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Abstract

The Bell–Touchard regression model for count response variables was introduced re-
cently in the statistical literature. This regression model for counts is, in some aspects,
similar to the generalized linear model framework, and the mean response is related to
covariates and unknown regression coefficients, which allows for parameter interpretation
in terms of the response variable in its original scale. However, diagnostic methods for this
class of regression models were not developed. In this paper, we fill this gap and propose a
variety of diagnostic tools, such as leverage measures, global influence, normal curvatures
of local influence under some perturbation schemes, and Pearson residuals. All diagnostic
measures developed are applied in a real data set to analyze the fitted Bell–Touchard
regression model in practice.
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1. Introduction
The two-parameter mean-parameterized Bell–Touchard (‘BeTo’ for short) family of distribu-
tions studied by Lemonte (2022) has probability mass function (PMF) of the form

Pr(Y = y) = exp{ϕ[1 − eW0(µ/ϕ)]}W0(µ/ϕ)yTy(ϕ)
y! , y = 0, 1, . . . ,

where µ > 0 is the location parameter, ϕ > 0 is the precision parameter, W0(·) denotes
the principal branch of the Lambert function (Corless, Gonnet, Hare, Jeffrey, and Knuth
1996), Ty(ϕ) =

∑y
k=0 S(y, k)ϕk are the Touchard polynomials studied in Touchard (1933),

and S(y, k) are the Stirling numbers of the second kind (see, for instance, Comtet 2010). In
particular, it follows that T0(ϕ) = 1, T1(ϕ) = ϕ, T2(ϕ) = ϕ2 + ϕ, T3(ϕ) = ϕ3 + 3ϕ2 + ϕ,
T4(ϕ) = ϕ4 + 6ϕ3 + 7ϕ2 + ϕ, etc. We shall use the notation Y ∼ BeTo(µ, ϕ) to indicate that
the discrete random variate Y is BeTo distributed. We have that E(Y ) = µ and VAR(Y ) =
µ[1 + W0(µ/ϕ)], and so VAR(Y ) > E(Y ), which indicates that this discrete two-parameter
mean-parameterized distribution may deal with count data with overdispersion. There are
other interesting properties regarding the BeTo distribution, and the reader is referred to
Lemonte (2022) and Castellares, Lemonte, and Moreno-Arenas (2020) for further details.
On the basis of the mean-parameterized BeTo distribution, a new regression model was in-
troduced by Lemonte (2022) when the response variable is a count. The mean response was
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related to explanatory variables and regression parameters, which allows for parameter inter-
pretation in terms of the response variable in its original scale. In the following, we briefly
discuss the BeTo regression model. Let Y1, . . . , Yn denote n independent random variables
BeTo distributed, where Yi ∼ BeTo(µi, ϕ) for i = 1, . . . , n. Also, consider the functional
relation for the mean parameter given by log(µi) = x⊤

i β, where x⊤
i = (xi1, . . . , xip) are obser-

vations on p known regressors, and β = (β1, . . . , βp)⊤ ∈ Rp is a vector of regression parameters
(p < n). Note that µi = exp(x⊤

i β), which ensures that µi > 0 for all i = 1, . . . , n. In general,
we have that xi1 = 1 (for all i = 1, . . . , n), and so β1 corresponds to the intercept. Lemonte
(2022) showed that the maximum lilekihood (ML) estimates β̂ = (β̂1, . . . , β̂p)⊤ and ϕ̂ of
β = (β1, . . . , βp)⊤ and ϕ, respectively, can be obtained by iteratively solving simultaneously
the equations 

β(m+1) = (X⊤V (m)X)−1X⊤V (m)z(m),

ϕ(m+1) = ϕ(m) + tr(S(m))
tr(P (m))

,
(1)

where X = [x1, . . . , xn]⊤ is the model matrix with full column rank p, V = diag{v1, . . . , vn},
P = diag{p1, . . . , pn}, S = diag{s1, . . . , sn}, z = η + V −1W −1(y − µ), η = Xβ, W =
diag{w1, . . . , wn}, y = (y1, . . . , yn)⊤, µ = (µ1, . . . , µn)⊤, and

wi = 1 + W0(µi/ϕ), pi = eW0(µi/ϕ)

ϕ wi
+ 1

ϕ2

[(
Tyi+1(ϕ)
Tyi(ϕ)

)2
− Tyi+2(ϕ)

Tyi(ϕ)

]
,

vi = µi

wi
, si = −eW0(µi/ϕ) − (yi − µi)

ϕ wi
+ Tyi+1(ϕ)

ϕ Tyi(ϕ) .

