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Abstract

In medical studies, it is common the presence of a fraction of patients who do not
experience the event of interest. These patients are people who are not at risk of the
event or are patients who were cured during the research. The proportion of immune or
cured patients is known in the literature as cure rate. In general, the traditional existing
lifetime statistical models are not appropriate to model data sets with cure rate, including
bivariate lifetimes. In this paper, it is proposed a bivariate model based on a defective
Gompertz distribution and also using a Clayton copula function to capture the possible
dependence structure between the lifetimes. An extensive simulation study was carried out
in order to evaluate the biases and the mean squared errors for the maximum likelihood
estimators of the parameters associated to the proposed distribution. Some applications
using medical data are presented to show the usefulness of the proposed model. Maximum
likelihood and Bayesian methods were used to estimate the parameters of the model.

Keywords: Clayton copula, cure rate, defective Gompertz distribution, survival analysis.

1. Introduction

The use of survival statistical models for time-to-event data is common in several areas of
study, especially in medical research. Traditional parametric and non-parametric tools, such
as, Kaplan-Meier estimator for the survival function, log-rank and Wilcoxon tests and the
semi-parametric Cox proportional hazard model, are widely used in medical data analysis (see,
e.g., Kleinbaum and Klein 2012). These methods assume that all individuals are susceptible
to the event of interest. However, for example in clinical studies, there may be patients who
will not experience the event under investigation, that is, these patients are immune to the
event or they were cured during the research. This situation is suggested when a Kaplan-
Meier estimator plot for the survival function describes a behavior with stable plateau and
large censored data at the right of the curve (Corbière, Commenges, Taylor, and Joly 2009;
Wienke 2010). In this way, the use of models that incorporate this plateau, named cure rate
models, could be a better alternative to predict or to identify prognostics factors that affects
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the survival probability.

According to Vahidpour (2016), there are at least two kinds of models for data with cure
fraction: the mixture cure rate models, also known as standard cure rate models (see, for
example, De Angelis, Capocaccia, Hakulinen, Soderman, and Verdecchia 1999; Tsodikov,
Ibrahim, and Yakovlev 2003; Lambert, Thompson, Weston, and Dickman 2006), and the
non-mixture cure rate models, which are not so popular (see Achcar, Coelho-Barros, and
Mazucheli 2012; Vahidpour 2016). Let us denote by T , the time for the occurrence of the
event of interest. Following Maller and Zhou (1996), the standard cure rate model assuming
that the probability of the time-to-event to be greater than a specified time t is given by the
survival function,

S(t) = ρ+ (1− ρ)S0(t) (1)

where ρ ∈ (0, 1) is the mixing parameter which represents the proportion of “long-term sur-
vivors”, “non-susceptible” or “cured patients”, and S0(t) denotes a proper survival function for
the non-cured or susceptible group in the population. Observe that if t→∞, then S(t)→ ρ,
that is, the survival function has an asymptote at the cure rate ρ.

On other hand, the non-mixture model defines an asymptote for the survival function, that
is associated to the cure rate (see, Tsodikov et al. 2003). In this case, the survival function
for the non-mixture cure rate model is given by,

S(t) = ρF0(t) = exp{ln(ρ)F0(t)} (2)

where ρ ∈ (0, 1) is the probability of cured patients and F0(t) = 1 − S0(t) denotes a proper
distribution function for the non-cured or susceptible group in the population.

Different approaches have been presented in the literature to model cure rate, especially for
univariate lifetime data: Boag (1949), Ghitany and Maller (1992), De Angelis et al. (1999),
Chen, Ibrahim, and Sinha (2002), Lambert et al. (2006), Castro, Cancho, and Rodrigues
(2009), Chen, Ibrahim, and Sinha (1999), Achcar et al. (2012) and Martinez, Achcar, Jácome,
and Santos (2013). However, the cure rate models are not the only ones to deal with long-term
survivors, we also could use, as an alternative, the defective models. The main property of
a proper probability distribution is that lim

t→∞
F (t) = 1 and, consequently, lim

t→∞
S(t) = 0. For

defective models, the survival function, S(t), converges to a value ρ, where ρ denotes the cure
rate. Some approaches for defective models can been found in: Cancho and Bolfarine (2001),
Balka, Desmond, and McNicholas (2011), da Rocha, Tomazella, and Louzada (2014), dos
Santos, Achcar, and Martinez (2017), Rocha, Nadarajah, Tomazella, and Louzada (2017a),
Martinez and Achcar (2018), among others.

In some studies, the main objective may be related to analyze the lifetime data assuming
two time-to-event variables. As a special situation, we could be interested in the times of
occurrence of a specified event, that could be reinfection, in the treatment of both lungs where
we could use univariate lifetime models assuming independence between both time-to-event
variables. However, in this situation, the times could not be independent since the patient
needs both lungs working to survive. In this case, there may be the presence of a dependence
structure that is not present when using univariate analyzes associated with each response,
which is a motivation for the use of bivariate models. Different bivariate parametric models
are introduced in the literature for the analysis of bivariate lifetime data: Marshall and Olkin
(1967), Block and Basu (1974), Vaupel, Manton, and Stallard (1979) and Block and Basu
(1974), Wienke, Lichtenstein, and Yashin (2003), Yu and Peng (2008), Achcar, Coelho-Barros,
and Mazucheli (2013), Fachini, Ortega, and Cordeiro (2014) and de Oliveira, Achcar, Peralta,
and Mazucheli (2019). As an alternative, the dependence structure can be specified by using
a Copula function due to its simplicity. According to Hofert, Kojadinovic, Mächler, and
Yan (2019) a copula is a multivariate distribution function with standard uniform univariate
marginals. Many copula functions are considered to model data with cure rate: Wienke,
Locatelli, and Yashin (2006), Li, Tiwari, and Guha (2007), Fachini et al. (2014), Martinez
and Achcar (2014), Coelho-Barros, Achcar, and Mazucheli (2016) and Achcar, Martinez,



146 The Bivariate Defective Gompertz Distribution Based on Clayton Copula

and Tovar Cuevas (2016). More recently, Peres, Achcar, and Martinez (2020) conducted a
comprehensive review of fifteen different copula functions that can be used to model survival
data.

