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Abstract

The distribution of a random sum of random events is called a compound distribution.
It involves a counting (discrete) distribution to model the number of occurrences of the
random event in a fixed time period and a continuous distribution to model the outcome of
the random event. It has applications in the fields of actuarial sciences, meteorology etc.
For example, in modelling insurance loss amounts through compound distributions, the
number of claims and the claim amounts are used to calculate the total claim amount of a
portfolio. The number of claims is modelled through a discrete distribution and the claim
amounts are modelled through continuous distributions. Generally, Poisson distribution
is used in compound models as the discrete distribution and such models are known as
compound Poisson models. However, the equi-dispersion property of the Poisson distribu-
tion hinders its application in scenarios where the underlying count data is either over- or
under-dispersed. In this paper, a two-parameter Poisson distribution, namely, Conway-
Maxwell Poisson (CMP) distribution, which handles both over- and under-dispersed data,
is considered as the counting distribution, and the corresponding compound CMP distri-
bution is developed. Some mathematical properties of the distribution are derived and
a methodology to estimate the parameters using the likelihood approach is proposed. A
numerical illustration of the proposed methodology is given through a simulation study.
An application of the compound CMP model is illustrated through transportation secu-
rity administration (TSA) insurance claim data. Also, the estimation of the risk measures
associated with the TSA claim data is discussed.

Keywords: compound CMP-gamma distribution, generating function, likelihood estimation,
parametric bootstrap, value at risk.

1. Introduction
Let N be the counting random variable, and let Xi, i = 1, 2, . . . be a sequence of independent
and identically distributed positive random variables. Then the distribution of the random
sum

S =
N∑
i=1

Xi, (1)

is called a compound distribution. Here Xis and N are assumed to be independent. Com-

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v53i2.1645
www.osg.or.at


Austrian Journal of Statistics 33

pound distributions have potential applications in various domains, see, for example, Gómez-
Déniz and Pérez-Rodríguez (2019), Silva and Windmeijer (2001) in the domain of tourism
and health economics, and Withers and Nadarajah (2011) in the domain of meteorology. The
present work is motivated by the application of compound distributions in the domain of
actuarial science to model aggregate claim amounts (S) during a fixed policy period. In this
framework, N denotes the number of claims made on a portfolio of insurance policies, and
Xi, i = 1, 2, . . . , N denotes the corresponding individual claim amounts. Often in modelling
S, the distribution of N is assumed to be Poisson, in which case, the distribution of S given
in equation 1 is said to have a compound Poisson distribution. For detailed discussion on
compound Poisson distribution, one may refer to Klugman, Panjer, and Willmot (2012) and
Bahnemann (2015). Assuming the distribution of Xis to be two-parameter gamma, Withers
and Nadarajah (2011) have derived the compound Poisson-gamma distribution and studied
its properties. Since Poisson distribution has equi-dispersion property, the above model can
be used when the underlying count data are equi-dispersed. Quite often, in modelling aggre-
gate claim amount, the claim frequencies are over- or under-dispersed. In such situations, a
modification of Poisson distribution that can accommodate over- and under-dispersed data
is needed. One such distribution is the Conway-Maxwell Poisson (CMP) distribution which
is a two-parameter modification of Poisson distribution that includes Poisson, Bernoulli and
geometric distributions as its special cases. Originally introduced by Conway and Maxwell
(1962), it has been revisited by Shmueli, Minka, Kadane, Borle, and Boatwright (2005) to dis-
cuss its properties and applications. The probability mass function (pmf) of CMP distribution
is given by

P (N = y) =


λy

(y!)ν
1

Z(λ,ν) , λ > 0, ν ≥ 0
Undefined, ν = 0, λ ≥ 1,

(2)

where
Z(λ, ν) =

∞∑
j=0

λj

(j!)ν

is the normalizing constant. Here, λ denotes the location parameter and ν denotes the disper-
sion parameter that captures the degree of over- or under-dispersion. The CMP distribution
is over-dispersed for ν < 1, under-dispersed for ν > 1, and equi-dispersed for ν = 1. For more
details on CMP distribution, one may refer to Sellers, Borle, and Shmueli (2012).
In the present work, the distributions of N and Xis in equation (1) are assumed to be CMP
and gamma respectively. The random sum S is then said to have a compound CMP-gamma
(CCMPG) distribution. Unlike the compound Poisson gamma distribution, CCMPG distribu-
tion can be used to model S when the underlying count data is over- or under-dispersed. The
rest of the paper is organized as follows. In Section 2, the CCMPG distribution is derived.
The expressions for the moment generating function (mgf), cumulant generating function
(cgf), raw moments and cumulants are obtained in Section 3. In Section 4, the maximum
likelihood (ML) estimation of the parameters of the CCMPG distribution is discussed, and
a 2-step methodology to estimate the model parameters is proposed. Section 5 deals with
interval estimation of the parameters through bootstrap approach. A simulation study to
illustrate the computation of the ML estimates is presented in Section 6. Section 7 contains a
real-life application of the CCMPG distribution to travel insurance claims data. Concluding
remarks are given in Section 8.

