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Abstract

We characterize the high-order coverage accuracy of smoothed and unsmoothed Bayesian
bootstrap confidence intervals for population quantiles. Although the original (Rubin
1981) unsmoothed intervals have the same O(n~'/?) coverage error as the standard em-
pirical bootstrap, the smoothed Bayesian bootstrap of Banks (1988) has much smaller
O(n=3/?[log(n)]?) coverage error and is exact in special cases, without requiring any
smoothing parameter. It automatically removes an error term of order 1/n that other
approaches need to explicitly correct for. This motivates further study of the smoothed
Bayesian bootstrap in more complex settings and models.

Keywords: continuity correction, fractional order statistics.

1. Introduction

We study the frequentist coverage accuracy of certain Bayesian bootstrap confidence inter-
vals for population quantiles. Specifically, we consider percentile method intervals using the
Bayesian bootstrap (BB) of Rubin (1981) and the continuity-corrected Bayesian bootstrap
(CCBB) of Banks (1988).

Although the BB has the same order of coverage error as the conventional nonparametric boot-
strap, the CCBB is substantially more accurate. Specifically, the BB has O(n~1/2) coverage
error, whereas CCBB has O(n~%/2[log(n)]?). Because the nonparametric bootstrap shares the
same O(n~'/2) error as BB (e.g., Falk and Kaufmann 1991), and both are special cases of
exchangeable weights bootstrap, we do not study nonparametric bootstrap, instead focusing
on the large improvement of CCBB over BB. Unlike other smoothed bootstraps, the CCBB
does not have any smoothing parameter, so this error rate depends only on iid sampling and
mild smoothness conditions on the population distribution. Further, the CCBB is exact for
intervals with order statistic endpoints or when the population distribution is uniform.

Although other confidence intervals for quantiles achieve the same accuracy, our results moti-
vate further study of the CCBB in other settings to which it may generalize more readily. For
quantiles, the accuracy is matched by Ho and Lee (2005) and Goldman and Kaplan (2017),
who provide calibrated versions of the order statistic-based intervals in Beran and Hall (1993)
and Hutson (1999), respectively. These calibrations explicitly remove an error term of order
1/n that the CCBB automatically avoids. Notwithstanding some extensions of fractional
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order statistic-based confidence intervals to more complex quantile-based objects of interest
(Goldman and Kaplan 2018b,a), the CCBB may be more readily generalized to other objects
of interest or non-iid sampling.

Extension to linear quantile regression remains an interesting open question. For nonparamet-
ric inference on conditional quantiles, the CCBB can be used as in Definition 3 of Goldman
and Kaplan (2017), with theoretical properties matching those of their calibrated interval in
their Theorem 6. Their framework defines a local sample based on the independent variables’
values, after which only dependent variable observations are used, thus reducing the compu-
tation to unconditional scalar quantile analysis. In contrast, linear quantile regression must
consider both dependent and independent variables together, so each observation remains a
vector. BB extends naturally, but it is not clear how CCBB should extend to smoothing
multivariate CDFs. Anderson (1966) proposes a way to construct multi-dimensional “statis-
tically equivalent blocks,” as noted by Banks (1988, Ex. 4, p. 677). These blocks satisfy a
generalization of the probability integral transform, but they are not as closely related to the
multivariate BB as the univariate CCBB and BB are to each other. There is also some sensi-
tivity to the assumed support; such sensitivity is mostly absent from the univariate quantile
setting because (central) quantiles are not sensitive to the extreme tails of the distribution,
whereas linear quantile regression is indeed sensitive to the tails of the independent variables’
distributions. Possibly such sensitivity disappears if using a type of regression more robust
(to outliers) than quantile regression, like the least median of squares regression of Rousseeuw
(1984). We have also considered smoothing over each region on which the BB CDF is flat,
but this seems to make a first-order difference, whereas the univariate CCBB is a higher-order
refinement of the BB.

Other papers have examined accuracy of CCBB and related intervals for quantiles, but with-
out our theoretical results on coverage error. Examples include Breth (1979), Banks (1988),
and Meeden (1993), who proposes a grid-based alternative to CCBB that maintains a Bayesian
interpretation (unlike CCBB).

Section 2 introduces the intervals. Sections 3 and 4 contain theoretical results. Section 5
illustrates the theory with simulations. Appendix A contains proofs.

Notation Vectors are bold; e.g., the sample is Y = (Y7,...,Y,). Also, 1{-} is the indicator
function, Q_(Y) is the 7-quantile of random variable Y whose CDF is Fy (+), and P(-) is prob-
ability; additional notation is defined as needed. Acronyms used include those for Bayesian
bootstrap (BB), confidence interval (CI), continuity-corrected Bayesian bootstrap (CCBB),
coverage probability (CP), cumulative distribution function (CDF), and probability density
function (PDF). Let Fjg(p;a,b) and fz(p;a,b) respectively denote the CDF and PDF of a
Beta(a,b) distribution evaluated at p.

2. Setup

2.1. Assumptions

Assumptions Al and A2 describe the setting. Assumption Al describes the sampling and
object of interest and is used for all our results. Assumption A2 is an additional smoothness
assumption required for our most general results. It is the same as Assumption A2 of Goldman
and Kaplan (2017).

Assumption Al. Observations Y; are iid realizations of random variable Y with continuous
CDF Fy(+), and interest is in the T-quantile, Q. (Y") = inf{y : Fy(y) > 7}, for fixed 7 € (0, 1).
The sample of size n contains Y7, ...,Y,.

Assumption A2. i) F{,(Q.(Y)) > 0; ii) Fy/(-) exists and is continuous in a neighborhood of
Q- (Y).
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24 Smoothed Bayesian Bootstrap Accuracy for Quantiles

Notationally, let the order statistics (i.e., ordered sample values) be
Yn:l S Yn:2 S e S Ynn (1)

Given the continuity of Fy () in Al, the inequalities become strict with probability 1. For
notational completion, let Y,,.g and Y,,.,+1 denote the lower and upper bounds of the support
of Y, but these only affect CCBB inference on extreme quantiles, which we do not consider.