The main goal of this paper is to explore the use of the Clayton copula in the analysis of
bivariate lifetime data assuming a bivariate defective Gompertz distribution to estimate the
cure rate. Different correlation values between the time-to-event variables are considered
in a simulation study that was done in order to describe the behavior of the dependence
structure of the proposed model. The maximum likelihood method using existing numerical
optimization algorithms was considered to get the inferences of interest under a frequentist
approach and MCMC (Markov Chain Monte Carlo) simulation methods, as the popular Gibbs
sampling and Metropolis-Hastings algorithms, were used to get the posterior summaries of
interest under a Bayesian approach (Gelfand and Smith 1990; Chib and Greenberg 1995).
The paper is organized as follows: in Section 2, it is presented the proposed methodology
using the Clayton copula as well the inference methods. The simulation procedures and the
obtained results are showed in Section 3. In Section 4, four applications related to real medica
data are presented, using the proposed methodology. Finally, Section 5 closes the paper with
some concluding remarks.

2. Statistical methods

2.1. Univariate defective Gompertz distribution

The main property of defective models is a survival function S(t) that converges to a value
ρ as t tends to infinity, where ρ denotes the cure rate parameter. Cantor and Shuster (1992)
introduced the two-parameter defective Gompertz (DG) distribution also studied by Gieser,
Chang, Rao, Shuster, and Pullen (1998) and dos Santos et al. (2017). The survival function
for the DG distribution is given by,

S(t) = exp

{
−α
β

[1− exp(−βt)]
}
, (3)

where t > 0 and α > 0 is the shape parameter and β > 0 is the scale parameter. Taking the
limit of the survival function from the DG distribution, the cure rate parameter ρ is given by

ρ = lim
t→∞

S(t) = exp

{
−α
β

}
. (4)

The correspondent probability density and hazard function are respectively given by

f(t) = α exp(−βt) exp

{
−α
β

[1− exp(−βt)]
}

and h(t) = α exp(−βt). (5)

Note that the hazard function has only decreased shape, and this is an important limitation
of a model based on the DG distribution.

2.2. Copula functions

Copula functions are used to create a joint distribution function of two or more marginal
univariate distributions following standard uniform distribution U(0, 1) to form a multivariate
distribution (Nelsen 2007). Considering a m-variate function F , the respective copula is a
function C : [0, 1]m → [0, 1] that satisfies

F (y1, . . . , ym) = C(F1(y1), ..., Fm(ym);φ) = Cφ(F1(y1), ..., Fm(ym)), (6)



Austrian Journal of Statistics 147

where φ is a parameter that measures the dependence between the marginals. The join
probability density is given by

f(y1, . . . , ym) = cφ(F1(y1), ..., Fm(ym))

m∏
i=1

fi(yi), (7)

where fi(yi), i = 1, ...,m, are the marginal density functions and cφ(F1(y1), ..., Fm(ym)) is the
derivative of order m of (6) in relation to y1, ..., ym. If the random variables are independent,
then cφ(F1(y1), ..., Fm(ym)) = 1.

For the bivariate case (m = 2) and under the context of survival analysis, considering S1(t1)
and S2(t2) as the univariate survival functions, the bivariate joint survival function S(t1, t2)
is defined by a copula function given by

S(t1, t2) = Cφ(S1(t1), S2(t2)), (8)

for t1 > 0 and t2 > 0, with the respective joint probability density function given by

f(t1, t2) =
∂2S(t1, t2)

∂t1∂t2
= f1(t1)f2(t2)cφ(S1(t1), S2(t2)), (9)

where cφ(u, v) is the copula density function defined by

cφ(u, v) =
∂2

∂u∂v
Cφ(u, v), (10)

where u = S1(t1) and v = S2(t2).

The estimation of the correlation between two random variables using copula functions usually
is made using the Kendall’s tau (τk) and Spearman’s rho (τs). According to Joe (2014), those
coefficients can be expressed by the equations

τk = 1− 4

∫ 1

0

∫ 1

0

∂Cφ(u, v)

∂u

∂Cφ(u, v)

∂v
dudv (11)

and

τs = 12

∫ 1

0

∫ 1

0
Cφ(u, v) dudv − 3 (12)

The literature introduces many copula functions which could be considered to build different
bivariate lifetime distributions. However, it is important to choose copula functions suitable
for each type of dependence structure in the applications. In each application, it is possible to
obtain some information on the dependence structure by an exploratory graphical analysis,
but unfortunately this can be difficult in some cases. Another framework that can help in
choosing the copula function is to determine the empirical correlation between the random
variables. This correlation can be obtained through iterative multiple imputation (Schemper,
Kaider, Wakounig, and Heinze 2013). In the present study, we explore the Clayton copula
function as a special case when appropriate in the data analysis. The Clayton copula is a
popular choice to be fitted by bivariate time-to-event data, due its ability to describe positive
dependence.

