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Abstract

This research proposes a new approach based on the bias-corrected bootstrap harmonic
mean and random imputation technique to obtain the adjusted residuals (Hboot) when
a survival model is fit to right- and interval-censored data with covariates. Following
that, the model adequacy and influence diagnostics based on these adjusted residuals,
case deletion diagnostics, and the normal curvature are discussed. Simulation studies
were conducted to assess the performance of the parameter estimate and compare the
performances of the traditional Cox-Snell (CS), modified Cox-Snell (MCS) and Hboot
at various censoring proportions (cp) and samples sizes (n) using the log-logistic and
extreme minimum value regression models with right- and interval-censored data. The
results clearly indicated that Hboot outperformed other residuals at all levels of cp and n,
for both models. The proposed methods are then illustrated using real data set from the
COM breast cancer data. The results indicate that the proposed methods work well to
address model adequacy and identify potentially influential observations in the data set.

Keywords: bootstrap, residual, influence, interval-censored, harmonic.

1. Introduction

The problem of mixed case interval-censored data is very common in medical research where
inspections on patients are conducted at different time intervals. So, lifetime of the ith subject
is only known to fall within an interval, Li < ti < Ri, where Li and Ri are known as left
and right endpoints. The subject is right-censored when Li < ti < ∞ or, the subject has
been event-free at the last known time Li. So right-censored data is a special case of interval-
censored data, see Sun (2006) and Kalbfleisch and Prentice (2011).

One of the most widely used residual in survival analysis is known as the Cox-Snell residual
which is given by rCi = Ĥ(ti) = − log(Ŝ(ti)) for the ith subject, i = 1, 2, · · · , n, where
Ĥ(ti) and Ŝ(ti) are the estimated cumulative hazard and survivor functions respectively. The
usefulness of this residual arises from the fact that the distribution of − log(S(t)) follows the
exponential distribution with unit mean, exp(1), see Collett (2015). Thus, whenever a model
is fit to any survival data, if − log(Ŝ(ti)) follows the unit exponential distribution closely, we
can be assured that an apt model has been fit to the data.

Researchers have suggested adjustments to the Cox-Snell residuals to make up for the excess,
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ζ, in the residuals when data is right-censored. Two traditional modifications of rCi take ζ as
the mean and median of the unit exponential distribution, which is 1 and 0.693, respectively,
see Crowley and Hu (1977). Recent works by Naslina, Jayanthi, Syahida, and Bakri (2020)
and Lai and Arasan (2020) have shown that the modified residuals that are based on the
empirical geometric and harmonic mean outperform traditionally used residuals. When data
is interval-censored, the Cox-Snell residuals are themselves intervals censored and Farrington
(2000) suggests replacing the interval residuals with expected values under exp(1).

The bootstrap method as discussed by Efron and Tibshirani (1994) is a direct application
of the plug-in principle which is a way of understanding the population, based on estimates
from random samples drawn from the population. Alternative bootstrap-based estimates and
techniques have been showing promising results when dealing with moderately censored data
as discussed by Arasan and Lunn (2009, 2008), Manoharan, Arasan, Midi, and Adam (2017),
and Meeker, Escobar, and Pascual (2014). The theoretical aspect of the single bootstrap
was studied by Singh (1981) and, Abramovitch and Singh (1985). More recent works are
by Zhuang, Xu, and Pang (2021) who proposed an improved two-stage method combined
with fractional-random-weight bootstrap to analyze interval failure data, and Grzegorzewski,
Hryniewicz, and Romaniuk (2020) who proposed a new methodology for simulating bootstrap
samples of fuzzy numbers.

Some earlier works on influence diagnostics for survival models are by authors such as Pettitt
and Daud (1989), Escobar and Meeker Jr (1992), Weissfeld and Schneider (1990), Lesaf-
fre and Verbeke (1998) and Ortega, Cancho, and Bolfarine (2006). There are not many
research works that discuss influence diagnostics for survival models with interval-censored
data. Recently, Manoharan, Arasan, Midi, and Adam (2020) assessed the performance of the
local influential diagnostics of the extended log-normal distribution with left-truncation and
interval-censored data.

This research proposes two new adjustments to the traditionally used residuals in survival
analysis when the lifetimes are right and interval censored. The first adjustment estimates the
lifetime for each interval censored observation using the mean of R = 1000 randomly imputed
lifetimes based on the estimated left and right survivor functions. The second adjustment uses
the bias-corrected bootstrap harmonic mean to address the excess in the Cox-Snell residual
when data is right censored because bootstrap estimates are obtained directly from the data
and may perform better than estimates that are based on theoretical assumptions. The
harmonic mean is employed instead to the arithmetic mean because it is known to better
handle extreme values and outliers.

