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Abstract

When comparing two or more multidimensional scaling (MDS) configurations, one
usually first eliminates meaningless differences by Procrustean transformations. Such fit-
tings lead to a number of unresolved issues such as the typical shrinkage of the fitted
configuration relative to the target or how to interpret major similarity measures under
various conditions of noise in the data. We here prove that the shrinkage ratio is equiva-
lent to the correlation of the coordinates of the target and the fitted configuration. Thus,
in real-life applications, the fitted configuration is always smaller than the target configu-
ration. Both coefficients approach 0 as the noise level goes up. The congruence coefficient
of the configurations’ distances, in contrast, remains at a high level even in case of pure
noise, falsely suggesting that the configurations are somewhat similar. This is important
information for the user of Procrustean analyses.

Keywords: Procrustes, MDS, configurational similarity.

1. Introduction

A frequent issue when using multidimensional scaling (MDS) is comparing two or more MDS
solutions. Typical examples are studying to what extent an MDS result can be replicated with
new data or whether MDS structures are similar in cross-cultural research. Consider a case.
Borg and Braun (1996) were interested in work values of East and West German employees
shortly after Germany re-united in 1990. They ran a survey, asking the respondents to rate
13 components of their work life (such as “high income” or “good chances for advancement”)
on a scale from “not important” to “very important” to them personally. Scaling the inter-
correlations of the items for two samples leads to 2-dimensional MDS solutions for each data
set (Figure 1)1. Obviously, the MDS plots generated by the MDS procedure are hard to
compare, even though the configurations have only 13 points each. What must be ignored in
such comparisons are meaningless differences of the MDS plots, such as their orientation or
size. It is like comparing two maps of different size, and one is upside down, for example.

When comparing MDS plots, one can eliminate meaningless differences optimally by Pro-
crustean transformations (Borg and Groenen 2005; Borg et al. 2018; Cox and Cox 1994;

1The configurations were generated using the R-package smacof (De Leeuw and Mair 2009; Mair, Groenen,
and De Leeuw 2021), under choice of ordinal MDS with a random starting configuration. The Stress values
are 0.172 (West) and 0.112 (East), indicating a highly significant model fit in both cases. For further details,
see Borg, Groenen, and Mair (2018).
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Figure 1: MDS configurations of persons’ work values in West (left panel) and East Germany
(right panel).
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Figure 2: MDS configurations of Figure 1, with the East German configuration fitted
Procrustean-wise to the West German configuration; corresponding points connected by line
segments.
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Gower and Dijksterhuis 2004): If configuration X is taken as the target, the other config-
uration, Y, is rotated, reflected, translated, and adjusted in its size to optimally match X.
Such similarity transformations do not change the ratios of the distances among the points of
the MDS configurations, but bring the configurations to an optimal match. Figure 3 shows
that the West and the East German configurations are actually quite similar – after removing
meaningless differences.

Formally, given the coordinate matrices X and Y, both2 of order n ×m, one wants to find
the global scaling factor s, the rotation/reflection matrix T, and the translation vector t such
that the following loss function is minimized:

L(s, t,T) = tr [X− (sYT + etT )]T [X− (sYT + etT )], (1)

where e is a vector of ones. The solution Ŷ = sYT + etT is found quickly and robustly as
follows (Borg and Groenen 2005; Schönemann and Carroll 1970; Sibson 1978):

1. Compute C = XTJY, where J is the centering matrix I − n−1eeT and I the identity
matrix.

2. Compute the singular value decomposition C = UΣVT .

3. The optimal rotation matrix is T = VUT .

4. The optimal dilation factor is s = trace(XTJYT)/trace(YTJY).

5. The optimal translation vector is t = n−1(X− sYT)Te.

2. Configurational similarity and shrinkage

Procrustean fittings are used often in practical applications. They are easily realized with
most statistical packages. They are also offered as R functions, for example in the psych

package (Revelle 2021) or in smacof (De Leeuw and Mair 2009; Mair et al. 2021). smacof

also computes the congruence coefficient (Tucker 1951) as an overall measure of the extent to
which the configurations X and Y correspond to each other,

c(X,Y) =

∑
i<j dij(X)dij(Y)

[
∑

i<j d
2
ij(X)]1/2[

∑
i<j d

2
ij(Y)]1/2

, (2)

with dij(X) the Euclidean distance between points i and j in configuration X. Since distances
are always non-negative, c is always positive, with a maximum of 1. Thus, the minimum value
of c is not 0, as occasionally stated (see, e.g., Borg and Groenen (2005, p. 400)).