The Clayton copula was first introduced by Clayton (1978) and later studied by Cook and
Johnson (1981) and Oakes (1982). Assuming this copula function, the joint survival function
S(t1, t2) is given by

S(t1, t2) =
{

[S1(t1)]
−φ + [S2(t2)]

−φ − 1
}−1/φ

, (13)

where S1(t1) and S2(t2) are, respectively, the marginal survival functions for the random
variables T1 and T2 and φ ∈ (0,∞). When φ → 0, there is an indication that T1 and T2 are
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independent. The relationship between the copula parameter ρ and the dependence structure
can be interpreted by the Spearman’s correlation τs(φ). However, obtaining this measure
using the equation (12) can be a difficult task. The Kendall’s correlation coefficient is given
by

τk(φ) =
φ

φ+ 2
. (14)

Note that 0 < τ(φ) ≤ 1, where if φ→∞, we have total dependence between T1 and T2. The
Clayton copula, is thus adequate to model positive dependences and it has the advantage
of measuring a wide range of positive correlations. The respective joint probability density
function for T1 and T2 is given by

f(t1, t2) = f1(t1)f2(t2)(1 + φ) [S1(t1)S2(t2)]
−1−φ

{
[S1(t1)]

−φ + [S2(t2)]
−φ − 1

}−2−1/φ
, (15)

where f1(t1) and f2(t2) are, respectively, the marginal probability density functions for the
random variables T1 and T2.

2.3. Bivariate defective Gompertz distribution

The marginal probability density and survival functions for the lifetimes Tj (j = 1, 2) consid-
ering the DG distribution are given, respectively, by

fj(tj) = αj exp(−βjtj) exp

{
−αj
βj

[1− exp(−βjtj)]
}

(16)

and

Sj(tj) = exp

{
−αj
βj

[1− exp(−βjtj)]
}
. (17)

Thus, the correspondent cure rates are given by

ρj = exp

{
−αj
βj

}
, (18)

where j is equal to 1 or 2, corresponding to the time-to-event variables T1 and T2, respectively.

The joint survival and density functions for the bivariate defective Gompertz distribution
using a Clayton copula function (13) (BDGD) are given, respectively, by

S(t1, t2) =

{[
exp

{
−α1

β1
[1− exp(−β1t1)]

}]−φ
+

[
exp

{
−α2

β2
[1− exp(−β2t2)]

}]−φ
− 1

}−1/φ
,

(19)
and,

f(t1, t2) = α1α2 exp(−β1t1 − β2t2) exp

{
−α1

β1
[1− exp(−β1t1)]−

α2

β2
[1− exp(−β2t2)]

}
× (1 + φ)

[
exp

{
−α1

β1
[1− exp(−β1t1)]−

α2

β2
[1− exp(−β2t2)]

}]−1−φ
{[

exp

{
−α1

β1
[1− exp(−β1t1)]

}]−φ
+

[
exp

{
−α2

β2
[1− exp(−β2t2)]

}]−φ
− 1

}−2−1/φ
(20)

2.4. Inference methods

Maximum likelihood estimation

To obtain the bivariate likelihood function, let us assume a random sample of size n, where
each sample has two lifetimes T1 and T2. Let us consider that both T1 and T2 can be right-
censored and that this censoring is independent of each time-to-event. For each ith observation
(i = 1, . . . , n) it is possible to classify the data into one of four classes given by,
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(1) C1 : both t1i and t2i are uncensored lifetimes;

(2) C2 : t1i is a complete lifetime and t2i is a censored lifetime;

(3) C3 : t2i is a complete lifetime and t1i is a censored lifetime;

(4) C4 : t1i and t2i are censored lifetimes.

Thus, the likelihood function is given by

L =
∏
i∈C1

[f(t1i, t2i)]
∏
i∈C2

[
−∂S(t1i, t2i)

∂t1i

] ∏
i∈C3

[
−∂S(t1i, t2i)

∂t2i

] ∏
i∈C4

[S(t1i, t2i)] , (21)

where f(t1, t2) is the joint probability function of T1 and T2, given in equation (15) and
S(t1, t2) is the joint survival function given by equation (13) considering the Clayton copula.

Let us consider two indicator variables, denoted by δ1i and δ2i, where δki = 1 when tki is an
observed lifetime and δki = 0 when tki a censored observation, k = 1, 2 and i = 1, ..., n. In
this way, it is possible to rewrite the likelihood function as

L =
n∏
i=1

[f(t1i, t2i)]
δ1iδ2i

[
−∂S(t1i, t2i)

∂t1i

]δ1i(1−δ2i) [
−∂S(t1i, t2i)

∂t2i

]δ2i(1−δ1i)
[S(t1i, t2i)]

(1−δ1i)(1−δ2i) .(22)

In the absence of censored observations, the expression above is reduced to the form,

L =

n∏
i=1

∂2S(t1i, t2i)

∂t1i∂t2i
=

n∏
i=1

f(t1, t2). (23)

For the Clayton copula, the first partial derivatives of S(t1, t2) with respect to t1 and t2 are
given by the following relations,

−∂S(t1, t2)

∂t1
= f1(t1)S1(t1)

−(φ+1)
[
S1(t1)

−φ + S2(t2)
−φ − 1

]−(1+1/φ)
(24)

and

−∂S(t1, t2)

∂t2
= f2(t2)S2(t2)

−(φ+1)
[
S1(t1)

−φ + S2(t2)
−φ − 1

]−(1+1/φ)
. (25)

Bayesian analysis

Assuming the proposed model, let θ = (α1, β1, α2, β2, φ) be the vector of unknown parame-
ters. Under a Bayesian framework, the joint posterior distribution for the model parameters
is obtained by combining the joint prior distribution of the parameters and the likelihood
function given by equation (22) (Gelman, Stern, Carlin, Dunson, Vehtari, and Rubin 2013).
To simulate samples from the joint posterior distribution, we could consider the use of MCMC
(Markov Chain Monte Carlo) algorithms implemented in the R2jags package (Plummer et al.
2003) in R software, where we just need to specify the data distribution and the prior distri-
bution for the parameters.