2. Compound CMP gamma distribution
Let N represent the number of claims arising from an insurance portfolio in a given period
having pmf as given in equation (2). Let Xi, i = 1, 2, . . . , N denote the individual claim
amounts. Then the total claim amount S is modelled as given in equation (1). Note that
N = 0 ⇔ S = 0. It is assumed that the individual claim amounts (Xis) are independent of
each other and are also independent of N .
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Let p0 denote the probability mass at S = 0. Since S is not continuous at zero, the probability
density function (pdf) of S is represented in terms of generalized pdf as

f(s) = p0 δ(s) + q0 f+(s), s ≥ 0, (3)

where
p0 = P (N = 0) = Z(λ, ν)−1,

q0 = 1 − P (N = 0) = 1 − Z(λ, ν)−1,

f+(s) =
∞∑
i=1

P (N = i)
q0

f∗i(x), s > 0, (4)

and

δ(s) =
{

∞, s=0
0, s>0.

(5)

Here, δ(.) is the Dirac delta function such that
∫∞

0 δ(s)ds = 1 f∗i(x) denotes the i-fold
convolution of Xis. For more details on Dirac delta function, one may refer to Pishro-Nik
(2016). Since Xi ∈ (0, +∞), it can be modelled by a continuous distribution having support
in R+. Gamma distribution is one such distribution that is often used in modelling claim
amounts since it has positive support, positively skewed with a light tail. We consider the
distribution of the individual claim amounts to be a two-parameter gamma having pdf

f(x; α, β) = e−αxαβxβ−1

Γ(β) , x > 0, α > 0, β > 0, (6)

where α is the scale and β is the shape parameter. Since gamma distribution is closed under
convolution, we have

f∗y(u; α, β) = e−αuαyβuyβ−1

Γ(yβ) , u > 0, (7)

where U = ∑y
i=1 Xi. Using equations (2) and (7) in equation (4), we get

f+(s) =
∞∑
i=1

(
Z(λ, ν)

Z(λ, ν) − 1

)
λi

(i!)νZ(λ, ν)

[
e−αsαiβsiβ−1

Γ(iβ)

]

= e−αss−1

Z(λ, ν) − 1

∞∑
i=1

(
λαβsβ

)i
(i!)νΓ(iβ) , s > 0. (8)

Substituting equation (8) in equation (3), the pdf of S is obtained as

f(s) = p0 δ(s) + e−αss−1

Z(λ, ν) r
(
λαβsβ

)
, s > 0 (9)

where the function r(y) is defined as r(y) = ∑∞
i=1

yi

(i!)νΓ(iβ) . The random variable S with pdf
as defined in (9) is said to have a CCMPG distribution with parameters λ, ν, α, and β. The
function r(y) can be expressed in terms of generalized hypergeometric function as shown in
Result 1. A special case of this distribution is the compound Poisson-gamma distribution
(Withers and Nadarajah 2011) obtained for ν = 1.

Result 1. For β, ν ∈ Z+ where Z+ = {1, 2, . . .},

r(y) = βR

(
y

ββ

)
, (10)
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where R(z) is defined as

R(z) = z
∂

∂z

0Fβ+(ν−1)

 ; 1
β

,
2
β

, . . . ,
β − 1

β
, 1; 1, 1, . . . , 1︸ ︷︷ ︸

ν-1 terms

; z

 .

Here 0Fq is the generalized hypergeometric function defined as

0Fq( ; t1, t2, . . . , tq; z) =
∞∑
i=0

1
[t1]i [t2]i . . . [tq]i

zi

i! ,

[a]i = a(a + 1) . . . (a + i − 1).

Proof. Consider

0Fβ+(ν−1)

(
; 1
β

,
2
β

, . . . ,
β − 1

β
, 1; 1, 1, . . . , 1; z

)

=
∞∑
i=0

1
[1/β]i [2/β]i . . . [(β − 1)/β]i [β/β]i [1]i . . . [1]i

zi

i!

=
∞∑
i=0

(
ββ
)i

(ββ)i {[1/β]i [2/β]i . . . [(β − 1)/β]i [β/β]i [1]i . . . [1]i}
zi

i!

=
∞∑
i=0

(
ββ
)i

βi[1/β]i βi[2/β]i . . . βi[(β − 1)/β]i βi[β/β]i
zi

(i!)ν

=
∞∑
i=0

(
ββ
)i

(iβ)!
zi

(i!)ν .

Now,

R(z) = z
∂

∂z

(
0Fβ+(ν−1)

(
; 1
β

,
2
β

, . . . ,
β − 1

β
, 1; 1, 1, . . . , 1; z

))

= z
∂

∂z

 ∞∑
i=0

(
ββ
)i

(iβ)!
zi

(i!)ν


= z

∞∑
i=0

∂

∂z


(
ββ
)i

(iβ)!
zi

(i!)ν


= z

∞∑
i=1

(
ββ
)i

(iβ)!
izi−1

(i!)ν

=
∞∑
i=1

(
ββ
)i

(iβ)!
zi

((i − 1)!)ν iν−1 . (11)

The derivative and the summation in the above steps are interchanged because

∂

∂z
( pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z)) =

∏p
j=1 aj∏q
j=1 bj

pFq(a1+1, a2+1, . . . , ap+1; b1+1, b2+1, . . . , bq+1; z)

is convergent.
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Taking z in equation (11) to be
(
y
ββ

)
and multiplying β, we get

βR

(
y

ββ

)
= β

∞∑
i=1

(
ββ
)i

(iβ)!