Also, tr(·) denotes the trace operator, and m = 0, 1, . . . means the iteration counter in the
iterative process (1). Let θ̂ = (β̂⊤, ϕ̂)⊤ be the ML estimate of θ = (β⊤, ϕ)⊤. Asymptotic
properties of the ML estimators of the BeTo model parameters were also discussed by Lemonte
(2022), and the author showed that θ̂ ∼ Np+1(θ, K−1

θ ), where Kθ = diag{Kβ, Kϕ} and so
K−1

θ = diag{K−1
β , 1/Kϕ}, and Kβ = X⊤V X and Kϕ = tr(P ). It is interesting to note

that β and ϕ are globally orthogonal (Cox and Reid 1987) and, hence, the ML estimators
β̂ and ϕ̂ are asymptotically independent. From the above asymptotic distribution, we have
that VAR(β̂) = (X⊤V X)−1, and VAR(ϕ̂) = 1/tr(P ), and so asymptotic confidence intervals
for the BeTo model parameters can be computed in a usual manner. The reader is referred
to Lemonte (2022) for more details about the BeTo regression model.
It is evident that the parametric BeTo family of discrete distributions corresponds to an inter-
esting, tractable, and useful distribution for count data. In particular, real data illustrations
presented in Lemonte (2022) have indicated that the BeTo regression model is very useful in
practice and can be an interesting alternative to the well-known Poisson and negative binomial
regression models. On the other hand, Lemonte (2022) has not studied diagnostic techniques
in order to detect possible influential observations under the BeTo regression model. These
possible influential observations may change, for example, the inference on a particular re-
gression parameter of the BeTo regression model fitted to the data at hand. Therefore, it
is quite important to consider diagnostic techniques to identify these observations under the
BeTo regression model. This paper fills this gap and develops diagnostic methods for this
regression model. First, we shall derive a leverage measure to identify observations with high
influence on their own predicted values. Next, we shall consider the global influence starting
from the case deletion proposed by Cook (1977), and then we consider the local influence
method (under different perturbation schemes) developed by Cook (1986) to detect possible
influential observations under the BeTo regression model. It is worth stressing that these
diagnostic methods are quite applied in the statistical literature, mainly in parametric regres-
sion models, to identify possible influential observations; see, for example, Svetliza and Paula
(2001), Paula (2013), Ibacache-Pulgar, Paula, and Galea (2014), Zhu, Shi, and Liu (2015);
Zhu, Liu, and Shi (2016), Ferreira, Paula, and Lana (2022) and Aoki, Bustamente, and Paula
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(2022), among many others. We shall also define the Pearson residuals to assess departures
from the assumptions made for the BeTo regression model, particularly for the error assump-
tions, as well as to detect outlying observations. Finally, the diagnostic procedures developed
in this paper are applied in a real data set to analyze the fitted BeTo regression model.

2. Diagnostic analysis

2.1. Leverage

Here, we follow Pregibon (1981) and provide a leverage measure for the BeTo regression
model. Basically, the idea behind the concept of leverage is that of evaluating the influence
of each observed response on its own predicted value. At the convergence of the iterative
process (1), we have that

β̂ = (X⊤V̂ X)−1X⊤V̂ ẑ,

where ẑ = η̂ + V̂ −1Ŵ −1(y − µ̂). Therefore, the ML estimate β̂ can be interpreted as the
least squares solution of the linear regression of V̂ 1/2ẑ against the columns of V̂ 1/2X. The
projection matrix of the least squares solution of the linear regression of ẑ against X with
weights V̂ is given by

H = V̂ 1/2X(X⊤V̂ X)−1X⊤V̂ 1/2,

which suggests the use of the elements of the main diagonal of H, say hii, to detect the
presence of leverage points in this weighted linear regression model (Pregibon 1981). Note
that hii can be expressed as

hii = v̂i x⊤
i (X⊤V̂ X)−1xi, i = 1, . . . , n,

where
v̂i = µ̂i

ŵi
, ŵi = 1 + W0(µ̂i/ϕ̂), µ̂i = exp(x⊤

i β̂).