Because it always holds that c > 0, the user may interpret this coefficient as a sign that X and
Y are at least somewhat similar. Technically, perfect similarity means that the configurations
are congruent, except for a possible difference in size. There is, however, no definition of
minimal similarity or of zero similarity. Statistically, one may consider minimal similarity as
the expected distance of corresponding points of X and Ŷ, given that both X and Ŷ are fully
random.

A similarity measure that is compatible with this notion of similarity is the Pearson correlation
r of the corresponding coordinates xia of X and ŷia of the Procrustean-fitted Ŷ. If both X
and Y are centered, the optimal translation vector t is the null vector (Cox and Cox 1994, p.
94) so that Ŷ simplifies to sYT and the correlation r can be written as

r(X, sYT) =
tr (XTYT)√

tr (XXT ) · tr (YTTTYT )
, (3)

2Procrustean fittings can also be used for configurations that differ in the number of points and in their
dimensionalities. If the number of points differ, one can compute the transformation operators based on
corresponding sub-sets or centroids of points that represent similar content classes. In case of different dimen-
sionalities, one can simply add column vectors with only zeroes to X or to Y.
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where tr (A) =
∑n

i=1 aii, the trace function of an n×n matrix A. Because T is orthonormal,
tr (YTTTYT ) = tr (YYT ) and, thus,

r(X, sYT) =
tr (XTYT)√

tr (XXT ) · tr (YYT )
. (4)

Without loss of generality, one can also norm X to unit length. This yields

r(X, Ŷ) =
tr (XTYT)√
tr (YYT )

. (5)

Practitioners are sometimes concerned by the observation that Procrustean-fitted configura-
tions seem to be “too small”, in particular when the number of points is large. In other words,
the global scaling factor s appears to be incorrect so that the user of Procrustean fittings gets
the impression that Ŷ should be dilated to make it as congruent to X as possible.

To check the validity of this impression, assume again that both X and Y are centered, and
that X is also stretched to unit length (i.e., the Frobenius norm of X becomes norm(X) =√
tr (XXT ) =

√
tr (XTX) = 1). The shrinkage of Ŷ relative to X can be measured by the

shrinkage ratio

sr(Ŷ) =
norm(sYT)

norm(X)
= norm(sYT) =

√
tr (sYTTTYT s) (6)

= s ·
√
tr (YYT ) (7)

Replacing s with the optimal dilation factor from above, and using the assumption that X
and Y are column-wise centered so that XT = XTJ and YT = YTJ,

sr(Ŷ) =
tr (XTYT)

tr (YTY)
·
√
tr (YYT ) (8)

=
tr (XTYT)√
tr (YTY)

. (9)

Because tr (YTY) = tr (YYT ), we thus find that sr(Ŷ) = r(X, Ŷ). Hence, the shrinkage
ratio itself indicates the similarity of X and Y, and the practitioners’ impression that the
fitted Y is “small” – but, of course, not “too small” – is correct in all but trivial applications.
In the following, we will show how and why shrinkage occurs, and how it can be interpreted
in practice.

3. Configurational similarity under noisy conditions

To check shrinkage in Procrustean fittings of noisy data structures, we run a set of simulation
studies. First, we define a fixed X by randomly picking n = 100 points within a unit disk. We
then define Y as (1−g) ·X+g ·E, with 0 ≤ g ≤ 1. The coordinates of the noise matrix E are
also picked randomly from the unit disk. The weight g is taken from 0, 0.1, ..., 1 so that we
have eleven Y’s ranging from Y being equal to X to the case where Y is completely random
and independent of X.

For each combination of X and Y, we find the optimal Procrustean match of the config-
urations. The configurations X and Ŷ are then displayed in one overlay plot, connecting
corresponding points (i.e., the points representing the same rows of X and Ŷ). These plots
should show how and why Ŷ shrinks relative to its target X. We also compute the fit measures
c and r, and the shrinkage factor sr, and study how they are related.

We then repeat these analyses with n = 15, 000 points. Overlay plots for that many points are
uninterpretable, of course, because they are densely filled with points. However, the relation
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of the fit measures can be assumed to be stable and not dependent on the particular random
sampling on which X and the noise matrix E are based.

Figure 3 shows the result of the simulation study with n = 100 points. The top left panel
exhibits an overlay plot of the target configuration X and of a fitted Y configuration that
contains little noise. Obviously, the target configuration (with points shown as black cir-
cles) and the fitted Y configuration (with points shown as red triangles) are highly similar.
The corresponding points are close to each other: The various line segments visualize their
distances.