(
yi

(ββ)i

)
((i − 1)!)ν iν−1

=
∞∑
i=1

yi

(iβ)! ((i − 1)!)ν
β i

iν−1 i

=
∞∑
i=1

yi

(iβ − 1)! (i!)ν

=
∞∑
i=1

yi

Γ(iβ) (i!)ν

= r(y).

Hence the result.

Since generalized hypergeometric functions are not divergent, the function r(.) defined in
equation (9) is not divergent. For β = 1, ν = 0.2, the plots of rk(y) for different choices of
y are shown in Figure 1, where rk(y) denote the truncated sum of r(y) and is defined as
rk(y) = ∑k

j=1
yj

(j!)νΓ(jβ) . It is observed from the plots that the values of rk(y) approach to a
constant for increasing values of k.
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Figure 1: Plot of rk(y) versus k for different choices of y.

3. Moment generating function
Consider S = ∑N

i=1 Xi, where N and Xis are independent. Since Xis are independent,
denoting X ≡ Xi, the moment generating function (mgf) of S is given by

MS(t) = MN (ln(MX(t))), (12)

where MN (.) is the mgf of CMP distribution and MX(.) is the mgf of gamma distribution with
parameters (α, β). From equations (2) and (6), MN (.) and MX(.) are obtained as follows.

MN (t) = Z(λet, ν)
Z(λ, ν)

and
MX(t) =

(
1 − t

α

)−β
, t < α.
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Substituting the above mgfs in equation (12), we get

MS(t) =
Z
(
λ
(
1 − t

α

)−β
, ν
)

Z(λ, ν) . (13)

The rth raw moment of S is obtained from the mgf as

E(Sr) = α−r

Z(λ, ν)

∞∑
i=0

λi

(i!)ν [iβ]r. (14)

Following Nadarajah (2009), the mgf and the moments of CCMPG distribution when ν ∈ Z+

can also be expressed in terms of generalized hypergeometric functions as follows.

MS(t) =
0Fν−1

(
; 1, . . . , 1; λ

(
1 − t

α

)−β)
0Fν−1(; 1, . . . , 1; λ) . (15)

Consequently, the expectation and the variance of S using equation (15) are

E(S) = 0Fν−1(; 2, . . . , 2; λ)
0Fν−1(; 1, . . . , 1; λ)

λβ

α

and

V (S) = 0Fν−1(; 2, . . . , 2; λ)
0Fν−1(; 1, . . . , 1; λ)

λβ(β + 1)
α2 + 0Fν−1(; 3, . . . , 3; λ)

0Fν−1(; 1, . . . , 1; λ)2!ν−1
λ2β2

α2 − E2(S).

Writing the normalizing constant of the CMP distribution in terms of modified Bessel function
as given in Daly and Gaunt (2016) for ν = 2, the mfg of CCMPG distribution can be expressed
as

MS(t) =
I0
(
2
√

λ
(
1 − t

α

)−β/2)
I0(2

√
λ)

,

where Ir(.) denote the modified Bessel function defined as

Ir(x) =
∞∑
k=0

1
k!Γ(k + r + 1)

(
x

2

)r+2k
, r = 0, 1, . . .

The mean and variance based on the above mgf are obtained respectively as

E(S) =
√

λI1(2
√

λ)
I0(2

√
λ)

β

α

and

V (S) =
√

λI1(2
√

λ)
I0(2

√
λ)

β

α2 + λβ2

α2

(
1 − I1(2

√
λ)2

I0(2
√

λ)2

)
.

3.1. Cumulants using asymptotic expansion of the normalizing constant

Gillispie and Green (2015) have shown that the asymptotic expansion of Z(λ, ν) for a fixed
ν as

Z(λ, ν) ≃ exp{νλ1/ν}
λ(ν−1)/2ν(2π)(ν−1)/2√

ν
(1 + O(λ−1/ν)), as λ → ∞. (16)

The above expansion is used to obtain asymptotic expressions for the cumulants of the
CCMPG distribution.
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Result 2. The mth cumulant of CCMPG distribution is given by

κm ≃ λ1/ν

αmνm−1 β(β + ν) . . . (β + (m − 1)ν), m = 1, 2, . . . , as λ → ∞.

Proof. Using equation (13), the cumulant generating function of CCMPG distribution is

g(t) = ln

Z
(
λ
(
1 − t

α

)−β
, ν
)

Z(λ, ν)

 = ln
(

Z

(
λ

(
1 − t

α

)−β
, ν

))
− ln (Z(λ, ν)) .

The mth cumulant is given by

κm = g(m)(0) = ∂m

∂tm
ln
(

Z

(
λ

(
1 − t

α

)−β
, ν

))∣∣∣∣∣
t=0

.