2.2. Bootstrap distributions

The bootstrap distributions are conditional on the data Y = (Y1,...,Y;,), with the random-
ness coming from a vector of weights. The standard (empirical) bootstrap that resamples with
replacement can equivalently be seen as drawing a multinomial-distributed vector of weights
(each of which is a non-negative integer) and applying the weights to the original Y3,...,Y,,
where the weights are independent of the sample values. Instead of focusing on the resampled
values, we can think of the empirical distribution corresponding to such values. That is, in-
stead of resampling a bootstrap dataset Y|, ...,Y," and computing the corresponding statistic
(like the 7-quantile), it can be interpreted as randomly drawing multinomial (W7,..., W,,)
and computing the statistic based on the weighted empirical CDF

-, 1 noo_ n _
Frly) == Wil{Y; <y} =) Wil{¥i <y}, Wi=Wi/n.
=1 =1

The BB replaces the multinomial-based weights W; with Dirichlet-based weights. Given
sample size n,

W= (Wy,...,W,) ~Dir(1,...,1), (2)

a Dirichlet distribution with all n parameters equal to 1, i.e., a uniform distribution over the
unit (n — 1)-simplex. The corresponding CDF is

Fou(y) = Z W 1{Yy <y}, (3)
i=1

where the u subscript stands for “unsmoothed.” The Yy,; could equivalently be replaced by
Y;, but (3) connects better with the CCBB. For intuition, note Fy,(Y,.x) = Zle W;.

The CCBB applies Dirichlet probability weights to intervals instead of points. There are n+1
intervals, from Yj,.x—1 to Y,.x for k =1,...,n+ 1; and thus n + 1 weights, (W1,..., Wy41) ~
Dir(1,...,1), the Dirichlet distribution with all n + 1 parameters equal to 1, i.e., a uniform
distribution over the unit n-simplex. Instead of weight W) corresponding to the kth point
Y.k, now W} corresponds to the kth interval, and the probability is spread uniformly over
the interval. Instead of (3), this yields

n+1

= y_Y:'—l
F*s(y) = Z |:Wi1{Yn:i < y} + Wlm—i;:”_l
i=1 ' '

]I{Ynz >y > Yn:ifl} 3 (4)
vxhere subscript s stands for “smoothed.” Note the bounds Y. and Y,.,+1 do not affect
F.s(y) as long as Y1 <y <Y,.,. For intuition, evaluating (4) at an order statistic yields

which is also true of the unsmoothed version in (3): ﬁ*u(Yn;k) = Zle W;. Instead of having
discrete jumps, the CDF in (4) linearly interpolates between such points; it is a linear spline

with knots at the sample values, which Banks (1988) calls “histospline smoothing” in allusion
to Wahba (1975).
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Consider the BB and CCBB distributions of the 7-quantile. Let

Qr, =inf{y: Fuly) > 7}, QfL,=inf{y: Fu(y) > 7}, (5)

the 7-quantiles of the distributions defined in (3) and (4). Since the BB distributions are
discrete, (7, must equal a sample value Y;. In contrast, the CCBB CDF Fi; is continuous
and strictly increasing (with probability 1), so @js = AQI(T), with a continuous distribution
of CA):S Conditional on the sample Y (but not the Dirichlet weights), @ju and st are
random variables with respect to the distribution of the weights.

Distributions of various sums of the W; follow from the general order statistic results of
Wilks (1962, pp. 236-238). The CCBB distribution of (W1,..., W,41) matches the sampling

distribution of standard uniform order statistic “spacings,”
(Un:ly Un2—Upa,...,Upin = Upin—1,1 — Un:n) ~ Dir(L ceey 1)7 (6)
where the U,.; are order statistics based on U; i Unif(0,1), i = 1,...,n. Further,

BB: Wi + -+ Wy ~ Beta(k,n — k),
CCBB: Wp +--- + Wy, ~ Beta(k,n+1— k).

2.3. Bootstrap intervals

The percentile method confidence intervals’ endpoints come directly from quantiles of the
distributions of the random variables in (5). For a one-sided 1 — « confidence interval, the
BB lower endpoint is the a-quantile of @ju, and the CCBB lower endpoint is the a-quantile
of @i s The one-sided upper endpoints would instead be the (1 — a)-quantiles. A two-sided
(for

~
*

(equal-tailed) 1 — « interval instead takes the a/2 and 1 — «/2 quantiles of either
BB) or @js (for CCBB).

We consider percentile method confidence intervals for two reasons. First, interpreting the
BB distribution as a Bayesian posterior given the model of Ferguson (1973) with an improper
Dirichlet process prior, the corresponding Bayesian credible interval is exactly the percentile
method confidence interval. Second, even for the standard bootstrap, Falk and Kaufmann
(1991) show that percentile intervals (the “backward method”) perform better for quantiles.

T,U

3. Results for order statistic endpoints

Theorem 1 characterizes the BB and CCBB probabilities associated with one-sided confidence
intervals whose lower endpoint is an order statistic. The unsmoothed part of Theorem 1 is
similar to a result from Efron (1982, p. 82, eqn. (10.23)). The proof uses the equivalence
Yo < @i’u = Zle W; < 7 along with (7).

Theorem 1. Under Assumption A1, given (3)—(5), fork=1,...,n,

P(Yor < Q% | Y) = Fs(mik,n — k) < P(Yor < Q5o | Y) = Fy(rsk— Ln+1— k),
P(Yor < Q5 | Y) = P(Yoy < Qi |Y) = F(mskon+1—k) = P(Yo < Q(Y)).

The main point of Theorem 1 is that the CCBB probability of Y,,.; < @js under Fig (condi-
tional on the data Y) is identical to the probability of Y,,.x < Q.(Y) under Fy. Thus, if the
a-quantile of the CCBB distribution of @;S is Y,,. for some k, then Y,,.; is the lower endpoint
of the one-sided 1 — o CCBB confidence interval for Q. (Y), and it has exact finite-sample
coverage because P(Y,.x < Q.(Y)) =P (Vi < @is | Y). Further, this is not true for BB.
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The probabilities in Theorem 1 extend readily to lower one-sided and two-sided intervals

: A% _ A% AY T
because, for either Q7 = Q7 ,, or Q7 = Q7 ,

P(Ynk 2 Q\;k- ‘ Y) =1- P(Yn:k < Q\;k- | Y)v

~ ~ ~ 8
P(Ynk < Q7 <Vor | Y) = P(Yo, < Q7 |Y) = P(Yor < Q7 |Y). )

Corollary 1.1 characterizes the difference between the BB and CCBB probabilities in Theo-
rem 1.