2. Model adequacy and influence diagnostics

2.1. Model with right and interval-censored data

Let S(t,β|x) denote the survival distribution of a non-negative continuous random variable,
T with parameters β given the covariates x. Suppose we have both interval-censored and
right-censored lifetimes for i = 1, 2, . . . , n observations. Let Li and Ri be the left and right
endpoints for the ith subject. The following indicator variable is used to identify whether the
ith observation is interval or right-censored.

δi =

{
1 for ti interval-censored,

0 for ti right-censored.
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The log-likelihood function of the full sample with interval and right-censored data is,

L(β, σ) =
n∏
i=1

[S(Li)− S(Ri)]
δi [S(Li)]

(1−δi) .

(1)

2.2. Adjusted Cox-Snell residual for interval and right-censored data

In this section, we discuss methods that can be used to check the model adequacy and detect
influential observation and outliers when a survival model is fitted to right and interval-
censored data. We propose methods that incorporate the use of bias-corrected bootstrap
estimates and a random imputation technique to assess the model adequacy and carry out
influence diagnostics. The residuals proposed by Farrington (2000) for interval-censored data
are themselves interval-censored and he tried to overcome this problem by replacing the in-
terval residuals with expected values under exp(1). Thus, it may not be that feasible when
we are dealing with more complex survival models. Many researchers employ the midpoint
imputation technique to deal with the problem of interval-censored data, see Lui, Darrow,
and Rutherford III (1988); Mariotto, Mariotti, Pezzotti, Rezza, and Verdecchia (1992). Mid-
point imputation is not that efficient because it only uses two endpoints to approximate the
actual failure time, which is highly unreliable when the interval length is wide, see Law and
Brookmeyer (1992).

To better deal with the problem of interval-censored data, we propose generating R = 1000
random variates from U(Ŝ(Ri), Ŝ(Li)) for the ith observation where Ŝ(.) represents the esti-
mated survivor function of the proposed model for the data. Following that we transform each
of these survival probabilities to obtain the 1000 replication of each estimated lifetimes, t ri ,

where r = 1, 2, · · · , R. Then, the estimated lifetime for the ith observation is t∗i =

(
R∑
r=1

t r
i
R

)
,

and the adjusted Cox-Snell residual when data is interval-censored is,

rICi
= Ĥ(t∗i ) = − log(Ŝ(t∗i )).

Existing adjustments to the Cox-Snell residuals for right-censored data may not work well
when mixed censoring schemes are present in the data, leading to positively skewed data due to
extreme values or outliers. In this research, we propose adjusting the Cox-Snell residuals using
the bias-corrected bootstrap harmonic mean. Residuals based on these bootstrap estimates
relieve us from making assumptions and having to depend solely on the traditional methods
derived from statistical theory. They are obtained directly from the data and may perform
better than estimates that are based on theoretical assumptions.

The harmonic mean, described by the reciprocals of the data is known to better handle
extreme values and outliers because it is much lesser affected by them. Thus, when data
is moderately or heavily censored, we do expect the harmonic mean to better represent the
average of the excess residuals compared to other traditional estimates as discussed by Naslina
et al. (2020) and Lai and Arasan (2020). The bootstrap estimate of bias requires the sampling
of a large number, B, of bootstrap samples with replacement from the original Cox-Snell
residuals, with each observation having an equal probability of being chosen. Then, h∗(b),
b = 1, 2, · · · , B are the sample harmonic means calculated from each of these bootstrap
samples of size n. The estimated bootstrap bias for the harmonic mean is given by, h∗(.) − h,
where h is the harmonic mean calculated from the original Cox-Snell residuals. Following
that, the bias-corrected bootstrap harmonic mean can be obtained as follows:

hbc = 2h− h∗(.), (2)



Austrian Journal of Statistics 69

where,

h∗(.) =

b∑
b=1

h∗(b)

B
.

The adjusted Cox-Snell residuals when data is right-censored is,

rRCi
= rCi + hbc, for the ith subject,

where rCi = − log(Ŝ(ti)) are the Cox-Snell residuals obtained using the imputed lifetimes.

Following that, the adjusted Cox-Snell residuals when data is right and interval-censored is,

r∗ci =

{
rRCi

when data is right-censored and,

rICi
when data is interval-censored.

All discussions regarding the residuals should also hold for the adjusted residuals. Thus, the
plot of log[− log(Ŝ(r∗Ci

))] against log(r∗Ci
) can be constructed to check if an adequate model

has been fit to the data, where Ŝ(r∗Ci
) is the estimated Kaplan-Meier (KM) survivor function

based on the values of r∗Ci
. In this case, the plot should reveal a straight line with a unit slope

and 0 intercept. Outliers can also be revealed by this plot as it would stand out from the rest
of the observations due to a very high residual value.