Hence, we use hii as a leverage measure for the BeTo regression model. Therefore, the plot
of hii against the index of the observations may reveal observations with a high influence on
their own predicted values. In addition, observations with large values for hii may also be
influential on the estimated regression coefficients (see, for example, Svetliza and Paula 2001).

2.2. Global influence

In the following, we consider the case deletion approach (Cook 1977) to assess the influence
of the i-th case on the ML estimate θ̂ = (β̂⊤, ϕ̂)⊤ of θ = (β⊤, ϕ)⊤. Let θ̂(−i) = (β̂⊤

(−i), ϕ̂(−i))⊤

denote the ML estimate of θ = (β⊤, ϕ)⊤ without the i-th observation in the sample. The
global influence measure, i.e. the (generalized) Cook distance, to study the effect of dropping
the i-th case from data on the ML estimate θ̂ = (β̂⊤, ϕ̂)⊤ can be defined by

Ci(θ) = (θ̂(−i) − θ̂)⊤K̂θ(θ̂(−i) − θ̂), i = 1, . . . , n,

where K̂θ = diag{X⊤V̂ X, tr(P̂ )}, V̂ = diag{v̂1, . . . , v̂n}, P̂ = diag{p̂1, . . . , p̂n}, and

p̂i = eW0(µ̂i/ϕ̂)

ϕ̂ ŵi

+ 1
ϕ̂2

[(
Tyi+1(ϕ̂)
Tyi(ϕ̂)

)2
− Tyi+2(ϕ̂)

Tyi(ϕ̂)

]
.

It is worth stressing that one can avoid the estimation of θ̂(−i) = (β̂⊤
(−i), ϕ̂(−i))⊤ for all

i = 1, . . . , n by employing the one-step approximation given by θ̂(−i) ≏ θ̂ − K̂−1
θ l̂i, where

l̂i = ∂ℓi(θ)
∂θ

∣∣∣∣
θ=θ̂

,
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and ℓi(θ) = ϕ[1 − eW0(µi/ϕ)] + yi log[W0(µi/ϕ)] + log[Tyi(ϕ)] for i = 1, . . . , n. Note that the
total log-likelihood function is simply given by ℓ(θ) =

∑n
i=1 ℓi(θ). We have that

∂ℓi(θ)
∂β

=
√

viRixi,
∂ℓi(θ)

∂ϕ
= si,

where Ri is the Pearson residual given by

Ri = yi − µi√
µiwi

, i = 1, . . . , n.

Thus, we have that

θ̂(−i) − θ̂ ≏ −
[
(X⊤V̂ X)−1 0p

0⊤
p 1/tr(P̂ )

](√
v̂iR̂ixi

ŝi

)
,

where

R̂i = yi − µ̂i√
µ̂iŵi

, ŝi = −eW0(µ̂i/ϕ̂) − (yi − µ̂i)
ϕ̂ŵi

+ Tyi+1(ϕ̂)
ϕ Tyi(ϕ̂)

,

and so

Ci(θ) =
(√

v̂iR̂ixi

ŝi

)⊤ [
(X⊤V̂ X)−1 0p

0⊤
p 1/tr(P̂ )

](√
v̂iR̂ixi

ŝi

)
, i = 1, . . . , n.

It then follows that

Ci(θ) =
{

v̂iR̂
2
i x⊤

i (X⊤V̂ X)−1xi

}
+
{

ŝ2
i

tr(P̂ )

}
, i = 1, . . . , n.

It is immediate to note that we can separate this distance into two components: Ci(θ) =
Ci(β) + Ci(ϕ), where Ci(β) corresponds to the β-component, and Ci(ϕ) corresponds to the
ϕ-component, with

Ci(β) = v̂iR̂
2
i x⊤

i (X⊤V̂ X)−1xi, Ci(ϕ) = ŝ2
i

tr(P̂ )
.

Hence, the plot of Ci(θ), Ci(β) and Ci(ϕ) against the index of the observations may reveal
possible influential observations on the ML estimates θ̂ = (β̂⊤, ϕ̂)⊤, β̂ and ϕ̂, respectively. It
is interesting to note that Ci(β) = R̂2

i hii, and so a case with a large value of Pearson residual
(in absolute value) and/or a large value for hii may be an influential observation on the ML
estimate β̂ = (β̂1, . . . , β̂p)⊤.