Corollary 1.1. Given Theorem 1,

Ak . 1—71
P(Yo < Qru | Y) = P(Your < Qr s | Y) = ——fo(rsk,n +1 k),
P(Yik > Qi | Y) = P(Yok > Q1 | Y) = (7/n) fa(rik,n + 1 — k).
If ey < k/n < ¢y for constants 0 < ¢; < ¢z < 1 as n — oo, then both differences are O(n~/2).

Corollary 1.1 shows the benefit of smoothing. For intervals with an order statistic endpoint
Y;,.k, the CCBB probability is exact, whereas the BB probability differs by O(n~1/2) for
central order statistics (¢; < k/n < ¢g). If 7 and 1 — « are fixed, then asymptotically the
endpoint will be a central order statistic. Further, the right-hand sides in Corollary 1.1 are
positive, so the BB always reports a probability higher than the true coverage probability.
All else equal, this pushes BB confidence intervals in the direction of overcoverage.

4. Results for fractional order statistics

We now more generally consider “fractional” order statistic endpoints. This is useful when
the desired nominal level (like 95%) is not attainable at an integer order statistic. For integer
k and interpolation weight € € [0,1), the (k + €)th fractional order statistic is

Yn:k+e = Ypuk + E(Yn:k+1 - Ynk) (9)

The special case with e = 0 yields the usual (integer) order statistics.

Figure 1 illustrates the following intuition for the CCBB distribution of @i’;s Given the
piecewise linear CDF smoothing of CCBB, the 7-quantile given a particular Dirichlet draw
of W is also linearly interpolated. Given (W7y,..., Wyi1),

(- Zf:l Wi)

d
Yier1 — Yae), = d: W; <1}, 10
Wy Vo, emmaxia: W) (0)

i=1

@:,5 = Yn:c +

Le., ¢ is the largest integer such that > ;_; W; < 7. That is, since the CCBB CDF linearly
interpolates between the points

c c+1
F*S(YTLZC) = Z W; and F*S(YTLIC+1) = Z Wi7
=1 =1

the CCBB inverse CDF (quantile function) ﬁ;sl() linearly interpolates between

c c+1
Yoee = F' O Wi) and Yoeern = FH - Wa).
i=1 =1

By inspection, (10) has the same form as (9), with k = c and € = (7 — Y_;_; W;)/Wey1.
Equation (10) can also be interpreted as moving along the straight line in the quantile function
with slope (YV:e41 —Ynic)/Wey1, starting at value Yy,.. and moving to the right by 7—>"7 | W;.
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Figure 1: Illustration of (10).

We focus on fractional order statistics that would be CI endpoints given 7. For central quan-
tiles (asymptotically fixed 7), given n, Lemma 3 of Goldman and Kaplan (2017) characterizes
the k and e (or equivalently ) that achieve 1 — « coverage probability. Specifically, their
Lemma 3 says that a 1 — a one-sided CI lower endpoint satisfies

u=(k+e/(n+1) :T—n_1/2zl_am+0(n_l), (11)

where z1_, is the (1 — a)-quantile of the standard normal distribution. Thus, Theorem 2
focuses on u =7 — dn~1/2.

Theorem 2 shows that the CCBB probability of fractional order statistic intervals is identical
to the coverage probability in certain special cases, and more generally it matches up to a
O(n~3/?[log(n)]?) difference. Thus, the Y;,.1 1 that is the a-quantile of the CCBB distribution
of @is provides a confidence interval with coverage probability 1 — a + O(n=3/2[log(n)]?).
Theorem 2 also provides an analytic approximation to the CCBB probability based on the
beta distribution, up to the same error term. The BB distribution in Theorem 2 follows
immediately from Theorem 1 since the BB distributions have no probability strictly between
order statistics. As in Section 3, the results for a lower endpoint CI translate to an upper
endpoint and two-sided Cls by (8).

Theorem 2. Let Assumption A1 and (3)—(5) and (9) hold in each of the following.
Q) If (k+¢)/(n+1) =7 —dn"/?, then
P(Ynk + €(Yakg1 — Yaur) < @:,u YY) = Fﬂ(T; k,n—k),
P(Ynk + 6(Y'n:kJrl - Ynk) < Q\j—,s ’ Y) = P(Un:k + 6([]n:kJrl - Unk) < 7—)
=Fg(rsk+en+1—Fk—e)

R e e UG

+0(n~*[log(n)]),

where ¢(-) is the standard normal PDF and (6) is the joint distribution of the Up..
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(ii) If Y ~ Unif(a,b), or if e =0, then the CCBB and coverage probabilities are identical:
P(Yor + e(Yorg1 — Yor) < Q\:s 1Y) =P(Yap + €(Yakt1 — Your) < Q-(Y)).
(iii) If Assumption A2 holds, then
P (Yo + €Y1 — Yor) < Qg | Y) = PV + €(Voe1 — You) < Q. (Y))
+0(n~*[log(n)]?).

Theorem 2 shows the close connection between CCBB and the confidence intervals from
Hutson (1999) and Goldman and Kaplan (2017). Hutson (1999) selects k + € to set F(7; k +
e,n+1—k—¢€) =1—a. This is the same beta CDF as in Theorem 2(i). Goldman and
Kaplan (2017, Thm. 4) show this leaves an error in coverage probability equal to the n~!
term and remainder in Theorem 2(i), and they suggest adjusting o to remove the n~! term.
Here, the CCBB probability automatically captures the n~! term, as well as the beta CDF
term. Section 5 illustrates cases where this improved theoretical accuracy translates to better
simulation performance, and cases where it does not.

Corollary 2.1 characterizes the difference between the BB and CCBB probabilities with frac-
tional central order statistics, which is again O(n~'/2) as in Corollary 1.1.

Corollary 2.1. The difference between the BB and CCBB probabilities in Theorem 2(i) is
O(n_l/Q) if c1 < k/n < ¢y for constants 0 < ¢ < ca <1 asn — 0.

5. Simulations

To illustrate our results, we simulate the coverage probability (CP) of four types of one-sided
confidence intervals: BB; CCBB; “HGK” intervals proposed by Hutson (1999) and studied by
Goldman and Kaplan (2017); and “GKc,” the calibration proposed by Goldman and Kaplan
(2017). Code in R (R Core Team 2020) to replicate the results is on the first author’s website.*

We consider one-sided intervals (lower endpoint) with nominal level 1 — o = 0.95, setting
n = 18 and letting 7 and Fy vary.