2.3. Adjusted martingale residuals

The well-known martingale residual was another adjustment to the Cox-Snell residual in-
tended to relocate the mean of the Cox-Snell residual from unity to 0 when the observations
are uncensored. It was first discussed by Lagakos (1981) and then by Barlow and Prentice
(1988) and Therneau, Grambsch, and Fleming (1990). The adjusted Cox-Snell residuals can
be used to obtain the adjusted martingale residuals as given by the following,

r∗Mi
= δi − r∗Ci

.

The plot of r∗Mi
versus observation number can show observations that are not well fitted

by the model, also known as outliers. Plots versus the covariates can also be very useful in
checking poorly fit subjects. However, because the martingale residuals tend to be asymmetric
the deviance residuals will in general be more powerful in detecting outlying subjects.

2.4. Adjusted deviance residuals

The deviance residual was introduced by Therneau et al. (1990) to adjust the martingale
residuals so that they are more symmetrically distributed around 0, and thus easier to inter-
pret. The modified deviance residuals can thus be obtained using the adjusted martingale
residuals as given by the following,

r∗Di
= Sgn(r∗Mi

)[−2(r∗Mi
+ δi ln(δi − r∗Mi

))]1/2,

where Sgn() is the sign function that takes the value of +1 and −1 for positive and negative
arguments respectively. The plot of r∗Di versus observation number is very effective at indi-

cating outliers. Plot versus the covariates can also be constructed to check for any obvious
pattern, and possible extreme observations and outliers.
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2.5. Adjusted score residuals

The score or Schoenfeld residual was proposed by Schoenfeld (1982), and are derived from
are the components of the first derivatives of the log-likelihood function with respect to its
parameters. Thus, they take different sets of values for each parameter in the model. The
adjusted score residuals (r∗Si) when data is interval censored can be computed using the
imputed lifetimes discussed in Section 2.2. The plot of r∗Si versus observation number should
be randomly distributed around zero for a good fit. Index plots of the score residuals for each
covariate in the fitted model would be useful at indicating extreme observations and outliers.

2.6. Influential diagnostic

Influential observations are observations that have a significant amount of influence on the
estimated parameters, model fit, and covariates as discussed by Hosmer, Lemeshow, and May
(2008). The local influential diagnostics introduced by Cook (1986), identifies influential ob-
servations by introducing small perturbations to the data using weights without the need to
completely remove potentially influential observations from a data set. In this section, we pro-
pose conducting the influence diagnostics using the imputed lifetime discussed in Section 2.2
when data is interval-censored.

Overall influence

The easiest method to assess the influence of observations on the estimated parameters is by
using case-deletion diagnostics. This is carried out by computing the difference in the MLEs,
∆iθ̂ = θ̂− θ̂(i), where θ̂ and θ̂(i) are the MLEs calculated using full sample and sample with

the ith term deleted, respectively. The ∆iθ̂ values are usually referred to as delta-beta or
DFBETA.

Standardized delta-beta values are referred to as DFBETAS and the index plot of either
DFBETA or DFBETAS for each parameter in the model can then be used to detect influential
observations. Pettitt and Daud (1989) cautioned that using single-case deletion statistics may
cause a masking effect, where the removed observation may mask the effect of a real outlier.
They suggested studying the change caused by the perturbation to the likelihood displacement
statistics.

Local influence statistics

The measures of curvature as discussed by Cook (1986) and Pettitt and Daud (1989) can be
used to assess influence by examining the effect of perturbations to the data or covariates,
using appropriate weights, ω = (ω1, ω2, · · · , ωn) which is the n × 1 vector of perturbations
restricted to some open subset Ω ⊂ Rn. Here, 0 < ωi < 1 and ω0 = (1, 1, ..., 1)T is the vector
of no perturbation and L(θ|ω0) = L(θ).

The normal curvature at direction d is defined by,

cd = 2
∣∣dT∆T (I)−1∆d

∣∣ ,
where ‖d‖ = 1, I is observed information matrix evaluated at θ̂, ∆ is the (p+1)×n matrix with

elements ∆ki = ∂2l(θ|ω)
∂θi∂ωk

evaluated at θ = θ̂, ω = ω0, k = 1, 2, · · · , p + 1 and i = 1, 2, · · · , n.
l(θ|ω) is the perturbed likelihood and p+ 1 denotes the number of parameters in the model.
Following that large elements of the eigenvector dmax associated with the maximum curvature
Cmax would indicate potentially influential observations. Following if θ̂ and θ̂(ω) are the MLEs
under L(θ) and L(θ|ω), the likelihood displacement statistic to assess the influence of ω, is
given by the following,

LD(ω) = 2[logL(θ̂)− logL(θ̂(ω))].
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The local influence tries characterizing the behaviour of LD(ω) around ω0. So the index
plot of dmax would help us identify observations that have significant amount of influence
on LD(ω). The likelihood displacement statistics for a perturbation on the ith case, where
ω = (0, 0, · · · , 1, · · · , 0)T and 1 is in the ith position can be approximated by 1

2 F̈ii where F̈ii is

the diagonal element of ∆T (I)−1∆, see Escobar and Meeker Jr (1992). The index plot of 1
2 F̈ii

can be used as a warning of a significant overall influence on θ if the values exceed 1
2χ

2
(0.5;p+1).