2.3. Local influence

As early mentioned, the total log-likelihood function of the BeTo regression model is given
by ℓ(θ) =

∑n
i=1 ℓi(θ), where θ = (β⊤, ϕ)⊤ is the (p + 1)-vector of parameters, and ℓi(θ) =

ϕ[1 − eW0(µi/ϕ)] + yi log[W0(µi/ϕ)] + log[Tyi(ϕ)] denotes the contribution of the i-th observa-
tion. Let ℓ(θ|ω) denote the perturbed log-likelihood function under a particular perturbation
scheme applied in the model or data, where ω is a q-vector of perturbations restricted to some
open subset Ω ⊂ Rq. Let ω0 ∈ Ω denote the no-perturbation vector so that ℓ(θ|ω0) = ℓ(θ).
To measure the discrepancy between ℓ(θ|ω) and ℓ(θ), one can consider the likelihood displace-
ment given by LD(ω) = 2[ℓ(θ̂) − ℓ(θ̂ω)], where θ̂ω denotes the ML estimate of θ obtained
from the perturbed log-likelihood function ℓ(θ|ω). The local influence method developed by
Cook (1986) considers the influence of small perturbations in the model or data on the mea-
sure LD(ω). Basically, the main idea of the local influence approach is to study the normal
curvatures for β and ϕ in the unitary direction, d say, available at θ̂ = (β̂⊤, ϕ̂)⊤ and ω0.
Such curvatures, for large n, can be expressed, respectively, in the forms (Cook 1986)

Cd(β) = 2|d⊤∆⊤
β K̂−1

β ∆βd| and Cd(ϕ) = 2|K̂−1
ϕ d⊤∆⊤

ϕ ∆ϕd|,
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where K̂β = X⊤V̂ X, K̂ϕ = tr(P̂ ), and

∆β = ∂2ℓ(θ|ω)
∂β∂ω⊤ , ∆ϕ = ∂2ℓ(θ|ω)

∂ϕ∂ω⊤ .

Note that ∆β and ∆ϕ are p×n and 1×n matrices, respectively. These matrices are evaluated
at the ML estimate θ̂ = (β̂⊤, ϕ̂)⊤, and at the no-perturbation vector ω0.

Case-weight perturbation In this perturbation scheme, it is assumed that ℓ(θ|ω) =∑n
i=1 ωiℓi(θ), where 0 ≤ ωi ≤ 1 and ω0 = (1, . . . , 1)⊤. After some algebra, we have that

∂2ℓ(θ|ω)
∂βr∂ωi

=
√

viRixir,
∂2ℓ(θ|ω)

∂ϕ∂ωi
= si, r = 1, . . . , p, i = 1, . . . , n.

Let R̂ = diag{R̂1, . . . , R̂n} and Ŝ = (ŝ1, . . . , ŝn). Hence, we can express ∆β = X⊤V̂ 1/2R̂,
and ∆ϕ = Ŝ. It follows that Cd(β) = 2|d⊤R̂V̂ 1/2X(X⊤V̂ X)−1X⊤V̂ 1/2R̂d| and Cd(ϕ) =
2|Ĉϕd⊤Ŝ⊤Ŝd|, where Ĉϕ = 1/tr(P̂ ). The sensitivity of the ML estimates β̂ = (β̂1, . . . , β̂p)⊤

and ϕ̂ under the case-weight perturbation scheme can assessed by considering the largest
directions d = dmax in Cd(β) and Cd(ϕ), which are given by the eigenvectors correspond-
ing to the largest eigenvalues of the matrices R̂V̂ 1/2X(X⊤V̂ X)−1X⊤V̂ 1/2R̂ and ĈϕŜ⊤Ŝ,
respectively.