The different 7 are chosen to illustrate different types of situations. Some 7 are chosen so
that HGK has an (integer) order statistic endpoint, in which case it has exact finite-sample
CP, regardless of the underlying distribution Fy. In such cases, CCBB also has exact CP, per
Theorem 2(ii) (up to simulation error). Other 7 are chosen so the HGK endpoint is roughly
halfway between order statistics. This makes HGK coverage error larger because the leading
term is proportional to €(1 —€) (Goldman and Kaplan 2017, Thm. 4(i)), which is maximized
at € = 0.5. Yet other 7 are very close to 1, again to make HGK coverage error larger because
the leading term is also inversely proportional to 7(1 — 7). Two particularly extreme 7
(nT > n—1) are chosen to test the limits of our central quantile results. Because we examine
one-sided confidence intervals with a lower endpoint, 7 cannot get too close to zero, otherwise
even the lowest order statistic (sample minimum) cannot achieve the desired coverage. The
lower endpoint results would be identical to upper endpoint results after flipping the data
distributions and changing 7 to 1 — 7.

The different Fy are also chosen to illustrate our theoretical results. Theorem 2(ii) says
CCBB should provide exact finite-sample CP when Fy is uniform, regardless of n, 7, or 1 —a.
For comparison, normal, exponential, and Cauchy distributions are also used. Although no
method’s k + € depends on Fy, the CP does depend on Fy if € > 0.

5.1. Endpoint comparison

Table 1 compares the lower endpoints chosen by each method for each 7. Specifically, each
confidence interval has the form [Y,,.x4¢,00), with Yy.k4e = Yok + €(Yokr1 — Yauk) as in (9),

"https://kaplandm.github.io
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so Table 1 shows the k + e chosen by each method. This k + € depends on 7, but not Fy; it
also depends on n and 1 — «, but these do not vary across simulations.

Table 1: Fractional order statistic indices (k + €) for the lower endpoint

n T BB CCBB HGK GKc

18 0.1600 1.00 1.13 1.07  1.12
18 0.1700  2.00 1.30 1.18  1.28
18 0.2000  2.00 1.66 1.53  1.69
18 0.2500  2.00 2.24 216  2.25
18 0.4978  6.00 2.99 6.00 6.00
18 0.9000 14.00 14.58 14.44 14.77
18 09799 17.00 17.00 17.00 17.00
18 0.9900 17.00 17.77 17.49 18.00

Nominal coverage 1 —a = 0.95; CCBB uses
300,000 Dirichlet draws.

BB always has € = 0 and sets k as the largest integer such that Fg(r;k —1,n+1—k) >
1 — «, using Theorem 1. That is, when equality is impossible, we have BB try to err on the
conservative side (overcoverage). If instead k were chosen to minimize the absolute coverage
error |Fg(t;k—1,n+1—k)— (1 — )|, then the undercoverage would be even worse and
appear in more cases. Note that due to discreteness, BB chooses the same endpoint Y,,.o
for all 7 € [0.17,0.25], whereas the other methods’ endpoints increase continuously over that
range.

HGK and GKc also determine k+e€ with a beta CDF. HGK sets 1 —a = Fg(k+e,n+1—k—¢)
exactly, per (7) and (8) in Hutson (1999) or (3) and (5) in Goldman and Kaplan (2017). GKc
uses the same formula after replacing o with o +n=t21_a¢(21-4)e(1 — €)/[7(1 — 7)], per (8)
in Goldman and Kaplan (2017). (If the resulting k is larger than the HGK k, then GKc sets
e=0.)

CCBB requires simulation. Per Theorem 2(i), it sets 1 — a = P(Up.k + €(Unikr1 — Unik) < 7),
with probability simulated using (6) (see code for details). On a (sub)standard personal
computer, it takes only a few seconds to compute the CCBB k + € for all of Table 1.

Table 1 indirectly illustrates Theorems 1 and 2. First, BB is clearly different from the other
three methods. Second, as Theorem 2 suggests, the other three methods are relatively similar
to each other, especially CCBB and GKec. In special cases, all four methods are identical (up
to CCBB simulation error). In other cases, CCBB is between HGK and GKc, usually closer
to GKc; BB can be higher or lower than the other three.

5.2. Coverage probability

CP is simulated as follows. First, we simulate many samples of U; d Unif(0,1). Second, for
the non-uniform Fy, samples are generated using Y; = Fy- 1(Ui); this helps isolate the effect
of Fy on CP. Third, for each method, the endpoint Y.+, is computed in each sample using
the k + ¢ in Table 1. Finally, given a method’s Y,,.x1. endpoints, the simulated CP is the
proportion of samples in which Y},.p4. < F;l(T). The CP does not depend on Fy for intervals
with € = 0, which is always true of BB and in special cases true of CCBB, HGK, and GKc
(when Table 1 shows an integer value of k + ¢).

29
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Table 2: Simulated coverage probability

n T By BB CCBB HGK GKc

18 0.1600 Unif(0,1) 0.956 0.950 0.953 0.951
18 0.1600 N(0,1) 0.956 0.951 0.953 0.951
18 0.1600 Exp(1) 0.956 0.949 0.953 0.950
18 0.1600 Cauchy 0.956 0.952 0.954 0.952