3. Simulation study

Two simulation studies were conducted via the R programming language using 1000 replica-
tions, at sample sizes (n) of 50 and 120, and approximate right censoring proportions (cp) of
0.30, 0.40, 0.50, 0.55 and 0.65. Two survival models were assessed, the log-logistic and extreme
minimum value regression models with a covariate. The first simulation study was conducted
to assess the performance of the estimates based on the values of bias and mean square error
(MSE).

If z = y−β′x
σ , where y = log t, the survivor functions of the log-logistic regression (LLR) and

extreme minimum value regression (EMVR) distributions are,

S(y,β,x) =
1

1 + ez
, −∞ < y <∞,

S(y,β,x) = e− exp(z), −∞ < y <∞,

respectively, x′ = (x0, x1, · · · , xp−1) is the vector of covariate values, where x0 = 1 and
β′ = (β0, β1, · · · , βp−1) are unknown parameters, −∞ < β <∞ and σ > 0.

The values for parameters β0, β1, and σ were chosen as 2, -0.8, and 0.5 for the LLR model and
2.58, -0.0136, and 1 for the EMVR model. These parameter values were chosen specifically
to mimic survival data that are measured in months. The covariate values were simulated
from the standard normal distribution. The survival times were obtained using the inverse
transformation method. The censoring time for the ith observation, ci ∼ exp(µ), where the
value of µ would be adjusted to obtain the desired approximate right censoring proportion
in our data. In order to generate interval censored data, we use a sequence κ = 24 check-up
times, τ1, τ2, · · · , τκ at two month intervals each, assuming all subjects attend these check-ups.
Following that, we check to see if the uncensored lifetimes, ti falls in any of these intervals.
If ti falls in the interval (τm, τm+1) where m ≤ κ, then the corresponding Li and Ri the ith

observation will be τm and τm+1, respectively. Otherwise, if ti > τκ, ti will be right censored
at τκ.

Let yLi = logLi and yRi = logRi be the log left and log right endpoints for the ith subject,

where subject is right-censored at Li if Li < ti < ∞. It follows that if zLi=
yLi
−β′xi

σ and

zRi=
yLi
−β′xi

σ , the log-likelihood function of the full sample with right- and interval-censored
data for the LLR and EMVR distributions are as follows.

L(β, σ) =
n∑
i=1

δi

{
log

[
1

1 + ezLi
− 1

1 + ezRi

]}
+ (1− δi)

{
log

[
1

1 + ezLi

]}
,

L(β, σ) =
n∑
i=1

δi

{
log
[
e− exp(zLi

) − e− exp(zRi )
]}
− (1− δi)

{
exp(zLi)

}
.
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The parameter estimats can be obtained by solving the likelihood equations using any iterative
procedure for solving non linear equations. In this research the maximum likelihood estimators
of all the parameters were computed using the Newton Raphson iterative method.

The second simulation study focuses on the performance of the modified Cox-Snell residuals as
the values of the martingale and deviance residual depends on these modified Cox-Snell resid-
uals. The bootstrap simulation was carried using B = 800 for each replication. The purpose
of this simulation study is to compare the performances of the modified Cox-Snell residu-
als based on the bias-corrected bootstrap harmonic mean and random imputation (Hboot)
to the traditional Cox-Snell residual (CS) and modified Cox-Snell residual (MCS) proposed
by Crowley and Hu (1977) using mid-point imputation.

To evaluate the performance of the different modifications of the Cox-Snell residuals, we
need to obtain the estimated Kaplan-Meier survivor function based on the values of these
modified residuals. Let Ŝ(r∗Ci

) denote the estimated Kaplan-Meier survivor function based

on the adjusted Cox-Snell residuals or Hboot. The plot of log[− log(Ŝ(r∗Ci
))] against log(r∗Ci

)
should be a straight line with unit slope and 0 intercept, if the residuals are performing well
at indicating a good model fit. Thus, by implementing the same steps for the other residuals,
their performances can be compared based on the mean absolute deviation (MAD) of the
values of the intercept, slope, and coefficient of correlation, R from the desired value of 0, 1
and, 1 respectively.