Under a Bayesian approach, we assume independent uniform prior distributions for the pa-
rameters α1, β1 α2, β2 and φ. That is, we assume α1 ∼ Unif(a1, b1), α2 ∼ Unif(a2, b2),
β1 ∼ Unif(a3, b3), β2 ∼ Unif(a4, b4) and φ ∼ Unif(a6, b6), where ak and bk,k = 1, ..., 4, are
known hyperparameters, and Unif(a, b) denotes a uniform distribution with mean (a+ b)/2
and variance (a + b)2/12. The values of hyperparameters a and b were chosen in order to
reflect prior knowledge of experts and better performance of the MCMC algorithm in terms
of good convergence. These values were obtained using empirical Bayesian methods (Carlin
and Louis 2000) as information on the cure rate obtained from the non-parametrical Kaplan-
Meier estimator for the survival function and information on the correlation obtained from
empirical estimators.
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3. Simulation study

The simulation study was carried out in order to evaluate the performance of the maximum
likelihood (ML) estimation. The coverage probability of the Wald confidence intervals for the
parameters α1, α2, β1, β2, ρ1, ρ2 and φ, with their corresponding bias and mean squared
errors (MSE) were considered. Calculations of the coverage probabilities were carried out for a
nominal coverage of 95%, corresponding to 95 successes in each 100 simulated samples. Since
ρ1 and ρ2 are functions of other parameters, the Wald confidence interval for these parameters
were obtained using the delta method (Oehlert 1992). In this simulation study, the coverage
probability is defined as the observed percentage of times that the confidence interval includes
the respective parameter. The bias and MSE in the estimation of a parameter η are given,
respectively, by,

B̂ias(η̂) =
1

N

N∑
i=1

(
η̂(i) − η

)
and M̂SE(η̂) =

1

N

N∑
i=1

(
η̂(i) − η

)2
, (26)

where we denote η̂ as each α̂1, α̂2, β̂1, β̂2, ρ̂1, ρ̂2 and φ̂, η is the nominal value of the
corresponded parameter, and N is the number of simulated samples of size n.

To generate bivariate data, we used an adaptation of the algorithm introduced by Balakrish-
nan and Lai (2009) and used by Ribeiro, Suzuki, and Saraiva (2017) and by Peres, Achcar,
and Martinez (2018), along with an algorithm to defective distributions presented by Rocha,
Nadarajah, Tomazella, Louzada, and Eudes (2017b) and used by Martinez and Achcar (2017,
2018). We generate random samples of size n = 50, 75, 100, . . . , 500 in twelve different sce-
narios presented in Table (1). The steps of the proposed generation algorithm are described
below.

Step 1: Fix values for the parameters: α1, α2, β1, β2 and φ.

Step 2: Calculate ρ1 and ρ2.

Step 3: Generate n random samples from M1i ∼ Bernoulli(1− ρ1).

Step 4: Generate n random samples from u1i ∼ U(0, 1− ρ1).

Step 5: For i = 1, ..., n consider t∗1i =∞ if Mi1 = 0 and t∗1i = F−11 (u1i) if Mi1 = 1, where the
inverse of the distribution function is given by,

F−11 (u1i) = − 1

β1
ln

[
1 +

β1
α1

ln(1− u1i)
]
. (27)

Step 6: Generate n random samples from u∗1i ∼ U(0,max(t∗1i)), considering only finite values
of t∗1i.

Step 7: Consider t1i = min(t∗1i, u
∗
1i).

Step 8. Pairs of values (t1i, δ1i) are thus obtained, where δ1i = 1 if t1i < u∗1i and δ1i = 0 if
t1i > u∗1i.

Step 9: Generate n random samples from M2i ∼ Bernoulli(1− ρ2).

Step 10: Generate n random samples from u2i ∼ U(0, 1− ρ2).

Step 11: Generate n random samples from ki ∼ Bernoulli(φ).

Step 12: Get values from wi, considering the following expression,

wi = min

{
u
−(φ+1)
1i (uφ1i + uφ2i)

−
(

1+φ
φ

)
, 1− ρ2

}
. (28)

This expression is the derivative of (13) with respect to ui1, when S(t1i) = ui1 and
S(t2i) = wi.
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Step 13: For i = 1, ..., n consider Ki = M1i if ki = 1 and Ki = M2i if ki = 0.

Step 14: For i = 1, ..., n consider t∗2i = ∞ if Ki = 0 and t∗2i = F−12 (wi) if Ki = 1, where the
inverse of the distribution function is given by,

F−12 (u1i) = − 1

β2
ln

[
1 +

β2
α2

ln(1− wi)
]
. (29)

Step 15: Generate n random samples from u∗2i ∼ U(0,max(t∗2i)), considering only finite values
of t∗2i.

Step 16: Consider t2i = min(t∗2i, u
∗
2i).

Step 17. Pairs of values (t2i, δ2i) are thus obtained, where δ2i = 1 if t2i < u∗2i and δ2i = 0 if
t2i > u∗2i.