18 0.1700 Unif(0,1) 0.836 0.949 0.957 0.951
18 0.1700 N(0,1) 0.836 0.952 0.958 0.953
18 0.1700 Exp(1) 0.836 0.948 0.956 0.950
18 0.1700 Cauchy 0.836 0.955 0.959 0.956
18 0.2000 Unif(0,1) 0.900 0.950 0.961 0.946
18 0.2000 N(0,1) 0.900 0.956 0.965 0.953
18 0.2000 Exp(1) 0.900 0.947 0.959 0.944
18 0.2000 Cauchy 0.900 0.963 0.969 0.961
18 0.2500 Unif(0,1) 0.960 0.950 0.954 0.949
18 0.2500 N(0,1) 0.960 0.951 0.954 0.950
18 0.2500 Exp(1) 0.960 0.949 0.953 0.948
18 0.2500 Cauchy 0.960 0.952 0.955 0.952
18 0.4978 Unif(0,1) 0.950 0.951 0.950 0.950
18 0.4978 N(0,1) 0.950 0.951 0.950 0.950
18 0.4978 Exp(1) 0.950 0.951 0.950 0.950
18 0.4978 Cauchy 0.950 0.951 0.950 0.950
18 0.9000 Unif(0,1) 0.972 0.951 0.959 0.934
18 0.9000 N(0,1) 0972 0947 0.956 0.929
18 0.9000 Exp(1) 0972 0.945 0954 0.927
18 0.9000 Cauchy 0972 0939 0949 0.923
18 0.9799 Unif(0,1) 0.950 0.950 0.950 0.950
18 0.9799 N(0,1) 0.950 0.950 0.950 0.950
18 0.9799 Exp(1) 0.950 0.950 0.950 0.950
18 0.9799 Cauchy 0.950 0.950 0.950 0.950
18 0.9900 Unif(0,1) 0.986 0.950 0.974 0.835
18 0.9900 N(0,1) 0.986 0.898 0.954 0.835
18 0.9900 Exp(1) 0.986 0.890 0.946 0.835
18 0.9900 Cauchy 0.986 0.862 0.898 0.835

Nominal coverage 1 — a = 0.95; 300,000 replications.

Table 2 shows the simulated coverage probabilities that illustrate our theoretical results. As
a general summary of Theorem 2, Corollary 2.1, and Goldman and Kaplan’s (2017) Theorem
4: for central quantiles (fixed 7 as n — oc0), BB intervals have CP different from the nominal
level by O(n~'/2), HGK by O(n~!) and tending toward over-coverage, and GKc and CCBB
by O(n=3/2[log(n)]?). Simulation error seems to be £0.001, so we ignore such differences in
the discussion below.

First, per Theorem 2(ii), Table 2 verifies that CCBB has exact CP when ¢ = 0 (i.e., for
the third and fifth 7 values, for which the k + e value in Table 1 is an integer), which is
also true of HGK and GKc (Goldman and Kaplan 2017, p. 333). This is true regardless of
Fy. (Somewhat coincidentally, CP is also 0.95 in these cases for BB, even though the BB
simulated probability of the interval is strictly above 0.95, per Corollary 1.1.)

Second, also per Theorem 2(ii), CCBB has exact CP when Fy is uniform. This is true even
for the most challenging 7 = 0.99.

Third, CCBB is more accurate than BB. For all but the largest (most extreme) 7 = 0.99,
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CCBB has CP between 0.939 and 0.963, whereas BB’s CP goes as high as 0.972 and as low
as 0.836. With 7 = 0.99, CCBB is exact when Fy is uniform, but otherwise CCBB has CP
below 0.90, whereas BB has 0.986 CP. This illustrates how our central quantile results in
Theorem 2 are less accurate for extreme 7 (here nT = 17.82 > n — 1).

Fourth, CCBB is generally more accurate than HGK, as well as GKc, although there are
important caveats. It is somewhat unfair to compare them when Fy is uniform because we
picked the uniform distribution precisely because CCBB is exact in that case. Nonetheless,
CCBB usually has CP somewhat closer to nominal with the other Fy’s, too. For all but
the largest (most extreme) 7, for normal and exponential Fy, CCBB has CP in the range
[0.945,0.956], while the HGK range is [0.950,0.965], and GKc is [0.927,0.953]. When also
including Cauchy Fy, the CCBB, HGK, and GKc ranges become [0.939,0.963], [0.949, 0.969],
and [0.923,0.961], respectively. As noted by Goldman and Kaplan (2017), HGK rarely un-
dercovers because the leading n~! term in its coverage error is always positive (regardless
of Fy, interval type, and 7), whereas CCBB and GKc can have CP above or below the
nominal level. This is particularly notable with the most extreme 7 = 0.99, where CCBB
significantly undercovers (for the non-uniform Fy) and GKc undercovers even more, whereas
HGK has CP in the range [0.946,0.974] for the three non-Cauchy Fy and less undercoverage
for the Cauchy Fy. Again, results for 7 = 0.99 are partly explained by the central quantile
asymptotic framework breaking down at such an extreme quantile.

5.3. Length and power

Because all four methods use a fractional order statistic endpoint Y.k, it is straightforward
to compare confidence interval lengths. Specifically, if one method’s k + € (as reported in
Table 1) is larger than another’s, then its Y,,.x1. is also larger in every dataset, so its interval
[Yikte, 00) is always shorter. For the same reason, its coverage probability must be lower.
Put differently: there always exists some k + € such that [Y},.x4e, 00) achieves exact 1 — «
coverage; any smaller k + € generates an excessively long confidence interval, and any larger
k + € suffers undercoverage. Thus, in Table 2, in any given row, larger CP corresponds to a
longer interval.

Similarly, the size and power of the corresponding hypothesis tests are straightforward to
compare across these four methods. That is, the null hypothesis is Hq: Fy L(1) < q, which
is rejected at level a in favor of Hy: Fy'(1) > g if the 1 — o confidence interval [Y;, 54, 00)
excludes g, i.e., if Y,.x1e > q. The size of such a test is P(Yj,.x4e > F;l(T)), which is simply
one minus CP and can be computed from Table 2. For ¢ < F;I(T), the power P(Y,.k+c > q)
is an increasing function of k£ + €. Thus, as with interval length, relative power among the
four methods can be compared using Table 1.

Figure 2 illustrates these points through simulated power curves corresponding to certain
rows in Table 2. The horizontal axis “Deviation” is Fy 1(7) — ¢q. Within a given graph, none
of the power curves ever cross, and they all share a similar shape. Because this is simply a
consequence of all methods using a fractional order statistic, with only the k + € differing, it
holds true equally at 7 = 0.17,0.9,0.99, as seen.

Additional power curves are shown in Appendix B. Theoretical results on higher-order power
are beyond our scope; first-order power is all the same and equal to the power of a test based
on asymptotic normality, as in Theorem 4(iv) of Goldman and Kaplan (2017).
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Figure 2: Power curves; 7 = 0.17 (top left), 7 = 0.9 (top right), 7 = 0.99 (bottom row);
normal population except bottom left (uniform).