Simulation results and conclusion

The results of the first simulation study are given in Tables 1-4. The tables display the bias
and MSE of the estimates at different values of censoring proportions and sample sizes for
both models. All values of bias and RMSE are relatively low, indicating good performance
of the parameter estimates. The MSE of all parameter estimates generally increase with the
increase in censoring proportions and decrease with the increase in sample sizes. As for the
bias, it generally decreases with the increase in sample sizes but the trend when censoring
proportion increases is not very clear. Some of the low values of bias at higher levels of
censoring proportion do not imply that we have better estimates than the ones at lower
censoring proportion. This is because the higher MSE values at higher censoring proportions
suggest that the estimates are still typically far from the true value even though the average
is close to the true parameter value.

Table 1: Bias and MSE for parameter estimates of LLR model when n = 50

β̂0 β̂1 σ̂

cp Bias MSE Bias MSE Bias MSE

0.30 0.018735 0.022072 -0.032252 0.029920 -0.004607 0.007087
0.40 0.020070 0.024927 -0.027905 0.033175 -0.010090 0.007729
0.50 0.020132 0.029241 -0.023311 0.036426 -0.015340 0.008969
0.55 0.022437 0.034441 -0.021755 0.040738 -0.018476 0.010069
0.65 0.027842 0.044566 -0.018476 0.049655 -0.026861 0.013146

The results of the second simulation study are given in Figures 1-4. It is rather clear that
the Hboot residuals consistently give much lower MAD values for intercept, slope and R
at all levels of censoring proportions and sample sizes, for both LLR and EMVR models.
The performance of the MCS is slightly better than CS residuals, however Hboot clearly
outperforms both these residuals at indicating a good model fit.
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Table 2: Bias and MSE for parameter estimates of LLR model when n = 120

β̂0 β̂1 σ̂

cp Bias MSE Bias MSE Bias MSE

0.30 0.018141 0.009227 -0.018997 0.012033 0.005618 0.003015
0.40 0.017882 0.010286 -0.015034 0.013373 0.002225 0.003440
0.50 0.015741 0.011480 -0.007534 0.014333 -0.002945 0.003721
0.55 0.013322 0.012882 -0.003432 0.015260 -0.006945 0.004141
0.65 0.010740 0.016669 -0.006945 0.018069 -0.013634 0.005109

Table 3: Bias and MSE for parameter estimates of EMVR model when n = 50

β̂0 β̂1 σ̂

cp Bias MSE Bias MSE Bias MSE

0.30 0.011842 0.034653 -0.007126 0.036929 -0.012768 0.024466
0.40 0.020372 0.042614 -0.003196 0.042867 -0.012853 0.026957
0.50 0.017397 0.052324 -0.000246 0.048838 -0.026407 0.032612
0.55 0.015044 0.060752 -0.002470 0.055881 -0.036834 0.035768
0.65 0.009622 0.094285 -0.036834 0.070551 -0.053256 0.046550

Table 4: Bias and MSE for parameter estimates of EMVR model when n = 120

β̂0 β̂1 σ̂

cp Bias MSE Bias MSE Bias MSE

0.30 0.014489 0.013995 0.000465 0.015129 0.004680 0.010911
0.40 0.022461 0.017794 0.003017 0.017361 0.005203 0.011739
0.50 0.020638 0.021404 0.000426 0.020214 -0.005384 0.013203
0.55 0.016183 0.025140 0.000261 0.021883 -0.012736 0.014539
0.65 0.005314 0.030993 -0.012736 0.027365 -0.025983 0.016753
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Figure 1: MAD for LLR model at n = 50

4. Real example of COM breast cancer data

The data on 94 breast cancer patients was discussed by Finkelstein and Wolfe (1985) where
patients were given either radiation therapy (RT) or radiation therapy plus chemotherapy
(RCT). The data is mixed case interval-censored as patients only have clinic visits that vary
from patient to patient at different intervals. The interval-censored event time of the breast
retraction is recorded by the physicians during the clinic visits. 38 patients who did not
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Figure 2: MAD for LLR model at n = 120
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Figure 3: MAD for EMVR model at n = 50
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Figure 4: MAD for EMVR model at n = 120

experience breast retraction are right-censored observations.

To assess the model fit, we can obtain the nonparametric estimated survival probability pro-
posed by Turnbull (1974) and compare it with the parametric survival probabilities obtained
using the proposed model for different covariate values. We find that the EMVR model pro-
vides a good fit for the COM data. Figure 5 displays the plot of the estimated Turnbull
survival probabilities overlapped with the survival probabilities obtained using the EMVR
model for different covariate values. Both plots suggest that the use of the EMVR model will
be appropriate for the data set. The survival functions for the two therapies indicate that the
RT group has a longer time to breast retraction than the RCT group.