Table 1: Nominal values assumed for each scenario considered in the simulation study

Scenarios

1 2 3 4 5 6 7 8 9 10 11 12

P
ar

am
et

er

φ 1.0 3.0 10.0

α1 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5

α2 1.0 0.5 0.5 1.0 1.0 0.5 0.5 1.0 1.0 0.5 0.5 1.0

β1 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5 0.8 1.5

β2 0.8 1.5 1.5 0.8 0.8 1.5 1.5 0.8 0.8 1.5 1.5 0.8

In the presence of a cure rate, it was considered nominal values for the parameters such that
the samples generated have low and high percentage of cure rate in scenarios with parameter
values αi = 1.0 and βi = 0.8, where the cure rate parameter is given by ρi ≈ 0.2865, and
the scenarios parameter values αi = 0.5 and βi = 1.5 where we have cure rate parameter
given by ρi ≈ 0.7165 (i = 1, 2). From scenarios 1 to 4 (combinations of the fixed parameter
values) in Table (1), it was considered φ = 1.0, that is, τk(φ) = 0.3333 and τs(φ) = 0.4790,
which corresponds to a moderate correlation between T1 and T2. from 5 to 8 (combinations
of the fixed parameter values) given in Table (1), it was considered φ = 3.0, so τk(φ) = 0.6000
and τk(φ) = 0.7864, representing a high correlation between T1 and T2. Finally, in the
scenarios from 9 to 12 (combinations of the fixed parameter values), it was considered very
high correlation between T1 and T2, with φ = 10.0, which leads to τk(φ) = 0.8333 and
τs(φ) = 0.9583 (see Table 1).

The ML estimates and corresponding standard errors for each simulated sample were com-
puted using the maxLik package in R (Henningsen and Toomet 2011), and the Nelder-Mead
maximization method, considering 95% nominal confidence intervals for the parameters. It
was obtained in each scenario (Table (1)) the ML estimates of the parameters, the coverage
probability of the confidence intervals, bias and MSE for each parameter of interest ρ1, ρ2
and φ, as well as the percentage of samples resulting in the presence of monotone likelihood
functions (error informed by maxLik).

3.1. Results

This section presents simulations results, for each scenario presented in Table (1). It was
observed that the percentage of censored data generated in the proposed simulation algorithm
(Section 3) was about 5% higher than the respective percentage of the nominal cure rate (ρ1
and ρ2) considered in the generating samples. Moreover, for each simulated sample, it was
calculated the Kendall’s correlation τk by the Clayton copula approach and the Spearman
correlation τs by numerical methods. Also, a re-parametrization of the parameter φ was
considered in order to obtain flexible results for the coverage probability.
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Figure (1) shows the box-plots of the ML estimates of the parameter ρ1 in all scenarios
considering different sample sizes (50 to 500), which enables us to observe the variability of
these estimates. In each graph of Figure 1, horizontal dotted line refers to the nominal values
of the parameter ρ1. It is possible to see that the estimated values for ρ1 are closer to the
nominal vales, and the sampling variability decreases as the sample size increases as expected.
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Figure 1: Box-plots of the maximum likelihood estimates for ρ1 in each considered scenario
considering different sample sizes

Figure (2) shows the box-plots of the ML estimates of the parameter ρ2 in all considered
scenarios, considering samples of size 50 to 500 in increments of 25. Comparing the results
from Figures 1 and 2, we observe the presence of a higher bias for the estimates of ρ2 than
for the estimates of ρ1, given that the estimated and the nominal values of ρ1 and ρ2 are not
close to each other in scenarios 3, 4, 7, 8, 11 and 12. The higher biases and variability of the
ML estimates for the parameter ρ2 are observed in scenarios where we have high correlation
between T1 and T2. Note that the estimates with lower biases are seen in the estimation of
the parameter ρ1 instead of the parameter ρ2. This is probably due to the correlation between
T1 and T2 included in the simulation process.

The box-plots for the estimates of φ are presented in the Figure (3). From these plots,
it is possible to observe a great variability of the ML estimates of φ, and this variability
increases as the correlation between T1 and T2 increases. Morever, it is also possible to
observe relatively small interquartile ranges, indicating that most of the estimates obtained
are highly concentrated in the central portion of the respective distributions, even in the
presence of biases observed in the scenarios with higher cure rate. In addition, it is observed
an expressive presence of bias in scenarios with higher cure rates, so that the medians of the
estimates are slightly above the expected nominal values. In general, we could conclude that
the model is adequate in these scenarios when the sample size is at least of 100 individuals.

Figures (4) and (5) shows the estimatives for the Kendall and Spearman correlation coeffi-
cients. Despite the difficulty to get an analytical expression for the Spearman correlation, it
was obtained using numerical methods (see Section 2.2). Due to bias of the parameter φ (see
Figure (3)) the Kendall and Spearman correlation measures were quite a bit higher than the
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Figure 2: Box-plots of the maximum likelihood estimates for ρ2 in each considered scenario
considering different sample sizes
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Figure 3: Box-plots of the estimates for φ, considering the maximum likelihood estimation
method in different scenarios and different sample sizes
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expected nominal values for these coefficients. These differences are identified mainly in the
scenarios with higher cure rates and with high correlation between T1 and T2. In general,
there is a great variability in the measurements obtained by Kendall and Spearman methods,
despite the obtained results being close to the nominal values. However, this does not apply
in situations where high Spearman correlation values between T1 and T2 are observed; in this
case, almost all measurements are close to 1.
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Figure 4: Box-plots of the estimates for τk, considering the maximum likelihood estimation
method in different scenarios and different sample sizes

The confidence intervals may include or not the nominal values of the correspondent param-
eters. It was defined that the observed coverage probability is the number of times where the
nominal value is inside to the corresponding confidence interval. This event can be modeled
by a binomial distribution Binomial(n, p), where n is number of simulated samples and p is
the considered nominal coverage probability. In this paper, we used n = 1000 and p = 0.95 for
each sample size used in the ML estimation, thus rejecting the equality between the nominal
expected coverage probability and the observed coverage probability assuming a significance
level of 5%, if the observed coverage probability is outside the range interval (0.9365, 0.9635).