6. Conclusion

For population quantiles of a continuous distribution, we have established the high-order
accuracy of confidence intervals from the smoothed Bayesian bootstrap of Banks (1988), using
recent developments in fractional order statistic theory. Further, we have established exact
finite-sample coverage in special cases including when the population is uniform. The general
high-order accuracy is achieved by capturing a term of order n~! automatically, which in
other approaches needs to be explicitly removed by calibration (Goldman and Kaplan 2017).
The accuracy is orders of magnitude better than that of the unsmoothed Bayesian bootstrap
(Rubin 1981), which equals the accuracy of the conventional nonparametric bootstrap, and
which provides overly optimistic assessments of a given interval’s coverage.

These results motivate future study of the smoothed Bayesian bootstrap. Most immediately,
extensions to non-iid sampling or other quantile-based objects of interest would be valuable.
An extension to multivariate data would further unlock applications like quantile regression.
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A. Proofs

Proof of Theorem 1. First, for either @i‘; = @i‘;u or @i =Q*

7,87

k
Yo <Qp = Y Wi<r.
=1

Thus,

P(Ypk < QF | ZW<T|Y)
For the BB, by (7), Zle Wi | Y ~ Beta(k,n — k). Since the beta distribution is continuous,
ZW <7|Y)= ZW <7|Y) = Fs(r;k,n— k). (12)

Since the BB ﬁ*u() includes only discrete distributions with support {Y;}7 ;,
Yn:k S Q;u <~ Yn:kfl < Q;u
Combining this with (12),

P(Yn:k < @j—,u ‘ Y) = P(Yn:kfl < @j—,u ‘ Y) = Fﬂ(T;k —1,n— (k - 1))

For the CCBB, the same steps hold as for (12), but with Zle Wi |Y ~ Beta(k,n+1—k)
from (7), so

B

P(Yn:k<QTS‘Y ZW <7|Y)= Z i <71|Y)=Fg(r;k,n+1—k).

Since the CCBB distribution of @is is continuous, P(Y,.x < @is |Y) =P, < @is |Y).
With continuous Fy (+), using Wilks (1962, 8.7.4),

P(Yor < Q. (Y)) =P(Fy(Yonx) <7) = Fg(tik,n+1—k) =PV < @\is 1Y). U
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Proof of Corollary 1.1. The connection between beta and binomial distributions is used
below. The PDF of a Beta(a, b) distribution is (Abramowitz and Stegun 1972, 6.2.2, 26.1.33)

Lla+b) —1

ca,b) = TN -

fs(pya,b) NOROK (1-p)",

where T'(:) is the gamma function. If m is an integer, then I'(m) = (m — 1)! (Abramowitz
and Stegun 1972, 6.1.6). Thus, if a and b are integers,

(a+b—1)!

O P (1-p)"

fa(p;a,b) =

The probability mass function of a Binomial(m,p) distribution is (Abramowitz and Stegun
1972, 26.1.20)

m!

fe(d;m,p) = (?)pd(l —p)" = mp Y1 —pm .

Withd=k—1, m=n—1,andp=r,

(n—1)! _ ne
felk—Lin—1,7)= (k:—l)!(n—k:)!Tk L1 —r)nk,
Withp=7,a=k,andb=n+1—-k,
n! _ .
fa(rik,n+1—k) = (k—l)!(n—k)!Tk Y- =nfgk—1;n—-1,7). (13)

The beta and binomial CDFs can both be written in terms of the regularized incomplete beta
function I. The beta CDF is Fz(p;a,b) = I,(a,b) (David and Nagaraja 2003, eqn. (1.3.2)).
Applying 26.5.24 in Abramowitz and Stegun (1972),

from 26.5.24

1 — Fp(d;m,p) = Zstmp)—I(d+1m d) = Fz(p;d+1,m—d). (14)
s=d+1

From Theorem 1, applying (14) with p = 7 and either (d = k—2,m =n—1)or (d=k—1,m =
n),

P(Yok < Q% | Y) = P(Yok < Q5 | Y)
=Fg(r;k—1,n+1—-k)— Fa(r;k,n+1—k)
=[1—-Fpk—2;n—1,7)]—[1 = Fg(k—1;n,7)]
=Fp(k—1in,7)— Fp(k—2;n—1,7).

The two binomial CDFs may be expressed in terms of B; % Bernoulli(7):
Fp(k—2;n — ZB <k-2), Fp(k—1;n,71) ZB <k-1).

Since > | B; = By + Z?:_f B; and B,, <1,

n—1

Y Bi<k-2 = B, +ZB <1+k-2 = ZB <k-—1.
=1 =1 =1
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Thus, the CDF difference equals the probability that the latter inequality holds but the former
does not, which only occurs when Z?:_ll B;=k—1and B, =0:

Fg(k—1;n,7) — Fg(k —2;n — ZB <k—1and ZB >k—2)

use {B;}"' LBy,

n—1

=P() Bi=k—1and B, =0)
=1

n—1
=P() Bi=k-1)P(B, =0)
=1

apply (13)
=fplk—1n—1,7)(1—71)
=n"tfs(rik,n+1—k)(1— 7).

The other probability difference is derived using the same steps. From Theorem 1, applying
(14) with p = 7 and either (d=k—1,m =mn) or (d =k —1,m =n — 1), and again using the
B; defined earlier,

P(Yyr > Q\:,u | Y) =PV > @j—,s | Y)=1-P(Yux < Q\i,u | Y) —[1 =PV < @i,s | 'Y)]
=P(Yok < Qg | Y) = P(Yo < Q1o | Y)
= Fg(r;k,n—k+1) — Fg(r;k,n — k)
=[1—-Fpk—1Lin,7)]—[1—-Fpk—1n—1,7)]
:FB(k—l'n—l T7)— Fp(k —1;n,71)

ZB <k-1) ZB <k-1)

n—1
:P(ZBi:k—landanl)
=1

n—1
=P() Bi=k-1)P(B,=1)
=1

=fplk—1;n—1,7)7
= Zfﬁ(T;k:,nJr1—k‘).
n

The mode of a Beta(a, b) distribution is (a — 1)/(a + b — 2) for a,b > 1. Thus for 1 < k < n,
the mode of a Beta(k,n + 1 — k) distribution is (k — 1)/(n — 1), i.e

argsup fg(t;k,n+1—k)=(k—1)/(n—1).
0<t<1

Thus, the maximum value of the beta PDF is fg((k —1)/(n—1);k,n+1— k). Applying the
Stirling-type approximation