Explanatory variable perturbation Under this perturbation scheme, the values of the
j-th continuous explanatory variable are perturbed as xijω = xij + σx ωi, where σx is a scale
factor which is given by the (sample) standard deviation of xj , ωi ∈ R, and ω0 = (0, . . . , 0)⊤.
This perturbation scheme leads to ℓ(θ|ω) =

∑n
i=1 ℓiω(θ), where ℓiω(θ) = ϕ[1 − eW0(µiω/ϕ)] +

yi log[W0(µiω/ϕ)] + log[Tyi(ϕ)], µiω = exp(x⊤
iωβ), and x⊤

iω = (xi1, . . . , xijω, . . . , xin). After
some algebraic manipulations, we have that

∂2ℓ(θ|ω)
∂βr∂ωi

= σx(yi − µiω)
1 + W0(µiω/ϕ) − σxβjµiω(xij + σxωi)

1 + W0(µiω/ϕ)

− σxβj(yi − µiω)(xij + σxωi)W0(µiω/ϕ)
[1 + W0(µiω/ϕ)]3 ,

where r = 1, . . . , p and r = j. Also, for r = 1, . . . , p and r ̸= j, it follows that

∂2ℓ(θ|ω)
∂βr∂ωi

= − σxβjµiωxir

1 + W0(µiω/ϕ) − σxβj(yi − µiω)xirW0(µiω/ϕ)
[1 + W0(µiω/ϕ)]3 .

We also obtain
∂2ℓ(θ|ω)

∂ϕ∂ωi
= σxβj(yi − µiω)W0(µiω/ϕ)

ϕ[1 + W0(µiω/ϕ)]3 .

Let M̂ = diag{m̂1, . . . , m̂n} and Ẑ = diag{ẑ1, . . . , ẑn}, where

m̂i = µ̂i

ŵi
+ W0(µ̂i/ϕ̂)(yi − µ̂i)

ŵ3
i

, ẑi = W0(µ̂i/ϕ̂)
ϕ̂ŵ3

i

.

Hence, we can express ∆β = σxc
(j)
β (y − µ̂)⊤Ŵ − σxβ̂jX⊤M̂ and ∆ϕ = σxβ̂j(y − µ̂)⊤Ẑ,

where Ŵ = diag{ŵ1, . . . , ŵn}, µ̂ = (µ̂1, . . . , µ̂n)⊤, c
(j)
β denotes a p-vector with one at the

j-th position and zero elsewhere, and β̂j (for j = 1, . . . , p) denotes the j-th element of β̂ =
(β̂1, . . . , β̂p)⊤. The normal curvatures for β and ϕ in the unitary direction d are Cd(β) =
2|d⊤∆⊤

β (X⊤V̂ X)−1∆βd| and Cd(ϕ) = 2|Ĉϕd⊤∆⊤
ϕ ∆ϕd|, respectively. Therefore, under the

perturbation of the j-th continuous explanatory variable, the sensitivity of the ML estimates
β̂ = (β̂1, . . . , β̂p)⊤ and ϕ̂ can assessed by considering the largest directions d = dmax in Cd(β)
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and Cd(ϕ), which are given by the eigenvectors corresponding to the largest eigenvalues of
the matrices ∆⊤

β (X⊤V̂ X)−1∆β and Ĉϕ∆⊤
ϕ ∆ϕ, respectively.

2.4. Residual analysis

The aim of the residual analysis is to identify departures from the model assumptions, as well
as to assess the overall goodness-of-fit of the fitted model to the data at hand. A simple as
well as natural residual is the well-known Pearson residual early mentioned, which is based
on the idea of subtracting off the mean and dividing by the standard deviation, that is,

Ri = yi − µi√
µiwi

, i = 1, . . . , n.

Note that E(Ri) = 0, and VAR(Ri) = 1. However, in practice, we have to replace the unknown
quantities with the estimated ones, and so we have that

R̂i = yi − µ̂i√
µ̂iŵi

, i = 1, . . . , n.

It is worth emphasizing that the exact distribution of the Pearson residual R̂i is not known
under the BeTo regression model. However, as suggested by Atkinson (1981), we may add
envelopes into the quantile-quantile plot (QQ-plot) of the Pearson residuals to decide whether
the observed residuals are consistent with the fitted BeTo regression model, as well as to detect
outlying observations. Hence, if some residual values fall outside the simulated envelope, there
is evidence against the adequacy of the fitted BeTo regression model to the data.