Figure (6) describes the coverage probability, bias and mean squared error for the parameter
φ, in each considered scenario. Observing the graphs for φ = 1.0 (low correlation between
T1 and T2), the coverage probability is close to 95%. In the other scenarios the coverage
probability in general it is greater than 95%. Besides that, it is possible to observe small
biases, except in scenario 2, that considers a higher cure rate and produced a relatively high
bias. The same does not apply to the cases φ = 3.0 and φ = 10.0. The scenarios 2 and 9 do
not produce 95% coverage probability, and there are still large biases. As an important result,
we can observe that when φ = 10.0 the coverage probability is satisfactory for sample sizes
larger than 300. Also it is observed that there are scenarios with high coverage probability
when φ = 10.0, however, this is due to the high estimated standard error for the parameter φ.
In this case, there is the presence of high bias in the estimated value for the parameter φ, so
the estimated range is not closed to the nominal value. This happens especially in scenarios
with the presence of high cure rate in at least one of the time-to-event variables.
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Figure 5: Box-plots of the estimates for τs, considering the maximum likelihood estimation
method in different scenarios and different sample sizes

The standard errors for the estimates of the parameters ρ1 and ρ2 were calculated using the
delta method, since these parameters are obtained as functions of the parameters α1, α2, β1
and β2. Figure (7) shows the coverage probability, bias and mean squared error for the cure
rate parameter ρ1, in all considered scenarios. The coverage probability has higher values in
all assumed scenarios, given that the estimates for ρ1 have lower bias and a relatively higher
standard error. In these situations, probabilities are close to 100%. In addition, these results
reinforce the conclusions previously obtained from Figure 1, where it is possible to conclude
that the ML method adequately estimates the cure rate values.

Figure (8) shows the results of the simulation study considering the parameter ρ2. The
coverage probability is satisfactorily close to 95% in almost all scenarios. The same is not
observed in the scenarios with different cure rates, in particular when the parameter ρ1 is
greater than parameter ρ2, where we observed that the bias of the estimate for the parameter
ρ2 does not tend to 0, and the MSE is relatively high. This probably occurred due to the
correlation considered in the simulation process of samples are pushing ρ2 nearest to ρ1. In
all other scenarios, the bias of parameter ρ2 is closest to 0.

It was noted during the simulation process, the presence of simulated samples that resulted
in monotone likelihood functions, mainly when we considered samples sizes less than 200 and
with high value for φ.

The coverage probability, biases and MSE for the estimators of the parameters α1 α2, β1 and
β2 were also evaluated. Considering the scenarios with φ = 1.0 and φ = 3.0, the coverage
probability, biases and MSE behave as expected, except for the estimator of the parameter
β2 that exhibit high bias and unexpected coverage probability. The parameters have different
behaviors, reacting in different ways for each combination of parameter values, but it is noted
that in the scenarios with low cure rate the bias are closer to zero. In addition, for all
parameters, the bias and MSE decrease as the sample size increases, as it is expected.

It is observed in general a high bias related to the estimated parameters, and this bias is
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Figure 6: Plots of the coverage probability, biases and MSE for φ, considering the maximum
likelihood estimation method

large enough to impair the probabilities of coverage of the correspondent confidence intervals.
However, the range of bias were low compared to the parameter estimates. Probably, the
previously mentioned problems associated with the parameter estimation are consequences of
the method used to generate samples assuming a dependence structure between T1 and T2. In
addition, the fit of BDGD bivariate model was verified for some samples by comparison of the
estimated survival function with the Kaplan-Meier estimator. From these plots it was possible
to see that the estimated survival curves by the BDGD model were satisfactorily closed to
Kaplan-Meier curve, for both lifetimes T1 and T2. Besides, we can see in the graphs large
dispersion, especially in small samples, which is probably due to problems of identifiability of
the fraction curing models with mixtures, as described by Li, Taylor, and Sy (2001).

In a brief additional simulation study, it was considered a reparametrization for α1, α2, β1 and
β2, where: γk = exp(αk) and λk = exp(βk); also ηk = 1

αk
and θk = 1

βk
, k=1,2. However, no

significant changes were observed comparing the obtained inference results with the previously
inference results presented in this section.

4. Applications to real data sets

In order to illustrate the proposed model, we present in this section four applications with real
data sets. The first data set is related to breast cancer assuming 97 patients underwent surgical
treatment for breast cancer followed up for a period between the year 2000 to 2011. The second
dataset was introduced by Group et al. (1976) and is related to diabetic retinopathy disease.
The third dataset is related to cervical cancer where it was observed two times: the disease-
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Figure 7: Plots of the coverage probability, biases and MSE for ρ1, considering the maximum
likelihood estimation method

free survival (DFS), defined as the time from the date of surgery to the first event of disease
recurrence and the overall survival (OS), defined as the time from the date of surgery to the
death. Finally, the fourth dataset is related to smokers patients that have tobacco-stained
fingers. In each application, the Kendall correlation τk and the Spearman correlation τs,
were compared with the empirical correlation between T1 and T2, denoted by τe, obtained by
the package SurvCorr (Ploner, Kaider, and Heinze 2015). Also, it was compared the hazard
function estimates by the proposed model with the empirical hazard function (obtained using
the package “bshazard” Rebora, Salim, and Reilly 2018).

The obtained Bayesian estimates were based on 2,000 simulated Gibbs samples for the joint
posterior distribution of interest recorded by every 50th iteration from 1,000,000 Gibbs sam-
ples after a “burn-in” period of 50,000 samples deleted to eliminate the effect of the initial
values assumed in the simulation procedure. The convergence of the MCMC samples was
checked by visual examination of traceplots of the simulated samples and convergence and
stationary tests using the package coda Plummer, Best, Cowles, and Vines (2006). Approx-
imately non-informative uniform prior distributions were assumed for the parameters of the
BDGD model in almost all applications.