1 1
| — /ormmt (/2 g—merm — __ ~ = 1
m ™m e e, 12m+1<7“m<12m (15)
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of Robbins (1955) and evaluating (13) at the mode 7 = (kK —1)/(n — 1),

fo((k=1)/(n—=1);k,n+1—k)
=[n—-1-(k-1)]/(n—1)

— - D/ = D (e DG D
— e 1)/ 0 e~ /0 D
e = D = AL G 0

(=1 (k- DF1 (n — k)
"Dl k- DU (n— k)
\/%(n _ 1)1/267(7171)61%_1
" on(k — )20 — k)1 Pe (e (R grr1gran
=0
exp{—(n—1)+(k—1)+ (n—k)}exp{rn—1 — re—1 — "n—k}-
=1

n—1

—nn) V2, — =
(2m) (k—1)(n—k)

For the approximation error, since rg_1,7p_ > 0,
exp{rn_1 — Th—1 — Tn_k} < exp{r,_1} <exp{1/[12(n — 1)]} =14+ O0(n™1).

Thus,

n—1

fo((k=1)/(n—=1);k,n+1—k) < n(2m)" /2 m[

1+0(m™h.  (16)

If ¢y < k/n < ¢ for constants 0 < ¢; < c2 < 1 as n — o0, i.e., if k is of order n, then the
upper bound rate of (16) simplifies further. Specifically, this implies £ —1 > ¢;n — 1 and
n—k>n—cmn=n(l-cy),so

n—1

Dk = \/(cln “ (=)

Replacing n(27)~ /2 with O(n) in (16), the probability difference is

=[(an—1)1—-c)]2=0m""?. (@17)

use (16)

N

nVfs((k—1)/(n—1);k,n+1—k) =nt0n)O(n™?)[1+0(n )] = O(n~1/?).

If k£ is not required to have rate n, then this bound on the difference is larger. If kK or n — k
is fixed as n — oo (i.e., Y. is an “extreme order statistic”), then (17) becomes O(1) instead
of O(n=1/2), so the overall difference becomes O(1) instead of O(n~1/2). If ¢;n” < k < con”
for 0 < r < 1, then (17) becomes

n—1

= Dn—h) = \/(cln’" T y—ry

The same holds if instead cin”™ < n — k < con”. In either case, the overall difference also
becomes O(n~"/2). O

=0(n""?).

Proof of Theorem 2. For Theorem 2(i), the BB result follows immediately from Theorem 1
since
P(Yn:k + 6(Y;z:k—l—l - Ynk) < Q;k—,u | Y) = P(Ynk < Q:,u | Y)
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For the CCBB result in Theorem 2(i), first we show that (conditional on Y)

event B

event A

k
Yok + €(Yoks1 — Ynx) < Q;:S < Z Wi+ eWiy < 7. (18)
=1

Write Q* , with ¢ = max{d : Zgzl W; < 1} asin (10). We show (18) holds for ¢ < k, ¢ > k,

T,8

and ¢ = k. If ¢ < k, implying Zle W; > 7, then neither A nor B occurs:

by (10) by €>0
r— — "
for Aa Q;kgs < Yn:c+1 < Yn:k < Yn:k + E(Yn:k-i—l - Yn:k);
—————
by c<k
by €>0

k k
for B, > Wit eWp1> Y Wi>r1.
i=1 i=1

| S ——
implied by c<k

If ¢ > k, implying ¢ > k + 1 and thus Zf:ll W; < 7, then both A and B occur:

by (10) by e<1
for A, @\j—,s > Yn:c > Yn:k+1 > Yn;k + E(Yn:k—i-l — Yn:k);
by c¢>k
by e<1
k k+1
for B, Y Wi+eWpp1< » Wi<r.
=1 =1

implied by ¢>k
If ¢ = k, then event A in (18) becomes

event A in (18)

k
~ T—=) i Wi

Ynik + G(YnikJrl - Ynk) < QT,S = Ypp + (WZ/:_l)(Yn:kJrl - Ynk)

k+1
from (10) with c=k
k
N
€< T Zz:l

Wi

k
— ZWi+€Wk+1 <T.
i—1

event B in (18)

Since A <= B in (18), the corresponding CCBB probabilities are equal:

B

A

k
P{Yik + €(Vhp1r — Vo) < Qi g | Y =P Wit Wiyy < 7| Y}, (19)

i=1

The right-hand side of (19) can then be approximated by Theorem 2(i) of Goldman and
Kaplan (2017). Their theorem concerns the distribution of (linear combinations of) frac-
tional order statistics. Recall from (6) that the joint Dirichlet distribution of (W7i,..., Wy41)
is the same as the joint sampling distribution of standard uniform order statistic spacings
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(Up:1,Up:2 — Upa,y ...y 1 — Upep) given iid sampling. The sum of the first k spacings is Up,.k,
and the (k+1)th spacing is U,.p1+1— Up.k, so the CCBB distribution of Zle Wi4eWg1 equals
the sampling distribution of Uy,.pt+e = Upik + €(Un:g+1 — Unik), i.€., the fractional (k + €)th
order statistic. That is, for any value 0 < r <1,

k
P(Z Wi+ eWi1 <r | Y) = P{Un;k + G(Un;k+1 — Un:k:) < 7’}. (20)
=1

Theorem 2(i) of Goldman and Kaplan (2017) approximates the right-hand side of (20).