Table 5 shows the parameter estimates when the EMVR model was fit to the COM data
with therapy as the covariate (RCT=1, RT=2). The p-value for β1 suggests that there is
a significant treatment effect. Figure 6 shows the estimated hazard plot (a) and survival
probability plot (b) for the COM data using the imputed lifetimes. The hazard plot indicates
that the RT group has a lower hazard (longer survival) compared to the RCT group. From
the estimated parameters, the median survival time of the RT and RCT groups are 39.3 and
22.3 months respectively. The time ratio of the RT group to the RCT group at the median



Austrian Journal of Statistics 75

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50

Es
ti

m
at

ed
 S

u
rv

iv
al

Time

Treatment : RCT
Turnbull

EMVR

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50

Es
ti

m
at

ed
 S

u
rv

iv
al

Time

Turnbull

EMVR

Figure 5: Turnbull and EMV Survivor Function Estimates for COM Data

Table 5: Estimates and 95% Wald interval for the parameters of EMVR Model

Parameter Estimates Std.Err Z P Val lower upper

β0 2.76385 0.25424 10.871 0.000 2.265 3.262
β1 0.56782 0.17568 3.232 0.001 0.223 0.9121
σ 0.61941 0.07427 8.340 0.000 0.473 0.765

survival time is 1.76. The EMVR model is a proportional hazards model and the hazard ratio
of the RCT group to the RT group at any time is 2.50, indicating that the RCT group is
failing at a rate more than twice that of the RT group.
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Figure 6: Estimated hazard (a) and survival probability (b) for COM Data

4.1. Adjusted residual plots

To check if an apt model has been fit to the data, we can use the plot of log[− log(Ŝ(r∗Ci
))]

against log(r∗Ci
), as shown in Figure 7. The estimated intercept and slope values are -0.1234

and 0.9130 respectively, which are very close to the ideal values of 0 and 1, indicating that
the EMVR model fits the data very well.

The plot of the adjusted martingale residuals versus observation number (a) and versus treat-
ment type (b) are shown in Figure 8. Both plots indicate that there might be an outlier which
corresponds to patient 94 whose failure times is greater than 48 months, which is much larger
than other patients who received RCT treatment.

The plot of the adjusted deviance residuals versus observation number (a) and versus treat-
ment type (b) are shown in Figure 9. The outlying effect of observation 94 is not that apparent
in both these plots. This is because the deviance residuals are more symmetrically distributed
around 0 if an apt model has been fit to the data. The score residual for the EMVR model
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Figure 7: Index plot of adjusted Cox-Snell residuals
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Figure 8: Adjusted martingale residuals vs observation number, (a) and vs treatment, (b)
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Figure 9: Adjusted deviance residuals vs observation number (a) and vs treatment (b)

with right and interval-censored data are the components of the first derivatives of the log-
likelihood function with respect to its parameters, β and σ evaluated at their respective MLEs
as given in the following,



Austrian Journal of Statistics 77

∂L(β, σ)

∂βj
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n∑
i=1

xij
σ
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(
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−exp(zLi
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−exp(zRi
)
)

e− exp(zLi
) − e− exp(zRi

)
+ (1− δi)ezLi )

 ,
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∂L(β, σ)

∂σ
=

n∑
i=1

1
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 .
Another simpler technique to compute the adjusted score residuals for the EMVR model with
right and interval-censored data is by using the imputed lifetimes discussed in Section 2.2.
Let,

yIi =

{
log(t∗i ) for ti interval-censored,

log(tLi) for ti right-censored.

If z∗i =
yIi−β′xi

σ , the adjusted score residuals (r∗Si
) can now be calculated from the following

components of the first derivatives of the log-likelihood function with respect to its parameters,
β and σ evaluated at their respective MLEs.

∂L(β, σ)

∂βj
=

n∑
i=1

xij
σ

(
ez

∗
i − δi

)
, j = 0, 1 · · · , p− 1,

∂L(β, σ)

∂σ
=

n∑
i=1

z∗i e
z∗i

σ
− δi

(
z∗i + 1

σ

)
.

The plot of the score residuals based on imputed lifetimes versus observation number (a) and
versus treatment type (b) for the covariate treatment, are shown in Figure 10. We do not
observe any pattern that raises concern except that the score residual value for observation
94 is slightly larger than other observations.
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Figure 10: Score residuals vs observation number (a) and vs treatment (b) using imputed
lifetimes
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The case-weights perturbation scheme for the EMVR model would yield the following log-
likelihood function,

L(β, σ) =
n∑
i=1

ωiδi

{
log
[
e− exp(zLi

) − e− exp(zRi )
]}
− ωi(1− δi)

{
exp(zLi)

}
.

Following if θ̂ and θ̂(ω) are the MLEs under L(θ) and L(θ|ω), the likelihood displacement
statistic to assess the influence of ω, is given by the following,

LD(ω) = 2[logL(θ̂)− logL(θ̂(ω))].

and the (k, i)th element of ∆ki given by the following,

∆ki =



xij
σ

[
δi

(
e
zLi

−exp(zLi
)−ezRi

−exp(zRi
)
)

e
− exp(zLi
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k = 1, 2 · · · , p, i = 1, 2, . . . , n, j = k − 1,

1
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]
,

k = p+ 1, i = 1, 2, . . . , n.