3. Application
As illustration, we shall consider a data set from Brockmann (1996). The data correspond
to a study on horseshoe crabs (Limulus polyphemus). Let the number of males surrounding
a breeding female (Y ) be the response variable; that is, the number of additional males
(“satellites”) residing nearby each female that may fertilize her eggs. Explanatory variables
are the female crab’s color (1–light; 2–medium; 3–dark; and 4–darker); the female crab’s
spine condition (1–good; 2–middle; and 3–bad); and the female’s weight (in Kg). The sample
size is n = 173. Boxplots for the satellites according to the female’s color and female’s spine
condition are presented in Figure 1. Note that there are a few extreme observations.
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Figure 1: Boxplots of the satellites according to the female crab’s color (left), and female
crab’s spine condition (right)

We assume Yijk ∼ BeTo(µijk, ϕ) so that log(µijk) = β1 + β2 weighti + β3j + β4k, where µijk

is the expected number of additional males (“satellites”) corresponding to the j-th female’s
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Table 1: Parameter estimates
Effect Estimate SE Estimate/SE p-value
Intercept −0.1042 0.4801 −0.2171 0.8281
weight 0.5781 0.1389 4.1630 0.0000
color(medium) −0.2808 0.3181 −0.8828 0.3774
color(dark) −0.5398 0.3647 −1.4801 0.1388
color(darker) −0.5525 0.4186 −1.3200 0.1868
spine(middle) −0.1807 0.3848 −0.4696 0.6386
spine(bad) 0.0828 0.2232 0.3708 0.7108
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Figure 2: Pearson residuals with simulated envelope

color (j = 1, 2, 3, 4) and k-th female’s spine condition (k = 1, 2, 3) for i = 1, . . . , 173. Here, we
assume that β31 = β41 = 0. The ML estimates of the regression parameters, the corresponding
asymptotic standard errors (SE), and the p-values are listed in Table 1. The ML estimate
of the precision parameter (asymptotic SE between parentheses) is ϕ̂ = 0.1042 (0.0376). The
QQ-plot for the Pearson residuals with simulated envelopes (Figure 2) against the theoretical
quantiles of the standard normal distribution does not present any unusual features, as well as
there are no observations outside the envelope. Therefore, the BeTo regression model seems to
be appropriate to model the horseshoe crabs data. From Table 1, note that only the female’s
weight seems to be statistically significant (based on the 5% nominal level, for instance) on
the expected number of additional males (“satellites”) that may fertilize her eggs.
We now check the presence of possible influential observations. To do that, we generate plots
for the diagnostic measures derived in the previous section. Figure 3 presents the index plot
of the leverage measure, where case 141 seems to have a great influence on its own predicted
value. This case corresponds to a breeding female crab with 5.2Kg (being the weightiest female
crab), medium color, and good spine condition, which shows the difficulty of predicting the
response for weigher female crabs. Index plots of Ci(β) and Ci(ϕ) are displayed in Figure
4. Figure 5 presents the index plot of the local influence under the case-weight perturbation,
while Figure 6 presents the index plot of the local influence under the covariate (female crab
weight) perturbation. On the basis of these plots, the cases 15, 56, 117, 134, 141, 146 and 149
have more pronounced influence than the other observations. It is worth mentioning that a
common feature among these cases is that all correspond to female crabs which have a great
number of males surrounding them. For example, cases 15, 56, and 117 have 14, 15, and 12
males (“satellites”) residing nearby the female, respectively, and the sample mean of males is
(approximately) 3.
After finding possible influential observations from the generated plots for the diagnostic
measures derived in this paper, an interesting problem is to determine how to deal with
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Figure 3: Leverage
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Figure 4: Index plots of Ci(β) (a), and Ci(ϕ) (b)
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Figure 5: Index plots of |dmax| under the case-weight perturbation for β̂ (a), and ϕ̂ (b)
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Figure 6: Index plots of |dmax| under the covariate (female crab weight) perturbation for β̂
(a), and ϕ̂ (b)