When adding more noise to Y, increasing the noise level to g = 0.5, the top right panel of
Figure 3 shows considerably larger distances between corresponding points. Moreover, the
red triangles that represent Ŷ move more towards the center of the plot. When choosing Y
completely at random and independent of X, one notices in the left bottom plot of Figure 3
that the fitted Y-configuration shrinks strongly towards the center of the plot.

Because sr and r are algebraically equal, the right bottom plot of Figure 1 represents both r
and sr on the Y -axis and c on the X-axis. One notes that r (and sr) and c are all equal to 1
in case of no noise or g = 0, that is if X = Ŷ. At the other end of the range of noise levels
(g = 1), r (and sr) approach a value of 0 (r = sr = 0.084) while c = 0.813.

Figure 4 displays the relation of r, c, and sr for n = 15, 000 points. One can see that the
function curve is similar to the one in Figure 3 (right bottom panel) but due to the large
number of points it is very smooth. For high noise levels, both r and sr are very close to zero
(= 0.011), while c = 0.818 remains at a high level far above zero. One also notes that with a
linearly increasing level of noise, the misfit of X and Ŷ accelerates.
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Figure 3: Three cases of fitting a noisy Y to X; n = 100 points; noise level g = 0.1, g = 0.5,
and g = 1; bottom right panel: plot of fit measures r and sr, resp., vs. c.)
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Figure 4: Fitting noisy Y’s to X; n = 15, 000 points; noise level g = 0.0, 0.1, ..., 1; fit measures
r and sr, resp., vs. c.)

4. Discussion

Our analyses have shown that the occasional observation that a configuration Y, after it is
fitted by Procrustean transformations to another configuration X, tends to be “too small”,
is actually correct. The fitted Y is always smaller than X in real-life applications, and this
simply expresses that the two configurations are not perfectly similar. Indeed, the larger the
fitted Y, Ŷ, the more similar is Y to its target X. For high noise levels and many points,
the Ŷ tends to shrink to the centroid of X, i.e. to the point that is closest to all points of X.

The reason for the shrinkage of Y when fitting it Procrustean-wise to X is that a central
dilation s of Y is a transformation that radially shifts all points in space relative to the
origin. This transformation cannot eliminate random displacements of the points that shift
the points independently of each other in any direction of space and, in particular, also across
the centroid of X in opposite directions. With much noise, shrinking Ŷ towards the mean
(in case of 1d) or towards a central cluster (in higher-dimensional spaces) is, thus, the best
solution to optimally compensate for such displacements.

The shrinkage of Ŷ relative to X yields a proper measurement of the similarity of X and Y.
We have shown that the shrinkage ratio sr is numerically equivalent to the Pearson correlation
r(X, Ŷ), a coefficient often used in practice to measure the similarity of two configurations.

Another finding of practical relevance is that the congruence coefficient c – also often used
in applications – is difficult to interpret if the noise level is high. Indeed, c becomes almost
useless in case of a large noise proportion, because, as Figure 4 shows, its values become very
similar for all noise levels above 0.6. This problem is reduced if one converts c to the alienation
coefficient K(X, Ŷ) =

√
1− c2 (Mair et al. 2021). However, K does not fully linearize the
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function in Figure 4 and it also leads to other problems. In particular, it has an upper bound
that suggests that the alienation between X and Ŷ is substantial but not maximal. That
this is the wrong interpretation is easy to see. For the noise level g = 1, Figure 4 shows a
congruence value of c = 0.813. This corresponds to K = 0.582 and not to K = 1 as one
might expect when considering the notion of “alienation”. Hence, K may lead the user to
overestimate the configurational similarity of X and Ŷ. To avoid such misinterpretations we
therefore recommend to always compare such coefficients to the similarity measures resulting
from fitting a large number of random configurations to each other. Simulations are easily
computed using smacof’s Procrustean fitting function.

If the user prefers the more familiar linear correlation of corresponding coordinates as a
measure of configurational similarity, benchmarking is also recommended, because, in case of
few points in X and Y, Procrustean transformations will always lead to r values that suggest
“some” similarity. For example, with n = 13 points as in the study by Borg and Braun (1996)
discussed in the Introduction, purely random configurations X and Y with 13 points each
can be expected to lead to an average similarity of r = 0.366 (sd = 0.110). In typical MDS
applications, the number of points is rarely larger than 50 at most, and for 50 points, the
expected Procrustean similarity is not r = 0 but r = .190 (sd = .064), as simulation studies
show.

Finally, as a technical remark, we note here that picking X and E in the above simulations not
from a unit disk but from a rectangular random distribution for each dimension (i.e., a unit
square) does not change the results. This replicates similar findings by Langeheine (1982).
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