparing the performance of the fitted models

The purpose of this section is to determine which model best mimics the data and produces
fewer forecasts for both VaR and ES. This helps in assisting the maximum dispatching of
Botswana financial sector. Four error metrics are used this study. These metrics are used
to measure the performance of each model and results are summarized in Table ??. Some
tentative conclusions are drawn from this Table. The results show that combining point fore-
casts from different MS(2)-GAS(1) with heavy tailed distributions improves the performance
of the model in predicting and forecasting VaR and ES. In Table ??, the MS(2)-GAS(1)-GPD
is the best model. The key performance indicators for this combined forecasting model are
far below the MS(2)-GAS(1)-GEV.

Table 9: Key performance indicators for the fitted models

5 days Forecasting Performance

30 Days Forecasting Performance

Model RMSE MAE MAPE MPE RMSE MAE MAPE MPE
M(2)S-GAS(1)-GEV  16.0352 12.468 1.47832 1.67576 9.2380 0.9023 1.247  1.002
MS-GAS-GPD 13.4014 10.0257 1.27781 1.39646 8.0174 0.7930 0.798 0.9141
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4. Discussion and conclusion

Under the regulation of Basel Accords, risk managers of financial institutions need to rely on
state-of-the-art methodologies for predicting and evaluating their downside risk. This becomes
a complex issue when one has to incorporate regime shift because this requires a substantial
amount of planning before throwing machine learning algorithms at it. Nonetheless, it is
also an application of data science and machine learning for the good, which makes sure that
stochastic parameters are correctly modeled and identified. However, mitigation of financial
hazard and management planning plays a critical role in regime shifts with dependence on
time-varying parameters in financial society and, the economic world. Due to the asymmetry
and leptokurtic nature of financial time series, non-linear models had become a useful tool in
modeling and forecasting time-varying VaR and ES. Nevertheless, the statistical procedures
of this study lie in forecasting the stochastic time-varying VaR and ES of FTSE/BSE-DCI by
employing a MS-GAS that is nested with copulas and heavy tailed distributions. There are
few studies that aim at this approach; and to current knowledge, this is the first study to use
such a model to show characterizing performance of stochastic time-varying VaR and ES under
regime shifts and extreme value distributions. Performing this analysis, explicitly accounted
for the presence of different Markovian regimes as well as a smooth within-regime dynamic
evolution of the dependence parameters. Specifically, exploiting the recent advantages for
score driven processes, the state dependent copula parameters are then allowed to be updated
using the scaled score of the conditional copula distribution. This choice helped in achieving
a greater level of flexibility in the context of dynamic copula models, and it also introduced
extreme stochastic behavior for the class of VaR and ES models in a natural and effective
way. A vibrant advantage of the estimated MS(2)-GAS(1) model is that it exploit a full
likelihood information and taking a local density score step as a driving mechanism, time-
varying parameters become non-stationary and form a clear signal of extreme distribution
behavior which empirical properties of this study revealed the same behavior with the residuals
of MS(2)-GA(1)-copula following heavy tailed distributions.

The results obtained in this study showed that the MS-GAS-GEV and MS-GAS-GPD, are the
best models to forecast 5 days and 30 days VaR and ES; with MS-GAS-GPD out performing
the counter part MS-GAS-GEV. Because the model gave less forecasting performance when
assessed by RMSE, MAE, MAPE and MPE. Hence the conclusion that MS(2)-GAS(1)-GPD
nested with copulas is the best model that mimics the FTSE/BSE-DIC data. This is a
promising technique for regime shift susceptibility detection and extreme time-varying risk.
For further research, Heavy-GAS-tF model subject to regime switch ought to be utilized
and estimate deeper correlation dynamics of the heavy tails of the GAS model. It would
be interesting to see what sort of results that can be found if a more sophisticated machine
learning procedures are used to model stochastic time-varying parameters as a regime shift
process through the use of Markov chain Monte Carlo and bootstrapping of the credible
confidence interval for the estimated time-varying parameters. A probabilistic description
and modeling of extreme peak time-varying loads using Poison point process is another area
that requires future research. This approach helps in estimating the frequency of occurrence
of peak time—varying. A sensitivity analysis with respect to daily time-variation performed
and the development of a two—stage stochastic integer recourse models with the objective
of optimizing parameter distribution is an interesting future research direction with stock
market data. This will be studied elsewhere.
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