Again, it would be much simpler to use yIi , the imputed lifetime for ease of computation when

data is interval-censored. If z∗i =
yIi−(β0+β1x1i)

σ , we could use the modified likelihood based on
the imputed lifetime to obtain the (k, i)th element of ∆∗ki given by the following,

∆∗ki =


xij
σ

(
ez

∗
i − δi

)
, k = 1, 2 · · · , p, i = 1, 2, . . . , n, j = k − 1,

z∗i e
z∗i

σ − δi
(
z∗i +1
σ

)
, k = p+ 1, i = 1, 2, . . . , n.
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Figure 11: Index plot of 1
2 F̈ii (a) and |dmax| (b), using imputed lifetime

Figure 11 shows the index plot of 1
2 F̈ii, which can be used to assess the influence of the

total parameter vector θ. The figure indicates that observations 3,10,33,63 and 94 may
be potentially more influential than other observations. Although none of these observations
exceed the warning limit of 1

2χ
2
(0.5;p+1) = 1.183, it’s interesting to know why these observations

especially 3,10 and 33 are more influential. Observation 94, is also the only observation that
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was singled out by the martingale, deviance, and score residual plots. This patient has the
largest right-censored lifetime at 48 months which is much longer compared to other patients
who received RCT treatment. The failure time of patient 33 is lesser than 5 months, which
is the minimum among patients receiving RT treatment. Patients 3 and 10 also received
RT treatment, and have failure times lesser than 7 and 8 months, respectively. Although
observation 63 has failure time lesser than 5 months, it was not as influential as patient 33
because the patient received RCT treatment.
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Figure 12: DFBETAS for treatment vs observation number

As discussed earlier, the index plot of 1
2 F̈ii gives an approximation to the information given

by the DFBETAS. To check this, we can observe the index plot of the DFBETAS for the
estimated coefficient of the covariate treatment and σ, shown in Figure 4.1. We can see that
the single case perturbation does not seem to have any influential effect on the estimated
coefficient of the covariate treatment, except for observation 94 which has a value that is
larger than 0.20 which is very close to the usual cutoff value of 2/

√
94 = ±0.206. However,

the index plot of the DFBETAS for the parameter σ indicates all the observations discussed
earlier, namely 3,10,33,63 and 94 as being potentially influential. Thus, what is obvious is
that the single case perturbation mainly affects the estimated parameter σ, but not the other
parameters.

The index plot of dmax shown in Figure 11 identifies all the point identified by the index plot
of 1

2 F̈ii, but it doesn’t identify observation 63 and 94 as being highly influential. Instead, it
identifies observations 2,3,10,11, and 33 as being the five most influential observations. If we
inspect observations 2 and 11, they both received RT treatment and have failure times lesser
than 4 and 6 months, respectively. However there are several other observations with values
that are rather similar, hence we can conclude that there is nothing highly unusual about
these two patients. This clearly shows that the 1

2 F̈ii plot is better at detecting the effects of
single case perturbations compared to the dmax plot.

Next, it would be of interest to know the impact of removing groups of these influential
observations on the estimated parameters, median time ratios, and hazard ratios. Observation
94 is the only case singled out by all the residual and influence diagnostics plots. When this
observation is removed, the median survival time of the RT and RCT groups change to 41.9
and 22.6 months respectively, and the median time ratio of the RT group to the RCT group
increases to 1.85. The estimated hazard ratio of the RCT group to the RT group changes
from 2.50 to 2.74.

When the most influential observations detected by the 1
2 F̈ii and dmax plots, namely obser-

vations 94 and 33 are deleted, the median survival time of the RT and RCT groups change
to 40.1 and 21.7 months respectively, and the median time ratio of the RT group to the RCT
group stays at 1.85. The estimated hazard ratio of the RCT group to the RT group changes
from 2.50 to 2.95, which is rather substantial. It implies that the RCT group is failing at a rate
almost three times that of the RT group. Although it does not change the overall conclusion
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that the RT treatment works better than RCT treatment, it may provide stronger evidence
that the RT treatment alone works far better in delaying the onset of breast retraction for
breast cancer patients.

It would not be wise to simply remove other observations because they are identified as being
influential as they still carry valuable information regarding the treatment administered. For
example, observations 3,10 and 33 show us that some patients can still have breast retraction
as early as 5-8 months, even while receiving the RT treatment, although the median survival
time is 39.3 months. Plots of the score residuals, 1

2 F̈ii and dmax using interval censored
lifetimes are shown in Appendix A. These plots look almost identical to the ones obtained
using imputed lifetimes and provide us with the same information but require significantly
more time and effort to produce.