Using equation (16), we get

ln
(

Z

(
λ

(
1 − t

α

)−β
, ν

))
≃ νλ1/ν

(
1 − t

α

)−β/ν
, as λ → ∞.

Differentiating the above m times with respect to t and taking t = 0, the expression for κm
is obtained.

Consequently, the asymptotic expressions for the mean and the variance of S as λ → ∞ are
given by

E(S) ≃ λ1/ν β

α
and V (S) ≃ σ2 = λ1/ν β

α2 + 1
ν

λ1/ν β2

α2 .

Using Result 2, the skewness and kurtosis of CCMPG distribution as λ → ∞ are obtained,
respectively as

γ1 ≃ κ3
σ3 = 1√

ν

[
λ1/νβ(β + ν)

]−1/2
(β + 2ν)

and
γ2 ≃ κ4

σ4 = 1
ν

(β + 2ν)(β + 3ν)
β(β + ν) .

4. Point estimation
In this section, estimation of the parameters of S by the method of moments and maximum
likelihood is discussed. Let θ = (λ, ν, α, β)′.

4.1. Method of moment estimation

Using equation (14), the first four moments of S are derived and they are used to obtain the
moment estimates. The moment equations are as given below.

β

α

∑∞
i=0 iλi(i!)−ν∑∞
i=0 λi(i!)−ν = m′

1. (17)

β2

α2

∑∞
i=0 i2λi(i!)−ν∑∞
i=0 λi(i!)−ν + β

α2

∑∞
i=0 iλi(i!)−ν∑∞
i=0 λi(i!)−ν = m′

2. (18)

β3

α3

∑∞
i=0 i3λi(i!)−ν∑∞
i=0 λi(i!)−ν + 3β2

α3

∑∞
i=0 i2λi(i!)−ν∑∞
i=0 λi(i!)−ν + 2β

α3

∑∞
i=0 iλi(i!)−ν∑∞
i=0 λi(i!)−ν = m′

3. (19)



Austrian Journal of Statistics 39

β4

α4

∑∞
i=0 i4λi(i!)−ν∑∞
i=0 λi(i!)−ν + 6β3

α4

∑∞
i=0 i3λi(i!)−ν∑∞
i=0 λi(i!)−ν + 11β2

α4

∑∞
i=0 i2λi(i!)−ν∑∞
i=0 λi(i!)−ν + 6β

α4

∑∞
i=0 iλi(i!)−ν∑∞
i=0 λi(i!)−ν = m′

4,

(20)
where m′

a denote the ath sample moment. The moment estimates of θ can be obtained by
solving equations (17) to (20) simultaneously.

4.2. Method of maximum likelihood estimation

Let s = (s1, s2, . . . , sp) be a random sample of size p from the CCMPG distribution. Let
there be M(> 0) positive values in s and T = p − M zeros. Following the approach given in
Withers and Nadarajah (2011), we observe that M ∼ Binomial(p, 1−p0) and p0 = Z(λ, ν)−1.
Then P (M = 0) =

(
Z(λ, ν)−1)p. Therefore the likelihood function based on s and M = m is

L(θ; s) =
(

p

m

)
pp−m

0 qm0

m∏
k=1

f+
θ (sk)

=
(

p

m

)( 1
Z(λ, ν)

)p−m (
1 − 1

Z(λ, ν)

)m m∏
k=1

f+
θ (sk)

The corresponding log-likelihood function is

l = ln (L) = ln
((

p

m

))
− (p − m) ln(Z(λ, ν)) + m ln(Z(λ, ν) − 1) − m ln(Z(λ, ν))

+
m∑
k=1

ln
(

e−αsks−1
k

Z(λ, ν) − 1 r
(
λαβsβk

))

= ln
((

p

m

))
− p ln(Z(λ, ν)) +

m∑
k=1

(−αsk − ln(sk)) +
m∑
k=1

ln

 ∞∑
j=1

(
λαβsβk

)j
(j!)ν Γ(jβ)

 .

(21)

The score functions of the parameters λ, ν, α and β equated to zero are given in equations
(22) to (25) respectively.

∂l

∂λ
=

m∑
k=1


∑∞
j=1

jαβsβ
k

(
λαβsβ

k

)j−1

(j!)νΓ(βj)∑∞
j=1

(
λαβsβ

k

)j

(j!)νΓ(βj)

− p
∑∞
i=0 iλi−1(i!)−ν∑∞
i=0 λi(i!)−ν = 0. (22)

∂l

∂ν
=

m∑
k=1

∑∞
j=1 − ln(j!)