these influential observations, that is, how to measure the effect of these observations on
the parameter estimates or on the fitted model, for example. First, we have dropped each
of the outstanding influential observations (cases 15, 56, 117, 134, 141, 146, and 149) and
have refitted the BeTo regression model to verify their impact on the parameter estimates.
Table 2 lists the relative changes of the ML estimates after removing each of the influential
observation from the sample. (The relative change (in %) of an estimate ξ̂ of ξ is given by (ξ̂−
ξ̂(−i))/ξ̂ ×100%, where ξ̂(−i) denotes the ML estimate of ξ after removing the i-th observation
from the sample.) It is noteworthy that the intercept parameter was the most affected by the
influential observations, followed by the parameters regarding the spine condition effect (i.e.,
β42 and β43). For example, the elimination of case 15 delivers relative changes (approximately)
of −169%, 78%, and −177% for β1, β42, and β43, respectively. However, the elimination of
these observations does not change the inference regarding the regression coefficients; that
is, the covariate which is statistically significant remains significant, and the covariate that
is not statistically significant remains not significant. Next, Table 3 lists the log-likelihood
function evaluated at the ML estimates (ℓ̂), the Akaike information criterion (AIC), the
Bayesian information criterion (BIC), and the Hannan-Quinn information criterion (HQIC)
after dropping each of the outstanding influential observations (cases 15, 56, 117, 134, 141,
146, and 149). From Table 3, note that each of the outstanding influential observations has a
slight impact on the BeTo regression model fitted to the data at hand; that is, the comparison
criteria are near, and there is no notable improvement on the model fitting after removing
each of the outstanding influential observations in comparison which the fitted model with
all observations and, hence, the BeTo regression model can incorporate these outstanding
influential observations.
In summary, the above analysis demonstrates the necessity of conducting a diagnostic anal-
ysis in the BeTo regression model to identify possible influential observations in the sam-
ple. Finally, on the basis of the above analysis, we assume that Yi ∼ BeTo(µi, ϕ), where
log(µi) = β1 + β2 weighti for i = 1, . . . , 173. The ML estimates (asymptotic SE between
parentheses) are β̂1 = −0.5233 (0.3401), β̂2 = 0.6249 (0.1256), and ϕ̂ = 0.0994 (0.0356); that
is, µ̂i = exp(−0.5233 + 0.6249 weighti) for i = 1, . . . , 173. The BeTo regression model admits
the following parameter interpretation of the final selected regression model: the expected
number of additional males (“satellites”) surrounding a breeding female increases (approxi-
mately) 37% [e0.6249×(1/2) − 1) × 100%] as the female’s weight increases 1

2Kg, for example.

4. Concluding remarks
The two-parameter discrete Bell-Touchard family of distributions introduced by Castellares
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Table 2: Relative changes (in %) on the parameter estimates

Removed β1 β2 β32 β33
15 −169.58 −9.48 −44.23 −16.93
56 60.94 3.70 −2.03 5.65
117 137.52 8.89 5.48 1.07
134 −4.03 −0.26 1.32 0.89
141 −249.14 −16.88 15.14 9.08
146 −19.96 −1.28 0.53 0.67
149 −84.17 −5.38 1.35 −16.08
Removed β34 β42 β43 ϕ

15 −16.24 78.64 −177.66 −8.45
56 5.57 −11.95 58.57 −4.13
117 −37.45 −16.55 30.56 −3.36
134 −36.52 2.32 7.13 −5.47
141 12.74 0.77 44.69 −0.29
146 −27.73 4.10 2.66 −3.36
149 3.62 20.31 5.56 −6.91

Table 3: Model selection
Removed ℓ̂ AIC BIC HQIC
None −358.36 732.72 757.94 742.95
15 −351.76 719.52 744.70 729.74
56 −353.14 722.27 747.45 732.49
117 −353.59 723.17 748.35 733.39
134 −353.07 722.15 747.33 732.36
141 −355.03 726.07 751.25 736.28
146 −353.93 723.86 749.04 734.07
149 −352.67 721.34 746.52 731.55
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et al. (2020) and reparameterized in Lemonte (2022), and its associated regression model for
count response variables, has proved to be useful to deal with overdispersion in count data.
We have derived useful diagnostic methods for the Bell-Touchard class of regression models.
It is worth stressing that all diagnostic measures developed in this paper are simple, compact,
and can easily be implemented in statistical software, once only simple matrix operations
have to be performed. We have also considered the diagnostic measures developed in a real
data set to illustrate their usefulness in finding possible influential observations when using
the Bell-Toucherd regression model in practice. Finally, we have developed R codes (Team
2022) to perform the diagnostic measures regarding the Bell-Touchard regression model in
Section 3. The R code may be obtained upon request.
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