5. Conclusion

In this research, we explored the residuals based on the bias-corrected bootstrap estimates
and a random imputation technique to deal with right and interval-censored lifetime data.
The proposed residual works well even when data has mixed case censoring and can be easily
applied to other models because it’s a computer intensive technique that is free from any
theoretical assumptions. These estimates are obtained directly from the data and are better
estimates of the excess, ζ, in the Cox-Snell residuals, compared to the traditional and modified
Cox-Snell residuals as indicated by the simulation results.

The proposed randomly imputed lifetimes are very useful when we are dealing with interval-
censored data, where the derivation of exact likelihood contributions can become rather te-
dious and unnecessarily lengthy for some models such as models involving time dependent
covariates, truncated data and bivariate models with right- and interval-censored data. These
imputed lifetimes are simple and easy to implement due to the recent advancement in com-
puting technology and are very useful and practical in assessing model adequacy and identify
potential outliers and influential observations. The local influence diagnostics using these
imputed lifetimes are easy to implement and requires far lesser time and effort.
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Appendix A
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Figure 13: Score residuals vs observation number (a) and vs treatment (b)
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Figure 14: Index plot of 1
2 F̈ii (a) and |dmax| (b)

Pseudo code for the simulation study

This program produces the outputs of the simulation study with right and interval censored
data.

1. Clean workspace using rm(list=ls()).

2. Call out the maxLik package using library(maxLik).

3. Set the initial values for sample size (n), parameter values (β0, β1, σ), and censoring
proportion, CP (set µ).

4. Begin the loop for N = 1000 replication using for (i in 1:1000).

• Simulate uniform variates from U(0,1) using u<-runif(n,0,1).

• Generate the lifetime, t, using the inverse transform technique.

• Simulate right censoring time, c, from exp(µ) - adjust µ to obtain desired approx-
imate CP.

• Determine the value of indicator variable, s,

If (t < c) then return s = 1 else s = 0.
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• Set lifetime as censoring time for censored observations, t=min(t, c).

• Convert uncensored observations to interval censored observations.

– Compare each interval censored lifetimes with predefined intervals. For interval
(0, 2),

If (0 < t < 2), the left endpoint Li = 0, right end point, Ri = 2.

– Repeat for all the intervals until appropriate left and right endpoints are as-
signed to all uncensored data.

– Observations greater than final inspection time, τκ will be censored.

If (t > τκ), let Li = τκ and change s = 1 to s = 0.

• Calculate the right censoring proportion, CP.

• Use function maxLik() to obtain the estimated parameters of (β0, β1, σ)

• Implementation of random imputation for interval censored data.

• Begin the loop for n replication for each observation.

– Begin another loop for 1000 replication.

∗ Obtain Ŝ(Ri) and Ŝ(Li) using the estimated parameters for the ith interval
censored observation.

∗ Simulate uniform variates from U(Ŝ(Ri), Ŝ(Li)).

∗ Transform the uniform variate to obtain the estimated lifetime, tri .

– End of loop for 1000 replication.

– Obtain t∗i , the mean of tri .

• End of loop for n replication

• Calculate the adjusted Cox-Snell residual (Hboot).

– Create a new data frame consisting of the random imputed lifetimes and right
censored lifetimes.

– Generate 800 bootstrap samples of size n each from the adjusted Cox-Snell
residuals.

– Calculate the harmonic mean of each of the bootstrap sample.

– Obtain the mean of the harmonic means of the bootstrap samples.

– Calculate bias-corrected bootstrap harmonic mean, hbc.

– Adjust the Cox-Snell residual for right censored data, rRCi
= rCi + hbc.

– Combine Cox-Snell residual for right and interval censored data and call it
Hboot.

• Calculate the traditional Cox-Snell residual (CS) and modified Cox-Snell residual
(MCS).

– Create a new data frame consisting of midpoint imputed lifetime (tm) and
right censored lifetimes.

– Obtain traditional Cox-Snell residual (CS) for right censored data, rCS
Ci

= rCi +
1.

– Obtain modified Cox-Snell residual (MCS) for right censored data, rCS
Ci

= rCi +
0.693.

– Combine traditional and modified Cox-Snell residual for right and interval
censored data and call it CS and MCS.

• Obtain the Kaplan-Meier estimates for Hboot, CS and MCS using survfit().

• Fit a regression line for y = log[− log(Ŝ(Hboot))] against x = log(Hboot) using
lm() function.

• Fit a regression line for y = log[− log(Ŝ(CS))] against x = log(CS) using lm()
function.
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• Fit a regression line for y = log[− log(Ŝ(MCS))] against x = log(MCS) using lm()
function.

• Obtain the coefficient for the slope, intercept, and correlation for all the fitted lines.

5. End of the loop for N = 1000 replication.

6. Calculate the average of CP.

7. Calculate the bias and MSE of the parameter estimates.

8. Calculate the MAD for slope, intercept, and correlation for all the residuals.
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