(
λαβsβ

k

)j

(j!)νΓ(βj)∑∞
j=1

(
λαβsβ

k

)j

(j!)νΓ(βj)

− p
∑∞
i=0 −λi(i!)−ν ln(i!)∑∞

i=0 λi(i!)−ν = 0. (23)

∂l

∂α
=

m∑
k=1

∑∞
j=1

βjλαβ−1sβ
k

(
λαβsβ

k

)j−1

(j!)νΓ(βj)∑∞
j=1

(
λαβsβ

k

)j

(j!)νΓ(βj)

−
m∑
k=1

sk = 0. (24)

∂l

∂β
=

m∑
k=1

∑∞
j=1

(
j
(
λαβsβ

k

)j−1(
λαβsβ

k
ln(αsk)

)
(j!)νΓ(βj) − jψ(0)(βj)

(
λαβsβ

k

)j

(j!)νΓ(βj)

)
∑∞
j=1

(
λαβsβ

k

)j

(j!)νΓ(βj)

= 0. (25)
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The ML estimates of θ, denoted by θ̂ = (λ̂, ν̂, α̂, β̂)′ are obtained by solving equations (22) to
(25) respectively. Since the score functions are non-linear, they do not yield explicit solution
for θ.
It is clear from the method of moments and likelihood estimation that obtaining closed-form
expression for the estimators of the parameters is not possible. Hence, one has to resort to
iterative procedures involving Newton-Raphson method to obtain the estimates. Due to the
complex nature of the equations (17) to (20) and equations (22) to (25) which involve infinite
sums, implementation of root finding algorithms might not yield reasonably good estimates.
To make the estimation procedure less complex, in the sequel, a 2-step ML methodology is
proposed assuming that data on N is known.

4.3. ML estimation when N is known

Since the ML estimators do not have closed-form expression, in this section, a 2-step ML
methodology is proposed to estimate the parameters assuming N to be known. The merit
of assuming N to be known is that the estimates of the parameters λ and ν can be directly
obtained from the CMP distribution. Let ni and si, i = 1, 2, . . . , p denote claim frequencies
and aggregate claim amounts for the ith claim. The proposed methodology is as follows.

Step 1: Using the observed claim frequencies, obtain the ML estimates for the parameters λ
and ν of CMP distribution defined in equation (2).

Step 2: The log-likelihood function of S given in equation (21) is then maximized to obtain
the estimates of α and β after plugging in λ̂ and ν̂ obtained in Step 1.

5. Interval estimation
This section provides the interval estimation of θ. As observed in the previous section, the
ML estimators are not in closed form and hence the exact distributions of θ̂ cannot be easily
derived. Therefore, the confidence intervals (CI) of the estimators are computed using the
parametric bootstrap technique. Following are the steps to obtain the parametric bootstrap
CIs for θ̂.

Steps 1: Generate the random samples (ni, si), i = 1, 2, . . . , p from CMP and CCMPG distri-
butions respectively following the Steps (a)-(c) given in section 6.

Steps 2: Draw B bootstrap samples of size p with replacement from this original sample.

Steps 3: For each bootstrap sample, obtain the parameter estimates of θ̂ using the method-
ology proposed in section 4.3. Denote these values as θ̂[b], b = 1, 2, . . . , B.

Steps 4: Compute the 100(1 − α)% CI for θ as
(
θ̂[Bα/2], θ̂[B(1−α/2)]

)
where 0 < α < 1 and

θ̂[k] denote the kth percentile of θ̂.

The CIs are computed assuming that data on N is known.

6. Simulation study
In this section, the performance of the 2-step ML estimation procedure is illustrated through
simulation study. Random samples are generated from the CCMPG distribution as follows.

Step (a): Generate a random sample of size one from CMP distribution for fixed λ and ν,
call this value d.
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Step (b): Generate d random samples from the gamma distribution defined in equation (6)
fixing α and β.

Step (c): Sum the d gamma samples to obtain the sample observation from the CCMPG
distribution.

Repeating Steps (a)-(c) p times yields pairs of observations (ni, si), i = 1, 2, . . . , p. If the
random observation generated from CMP distribution is zero, then the corresponding sample
observation of the CCMPG distribution is taken as zero.
The simulation study is designed by considering different combinations of the parameter val-
ues. To accommodate the dispersion in N , three values for ν, namely, less than, equal to
and greater than one, corresponding to over-, under- and equi-dispersion are considered. The
values for α and β are fixed so that the mean of the gamma distribution is less than, equal to
and greater than one. The parameter choices considered for the simulation study are given
below.

ν < 1(Over-dispersion)

• Case 1: θ = (0.7, 0.5, 0.5, 1.0)

• Case 2: θ = (0.7, 0.5, 1.0, 0.5)

• Case 3: θ = (0.7, 0.5, 2.0, 2.0)

ν = 1(Equi-dispersion)

• Case 4: θ = (1.0, 1.0, 1.0, 0.5)

• Case 5: θ = (1.0, 1.0, 0.5, 1.0)

• Case 6: θ = (1.0, 1.0, 2.0, 2.0)

ν > 1(under- dispersion)

• Case 7: θ = (1.2, 1.8, 0.5, 1.0)

• Case 8: θ = (1.2, 1.8, 1.0, 0.5)

• Case 9: θ = (1.2, 1.8, 2.0, 2.0)

For each of the above cases, samples are generated using Steps (a)-(c) taking p = 25, 50, 100.
For generating sample from CMP distribution, rcmp() function in COMPoissonReg package in
R ((Kimberly, Thomas, and Andrew 2019)) is used. The ML estimates are obtained using the
proposed 2-step ML methodology given in section 4.3. The estimates of the parameters (λ, ν)
are obtained using glm.cmp() function in COMPoissonReg package. To obtain the estimates
of α and β, maxLik() function in R is used. The number of simulation runs are taken as
r = 1000. The average (AVG), mean absolute bias (MAB) and mean square error (MSE) of
the estimates obtained are computed as below.