4.1. Application to a breast cancer data set

As first approach, it was considered a real dataset related to a cohort study, where 97 patients
underwent surgical treatment for breast cancer followed up for a period between the year
2000 to 2011. For further details about the dataset, the reader should see Shigemizu, Iwase,
Yoshimoto, Suzuki, Miya, Boroevich, Katagiri, Zembutsu, and Tsunoda (2017). For the
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Figure 8: Plots of the coverage probability, biases and MSE for ρ1, considering the maximum
likelihood estimation method

bivariate lifetime application it was considered as T1 the disease-free survival time (DFS) and
T2 representing the overall survival time (OS). In the dataset, there is 75% censored data for
the disease-free survival time (T1) and 80% censored data for the overall survival time (T2).

Table (2) shows the estimates assuming the ML and the Bayesian methods for each param-
eter of the BDGD model assuming breast cancer data. Observe that the ML and Bayesian
estimates are very close to each other, which means that the methods could be interchange-
able. Moreover, the estimated values for τs obtained by copula functions are greater than the
empirical correlation obtained by the R package Survcorr (τe = 0.8702 (0.5288, 0.9691)), but
we can notice that the estimated value of τs is contained in the 95% confidence interval of τe,
as shown in the simulation results.

The obtained Bayesian estimates for the parameters α2 and β2 are very close to the ML
estimates, although there is a difference for the parameter ρ2. This difference can be seen
in Figure 9 showing the estimated survival (upper panels) and hazard (lower panels) curves
for BDGD model proposed in this study. On the panel (b) of Figure 9, the survival curve
estimated by a Bayesian approach diverges slightly from the Kaplan-Meier estimator for the
survival function. In additional, on panel (d) of Figure 9, the hazard function estimated from
ML approach is the closest to the empirical curve estimated by bshazard.

For T1 both estimation methods resulted in similar curves. From the Kaplan-Meier plot for
the survival function, it can be observed high cure rates in both lifetimes, where in T1 there
is a plateau close to the value 0.70, and in T2 close to the value 0.75. These values are close
to those estimated by the BDGD model. For the hazard curve, the model has a satisfactory
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fit to capture the decreasing shape of the empirical hazard function.

Table 2: Maximum likelihood estimates for the parameters of the BDGD model for the breast
cancer data

Parameters
Maximum Likelihood Estimators Bayesian Estimators

Estimate
Standard

Error
95% CI Median 95% CrI

α1 0.1163 0.0305 (0.0858, 0.1470) 0.1139 (0.0326, 0.1486)
α2 0.0576 0.0190 (0.0386, 0.0767) 0.0511 (0.0308, 0.0779)
β1 0.2877 0.0853 (0.2025, 0.3731) 0.2747 (0.2032, 0.3910)
β2 0.1980 0.0895 (0.1085, 0.2877) 0.2125 (0.1085, 0.2963)
ρ1 0.6674 0.1096 (0.4525, 0.8823) 0.6752 (0.5143, 0.8943)
ρ2 0.7474 0.1248 (0.5028, 0.9921) 0.7865 (0.5894, 0.8867)
φ 8.2022 2.0747 (4.1358, 12.2686) 7.8601 (4.1743, 11.7891)

τk 0.8039 0.0575 0.6912, 0.9167 0.7986 (0.6772, 0.8551)
τs 0.9431 - - 0.9401 (0.8555, 0.9681)

95%CI: 95% confidence interval; 95%CrI: 95% credible interval.
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Figure 9: Plots of the survival functions estimated by Kaplan-Meier method and from the
BDGD (upper panels) and respective hazard functions (lower panels) for DFS time (panels
(a) and (c)) and OS time (panels (b) e (d)), considering breast cancer data

4.2. Application to a diabetic retinopathy data set

The diabetic retinopathy data used in the second application was introduced by Group et al.
(1976). In this study, 197 diabetic patients patients up to 60 years old were followed-up for
a fixed period. Each patient had one eye randomized for laser treatment and the other eye
receiving no treatment. For a bivariate analysis T1 is the time up to visual loss for the control
eye, while T2 corresponds to the time up to visual loss for the treatment eye. There was in
this study 43% censored data of not treated eyes and 73% censored data of treated eyes.
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Table 3 shows the estimates assuming the ML and the Bayesian methods for the parame-
ters of the BDGD model assuming the diabetic retinopathy data. In this case, under both
approaches, the estimate of the cure rate percentage are basically identical. Moreover, the
Bayesian estimate for τs is smaller than the estimate obtained in the ML approach. However,
the values of τs obtained from copula functions are significantly greater than the empirical
correlation estimated by the Survcorr (τe = 0.3491 (0.1071, 0.5522)), and τs is contained in
the 95% confidence interval for τe.

Figure 10 compares the survival curves S(ti) (upper panels) estimated from the Kaplan-
Meier method and the empirical hazard function λ(ti) (lower panels), i = 1, 2, with the
survival and hazard curves fitted by the BDGD model considering the retinopathy data.
The ML estimates and Bayesian estimates produced similar plots. From the Kaplan-Meier
estimator for the survival function, it was observed that the estimated fitted curves were very
satisfactory for both T1 and T2. For the hazard curve, the model have a satisfactorily fit
to capture the decreasing shape from the empirical hazard function. The estimated hazard
curves using copula functions do not follow the total shape of the empirical hazard function
for T1 (panel (c)); it is possible that a more flexible distribution is needed for a better fitting.
Also, it is important to say, that for this application it was needed to assume more informative
prior distribution for the parameters βi(i = 1, 2) to get better convergence for the MCMC
simulation algorithm.