The following shows specifically how to apply Theorem 2(i) of Goldman and Kaplan (2017)
to Up:kre. Their Assumption 1 is iid sampling, as in our case. In their notation, J = 1,
Y1 =1, and F(-) is the standard uniform CDF: for 0 <t < 1, F(t) = t, F~(t) = t, and PDF
f(t) = 1. Thus, their Assumption 2 is satisfied for any 0 < v < 1 since f(u) > 0 and f”(u) =0
is continuous in w. Their u; and €; are the same as u and € here. So far, this makes their
general fractional L-statistic L* equal to our Up.xqe. Also, their Xq equals our u, and their Ve
equals our u(1—u). Their L’ follows a Beta((n+1)u, (n+1)(1—u)) = Beta(k+e,n+1—k—¢)
distribution. Thus, setting their Xo 4 n~1/2K equal to our 7, their Theorem 2(i) says in their
notation that

P(LY < Xo4+n""2K) —P(L' < Xo+n"Y?K)=0(n™1),
which in our notation is

PUppie <7)— Fa(k+en+1—k—¢)=0(n1). (21)

Theorem 2(i) of Goldman and Kaplan (2017) further provides an analytic expression for the
n~! term. In their notation, setting Xo = u and Xo + n~'/2K = 7, solving for their K yields
K = /n(r —u). Given u =7 —dn~'/?, K = \/n(r — u) = d. Plugging into their Theorem
2(i) yields, first in their notation and then translated into ours with K = d, Vy = u(1 — u),
Y1 =1, and €1 =€,

P(Upite <T7)—Fplk+e,n+1—k—¢)

=1 =¢(l—¢) =1
_1Kexp{¢—2f%/3<2v¢>} A e FE W) 2 +00 > log(n)]?)
T4

_ rdexp{=d/u(l — )]}

e(1—€) + O(n~**log(n)]*)

2r[u(l —w)]3
- liﬁij ¢f*_ o= oxp{=(1/2)[d/v/u(l — 0"} + O™ [log(m)]?)
= S et (VAT + 0 et (22)

using the fact that u = 7 + O(n~'/2) and writing ¢(-) as the standard normal PDF.

For Theorem 2(ii), the € = 0 result follows immediately from Theorem 1 and the result from
Wilks (1962) that Fy (Vi) £ Un ~ Beta(k,n + 1 — k) if Fy(+) is continuous, so

P(Yor < Qr(Y)) =P{Fy (Ynx) < Fy(Q,(Y))} =P{Ups < 7} = Fa(t;k,n + 1 — k).

The other result comes from (20), which dlrectly gives the equivalence for Unif(0,1) that
can be extended to Unif(a,b) as follows. Let V; ud Unif(a, b), with order statistics V},.; and

39
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Q. (V) =a+ (b—a)r. Then, (V; —a)/(b—a) “ Unif(0,1), and
P{Vn;k + G(Vn:k—i—l — Vn:k) < a+ (b — a)T}
=P{Vok —a+e€(Vikt1 —a) — (Vor —a)] < (b—a)T}
_ Vok —a Vi1 — a Vok —a
_P{ b—a +6[ b—a b—a ]<T}
= P{Un:k + E(Un:lc—l—l - Unk) < T}-

For Theorem 2(iii), plugging d = z1_o+/7(1 — 7) + O(n"1/?) from (11) into (22),
P{Yys + €Yot — Yor) < Qiy | Y} — Fy(k+e,n+1—Fk —e)

_n—1€(1—5> d (1—r 32 Mog(n)]3
= mqa(d/\/ (1=7)) + O(n~*2[log(m)]")

_ o e(l—€)z1-q
7(1—7)

$(z1-a) + O(n~*[log(n)]*),

for any 0 < a < 1. This matches the coverage probability in Theorem 4(i) from Goldman
and Kaplan (2017), noting that their p is our 7. That is, their Theorem 4(i) says that if Al
and A2 and (11) hold, then

P{Yp + (Va1 — Yor) < Qo (V) — Falk+en+1—k—e)

— n_le(i(_le—)il)_acb(ma) +O0(n~??[log(n)]?).

More directly, the n~! term in their Theorem 4(i) does not depend on the underlying distri-
bution (other than satisfying A2). Since by Theorem 2(ii) the CCBB probability equals the
coverage probability when the underlying distribution is uniform, it also equals the coverage
probability given any other distribution satisfying A2 up to the O(n~3/%[log(n)]*) remain-
der. O

Proof of Corollary 2.1. For € = 0, Corollary 1.1 gives the O(n~1/2) difference. The dif-
ference cannot be smaller over the larger range of € € [0, 1); below we show it is not bigger,
either.

For 0 < € < 1, the CCBB probability is bounded by
P(Yokar € Q7o | Y) < P(Vusre < Q5 | Y) < P(Yar < Q7 Y).
From Theorems 1 and 2, this implies
Fa(rik +1,n — k) < P(Ygge < Q% | Y) < Fg(rik,n+1—k). (23)

The difference between the unsmoothed BB probability Fg(7;k,n — k) and the bounds in
(23) can be computed using Corollary 1.1. The upper bound difference comes directly from
Corollary 1.1:

Fg(t;k+1,n—k)— Fg(r;k,n—k) = %fﬁ(T; k,n+1—k). (24)
Replacing k£ with k£ + 1 in Theorem 1 yields
P(Viapr € Qry 1Y) = Fs(rskon— k), P(Yap < QL |Y) = Fa(rik+1,n—k). (25)

Further applying Corollary 1.1 after replacing k with k + 1,

1—
Fy(rik,n — k) — Fg(rsk+1,n— k) = — fa(rik + 1,n — k). (26)
n
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This is the difference between the BB probability and the lower bound in (23).

As e goes from 0 to 1, the CCBB probability goes from the upper bound to the lower bound
in (23). Thus, the BB-CCBB difference goes from

anB(T;k—i-l,n—k). (27)

— L fa(rikn+1—k) to
n
That is,

T ~ A
- Efﬁ(T; k,n+1— k) < P(Ynik+6 < QT,u | Y) - P(YnikJré < QT,S ‘ Y)

1_
< Tng(T;kJr 1,n—k). (28)

Since the lower bound is negative and the upper bound positive, and the difference varies con-
tinuously with €, there is some magic € for which the BB and CCBB actually agree. However,
since € is determined by the nominal level and sample size (i.e., not chosen independently),
in general the difference is larger. As stated in Corollary 1.1, with ¢; < k/n < cg, the bounds
in (28) are O(n=1/2). O

41



42

Smoothed Bayesian Bootstrap Accuracy for Quantiles

B. Additional simulations

Figures 3-5 show additional power curves as discussed in Section 5.3.
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Figure 3: Power curves, 7 = 0.17; uniform (top left), normal (top right), exponential (bottom

left), and Cauchy (bottom right) populations.
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Figure 4: Power curves, 7 = 0.9; uniform (top left), normal (top right), exponential (bottom
left), and Cauchy (bottom right) populations.
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Figure 5: Power curves, 7 = 0.99; uniform (top left), normal (top right), exponential (bottom

left), and Cauchy (bottom right) populations.
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