AV G(θ̂) = 1
r

r∑
j=1

θ̂j ,

MAB(θ̂) = 1
r

r∑
j=1

|θ̂j − θ|

and
MSE(θ̂) = 1

r

r∑
j=1

(
θ̂j − θ

)2
.
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The 95% bootstrap CIs for the parameters are obtained using the percentile bootstrap method
given in Section 5 , taking the number of bootstrap replications to be B = 200. The AVG,
MAB, MSE, width of CIs and coverage probability (CP) values computed for each of the
cases 1 to 9 are presented in Tables 1 to 3. The CP values are expressed in percentages.

Table 1: The average of the ML estimates, their MABs, MSEs, width of CI and CP for over-
dispersion case

Case 1 Case 2 Case 3
p=25 p=50 p=100 p=25 p=50 p=100 p=25 p=50 p=100

λ̂

AVG 0.8345 0.7611 0.7313 0.8323 0.7589 0.7173 0.8162 0.7489 0.7271
MAB 0.2524 0.1644 0.1052 0.2463 0.1599 0.1058 0.2366 0.1547 0.1044
MSE 0.1317 0.0479 0.0193 0.1362 0.0473 0.0180 0.1177 0.0441 0.0185

Width 1.4640 0.8890 0.5430 1.5170 0.8900 0.7256 1.3580 0.7890 0.5200
CP 91.6 91.6 95.4 93.1 88.7 92.7 90.2 88.7 91.8

ν̂

AVG 0.7656 0.6170 0.5514 0.7748 0.6144 0.5395 0.7519 0.6145 0.5548
MAB 0.4734 0.2992 0.1981 0.4742 0.2988 0.2024 0.4491 0.3050 0.2111
MSE 0.4380 0.1579 0.0644 0.4528 0.1556 0.0654 0.3913 0.1607 0.0718

Width 2.3915 1.4690 1.0020 2.4910 1.4460 1.0320 2.3040 1.1418 0.9560
CP 87.4 87.9 88.2 86.6 87.4 89.1 84.7 87.4 91.1

α̂

AVG 0.6654 0.5836 0.5433 1.4173 1.1889 1.0789 2.0259 2.0008 2.0270
MAB 0.2602 0.1638 0.1102 0.6130 0.3377 0.2016 0.5774 0.4373 0.3571
MSE 0.1415 0.0568 0.0227 1.048 0.2438 0.0751 0.5021 0.2861 0.1872

Width 1.1594 0.8580 0.5730 3.8080 1.8660 0.9220 2.100 1.7430 1.4550
CP 78.0 84.3 94.6 80.3 81.4 84.2 88.1 81.4 93.4

β̂

AVG 1.2897 1.1663 1.0829 0.6573 0.5744 0.5311 2.0098 2.0014 2.0234
MAB 0.4648 0.3036 0.1995 0.2382 0.1359 0.0824 0.5366 0.4217 0.3391
MSE 1.4726 0.1900 0.0751 0.1518 0.0404 0.0123 0.0406 0.2527 0.1666

Width 1.8746 1.4590 1.0740 1.3760 0.8490 0.5363 1.7500 1.5390 1.3160
CP 74.5 83.8 91.3 80.5 79.1 82.6 82.1 79.1 92.4

It is observed from Table 1 that, for all the cases under over-dispersion (ν < 1), as the sample
size increases, the AVG values are closer to the parameter values and the respective MABs
and MSEs become smaller. Likewise, the widths of the CIs shrink and the corresponding CPs
become large. Similar pattern is observed in equi- and under-dispersion cases as well (see
Tables 2 and 3).

7. Real-life application
In this section, the proposed CCMPG distribution is used to model Transportation Security
Administration (TSA) claims data. TSA is a United States agency created to maintain the
security of the nation’s air transportation systems. TSA is responsible for recording the claims
of the individuals who have been injured or had items damaged, lost, or stolen. Information
on every claim from 2002 to 2017 can be found at https://www.dhs.gov/tsa-claims-data.
For the illustration, monthly data on the claims from January 2004 to December 2008 are
extracted as follows.

• The number of claims for each month from January 2004 to December 2008 is calculated
based on the claim date. This gives the data on claim frequency N .

• For each month, the individual claim amounts (in US dollars) are summed up to obtain
the aggregate claim amount, S.

https://www.dhs.gov/tsa-claims-data
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Table 2: The average of the ML estimates, their MABs, MSEs, width of CI and CP for equi-
dispersion case

Case 4 Case 5 Case 6
p=25 p=50 p=100 p=25 p=50 p=100 p=25 p=50 p=100

λ̂

AVG 1.1598 1.0707 1.0445 1.1818 1.0659 1.0818 1.1729 1.0708 1.0430
MAB 0.3578 0.2362 0.1690 0.3699 0.2295 0.1501 0.3716 0.2364 0.1662
MSE 0.3023 0.0978 0.0500 0.3629 0.0935 0.0379 0.3404 0.0974 0.0442

Width 2.6320 1.9834 0.6880 2.3150 1.3100 0.8150 2.2270 1.2980 0.8390
CP 92.8 90.6 81.9 95.5 92.8 93.3 91.1 92.4 91.6

ν̂

AVG 1.2008 1.1031 1.0596 1.2441 1.0871 1.0254 1.2473 1.0919 1.0581
MAB 0.4988 0.3412 0.2446 0.5239 0.3315 0.2312 0.5269 0.3417 0.2346
MSE 0.4674 0.1927 0.0974 0.5121 0.1875 0.0080 0.5214 0.1924 0.0938

Width 2.5970 1.7529 1.0470 2.5310 1.6730 1.1370 2.5170 1.7400 1.1320
CP 89.5 85.7 80.3 90.5 91.1 95.9 87.1 90.4 90.4

α̂

AVG 1.3839 1.1711 1.0769 0.6521 0.5777 0.5304 2.0336 2.0025 2.0360
MAB 0.5686 0.3223 0.2014 0.2446 0.1532 0.0938 0.5162 0.4409 0.3335
MSE 0.8497 0.2270 0.0755 0.1307 0.0491 0.0157 0.4060 0.2818 0.1668

Width 3.4830 1.1440 1.0610 1.1270 0.8890 0.5140 1.9980 1.7020 1.3510
CP 77.8 84.1 90.2 81.3 75.8 93.3 87.0 88.8 92.9

β̂

AVG 0.6408 0.5594 0.5281 1.2497 1.1422 1.0582 2.0108 1.9923 2.0300
MAB 0.2172 0.1185 0.0788 0.4166 0.2794 0.1730 0.4809 0.4071 0.3202
MSE 0.1262 0.0330 0.0107 0.3548 0.1685 0.0545 0.3323 0.2346 0.1502

Width 1.2440 0.9220 0.7370 1.8200 1.3310 0.8980 1.6940 1.4960 1.2330
CP 80.3 82.8 85.2 79.5 78.5 92.9 83.8 88.2 92.9

Table 3: The average of the ML estimates, their MABs, MSEs, width of CI and CP for
under-dispersion case

Case 7 Case 8 Case 9
p=25 p=50 p=100 p=25 p=50 p=100 p=25 p=50 p=100

λ̂

AVG 1.3250 1.2806 1.2499 1.3636 1.2879 1.2484 1.4143 1.2881 1.2459
MAB 0.4267 0.2897 0.2124 0.4512 0.3108 0.2004 0.4750 0.2974 0.2080
MSE 0.2553 0.1589 0.0765 0.4008 0.1872 0.0655 0.5135 0.1634 0.0717

Width 2.3720 1.7122 1.0580 3.2710 1.7110 1.0517 2.6320 1.4840 1.0440
CP 96.4 91.9 95.5 94.6 92.7 93.5 92.4 85.2 93.7

ν̂

AVG 2.0256 1.9180 1.8761 2.0510 1.9357 1.8815 2.1155 1.9541 1.8584
MAB 0.7200 0.4711 0.3482 0.7190 0.5050 0.3362 0.7446 0.4940 0.3241
MSE 0.5230 0.3804 0.1945 0.9220 0.4199 0.1834 0.9315 0.4001 0.1712

Width 3.1670 2.3910 1.6040 3.4440 2.4010 1.6000 2.5970 2.2190 1.6220
CP 93.9 89.5 94.0 91.7 91.6 93.6 89.5 80.2 92.8

α̂

AVG 0.5881 0.5651 0.5360 1.3791 1.1469 1.0768 2.0717 2.0826 2.0780
MAB 0.5538 0.1414 0.0968 0.5472 0.3055 0.2009 0.5407 0.4270 0.3257
MSE 0.0728 0.0422 0.0167 0.7718 0.1761 0.0738 0.4762 0.2935 0.1697

Width 1.1480 0.7570 0.4780 3.5700 1.7050 1.0600 3.4930 1.5760 1.3900
CP 78.7 88.3 89.5 79.8 84.7 88.7 77.8 74.6 92.7

β̂

AVG 1.3620 1.1176 1.0601 0.6156 0.5492 0.5218 2.0232 2.0534 2.0694
MAB 0.3711 0.2549 0.1632 0.1792 0.1071 0.0690 0.4771 0.3873 0.3031
MSE 0.3126 0.1308 0.0495 0.0783 0.0229 0.0080 0.3339 0.2228 0.1437

Width 1.8050 1.2790 0.8090 1.2200 0.6050 0.3570 1.2440 1.4980 1.2450
CP 77.0 86.9 89.0 80.5 84.2 91.1 80.3 85.3 91.3
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Only the claims which are settled and approved are considered. Thus the dataset consists
of p = 60 pairs of observations (ni, si), i = 1, 2, . . . , p. The summary statistics of the claim
frequency N and the aggregate claim amounts S are given in Table 4. The histogram of claim
frequency is displayed in Figure 2.

Table 4: Summary statistics of claim frequency and aggregate claim amounts
Min. 25th Percentile Median Mean 75th Percentile Max. Variance

N 74.0 233.2 265.5 262.8 297.8 377.0 2783.3
S 19548 54210 63419 63647 71578 92709 237149179
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Figure 2: Histogram of claim frequency

It is seen from Table 4 that the variance of N is larger than its mean, indicating that the
claim frequencies are over-dispersed. The claim frequencies are modelled with various discrete
distributions and the values of the measures of goodness-of-fit, namely log-likelihood, AIC
and BIC are presented in Table 5. These measures are computed using the in-built functions
glm.cmp() under COMPoissonReg package and fitdistr() under MASS package available in
R. From the table, it is observed that the CMP distribution provides a better fit to model
the claim frequency data.

Table 5: Goodness-of-fit of claim frequency distribution

CMP Negative
Binomial Geometric Poisson

Log-likelihood -324.8724 -327.9277 -394.3938 -562.6913
AIC 653.7448 659.8553 790.7876 1127.3830
BIC 657.9335 664.0440 792.8820 1129.4770

The proposed 2-step methodology described in section 4.3 is applied to obtain the ML esti-
mates of the parameter θ of aggregate claim distribution. The estimates and their correspond-
ing standard errors (in parenthesis) are found to be λ̂=1.6221 (0.1470), ν̂=0.0871 (0.0163),
α̂= 0.00097 (0.0019) and β̂=0.2348 (0.4765). Figure 3 shows the fitted density curve of S
plotted over its observed histogram. The plot of the cumulative distribution function (cdf) of
S based on the estimates and its empirical cumulative distribution function (ecdf) is shown
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in Figure 4. It is observed from Figures 3 and 4 that the CCMPG distribution models the
TSA claims data reasonably well.
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Figure 3: Fitted probability density function and histogram of S
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Figure 4: Plot of cdf and ecdf of S

7.1. Computation of risk measures

Estimation of potential risk that could occur in a portfolio of claims is of interest to any
insurance company. To determine the expected risk, percentile-based risk measures such as
the value at risk (VaR) and expected shortfall (ES) are often used. VaR is defined as the
maximum amount expected to be lost (or at risk) by the insurance company in a future time
period with a given confidence level, say α. It is calculated as the (100×α)th percentile of
the aggregate claim distribution S satisfying the relation P (S ≤ VaR) = α, α ∈ (0, 1). The
expected shortfall is the average of all the aggregate claim amounts above VaR and is given
by E[S|S ≥ VaR].
Since the quantile function of the CCMPG distribution is not tractable, the percentiles of S
are calculated by generating 100000 samples of the aggregate claim amounts by using Steps
(a)-(c) of Section 6 fixing the ML estimates obtained in the previous section as the parameter
values. The estimated mean and variance of S obtained through the generated samples are
63723.28 and 240656272 respectively, which are closer to the mean and variance values of the
observed data reported in Table 4. Using the percentiles of S, the estimated 95% monthly
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VaR and ES are found to be 90470.89 and 98167.78 US dollars, respectively. This means that
the probability of losing not more than 90470.89 US dollars in aggregate claim amount by the
TSA agency in the future month is 0.95 and the expected shortfall to meet an aggregate claim
requirement of larger than 90470.89 US dollars in the future month is 98167.78 US dollars.
To validate these estimated measures, the VaR and ES are computed from the TSA claims
dataset based on 60 observations and are found to be 89474.79 and 91128.58 respectively.
The results indicate that the percentiles obtained based on ML estimates are closer to that
of the observed data, demonstrating that the proposed 2-step ML methodology works well.

8. Concluding remarks
Modelling and analysis of the aggregate claim amount distribution has always been an impor-
tant aspect in actuarial studies. Over the years, researchers have developed several aggregate
claim models using Poisson distribution and its variants as the claim frequency distribution.
In the present work, the CMP distribution, which is capable of modelling over- and under-
dispersed claim frequencies is used as the claim frequency distribution. Correspondingly,
the compound CMP Gamma distribution to model the aggregate claim amounts is devel-
oped taking the individual claim amount distribution to be gamma. A 2-step ML estimation
methodology is proposed to estimate the parameters of the CCMPG distribution. The merit
of the proposed methodology is that the estimates are obtained in a 2-step process rather than
simultaneously estimating all the four parameters. An application of the proposed methodol-
ogy to simulated data, carried out with various choices of the parameter values, reveals that
the resulting estimates have smaller bias, smaller MSEs and high coverage probabilities in the
case of over- as well as under-dispersed claim frequency data. The results show that the ML
estimators perform well for all sample sizes. Application of the CCMPG distribution to model
the travel insurance claims data resulted in a good fit. Also, the proposed estimation method-
ology can be used to obtain reliable estimates of two important risk measures, namely value
at risk (VaR) and expected shortfall (ES), as highlighted in the real-life application. Reliable
estimates of these risk measures capacitate the insurance agency to quantify and control the
level of risk exposure arising from uncertainties through proper planning and administration.
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