Table 3: Maximum likelihood estimates for the parameters of the BDGD model for the
retinopathy data

Parameters
Maximum Likelihood Estimators Bayesian Estimators

Estimate
Standard

Error
95% CI Median 95% CrI

α1 0.2781 0.0441 (0.2339, 0.3223) 0.2688 (0.2032, 0.3453)
α2 0.1502 0.0325 (0.1178, 0.1828) 0.1486 (0.1022, 01973)
β1 0.2239 0.0789 (0.1350, 0.2929) 0.2045 (0.1050, 0.2956)
β2 0.3109 0.1104 (0.2005, 0.4214) 0.3277 (0.2068, 0.4442)
ρ1 0.2725 0.1324 (0.0129, 0.5321) 0.2652 (0.0626, 04649)
ρ2 0.6267 0.1262 (0.3693, 0.8642) 0.6342 (0.4372, 0.7708)
φ 0.9500 0.3479 (0.6021, 1.2979) 0.9038 (0.5228, 1.2805)

τk 0.3220 0.0379 (0.2476 0.3965) 0.3112 (0.2072, 0.3903)
τs 0.4634 - - 0.4418 (0.3052, 0.5518)

95%CI: 95% confidence interval; 95%CrI: 95% credible interval.

4.3. Application to a cervical cancer data set

In this application, it is considered a medical data set from a published study by Brenna,
Silva, Zeferino, Pereira, Martinez, and Syrjänen (2004) where it was also assumed the BDGD
model. In this study 118 women received a standard treatment recommended to invasive
cervical cancer. In a bivariate analysis T1 is the disease-free survival (DFS), defined as the
time from the date of surgery to the first event of disease recurrence and T2 is the overall
survival (OS), defined as the time from the date of surgery to the death. There is 48%
censored data in T1 and 53% censored data in T2.

Table 4 presents the ML and Bayesian estimates for the parameters of the BDGD model
assuming the cervical cancer data. In this case, the values of τs obtained by copulas functions
are very close to the empirical correlation obtained by Survcorr (τe = 0.9118 (0.8477, 0.9498)),
and the estimate ranges for τs estimated from Bayesian approach and τe are very similar. Peres
et al. (2020) presented similar results for the correlation between T1 and T2 where the obtained
value for the correlation between T1 and T2 was 0.8933.
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Figure 10: Plots of the survival functions estimated by Kaplan-Meier method and from the
BDGD (upper panels) and respective hazard functions (lower panels) for control eye (panels
(a) and (c)) and treatment eye (panels (b) and (d)), considering the diabetic retinopathy data

In general, the ML and Bayesian estimates produced almost identically plots for survival
function and hazard function (Figure 11). Also, for the lifetime T1, the fitted hazard based
on the BDGD model has a slightly change from the empirical hazard curve obtained from
package “bshazard” (panel (c)). However, the cure rate estimate for both times T1 and T2
was quite bad, that is, for T2 the cure rate estimated by the ML and Bayesian approaches are
26% which is quite different from the 40% from the Kaplan-Meier curve. Finally, the hazard
curves based on the BDGD fitting are close to the empirical hazard function (panel (d)).

Table 4: Maximum likelihood estimates for the parameters of the BDGD model for the cervical
cancer data

Parameters
Maximum Likelihood Estimators Bayesian Estimators

Estimate
Standard

Error
95% CI Median 95% CrI

α1 0.4520 0.0775 (0.3744, 0.5296) 0.4431 (0.3547, 0.5541)
α2 0.2060 0.0357 (0.1703, 0.2418) 0.1996 (0.1525, 0.2473)
β1 0.4580 0.0859 (0.3721, 0.5440) 0.4524 (0.3559, 0.5451)
β2 0.1537 0.0501 (0.1036, 0.2038) 0.1499 (0.1026, 0.1975)
ρ1 0.3727 0.0935 (0.1894, 0.5561) 0.3736 (0.2463, 0.4961)
ρ2 0.2617 0.1296 (0.0076, 0.5159) 0.2649 (0.1146, 0,4258)
φ 7.8998 1.2166 (5.5151, 10.2845) 8.0193 (5.1498, 10.8580)

τk 0.7979 0.0158 (0.7670 0.8290) 0.8003 (0.7202, 0.8444)
τs 0.9398 - - 0.9411 (0.8890, 0.9635)

95%CI: 95% confidence interval; 95%CrI: 95% credible interval.



162 The Bivariate Defective Gompertz Distribution Based on Clayton Copula

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

(a)

T1 (years)

S
(t

)
KM
MLE
Bayes

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

(b)

T2 (years)

S
(t

)

KM
MLE
Bayes

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

(c)

T1 (years)

H
az

ar
d 

ra
te

λ(t)
MLE
Bayes

0 2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

(d)

T2 (years)
H

az
ar

d 
ra

te

λ(t)
MLE
Bayes

Figure 11: Plots of the survival functions estimated by Kaplan-Meier method and from the
BDGD (upper panels) and respective hazard functions (lower panels) for DFS time (panels
(a) and (c)) and OS time (panels (b) and (d)), considering the cervical cancer data

4.4. Application to a tobacco-stained fingers data set

As last application, we assumed a retrospective cohort study on a sample of 143 smokers
screened between March 2006 and January 2010 in a 180-bed community hospital in La
Chaux-de-Fonds, Switzerland. Data on death and hospital admission were collected until
June 2014. More details on this data set can found in John, Louis, Berner, and Genné (2015).
In this bivariate study, it is considered as T1 the time before the first hospital readmission in
smokers with stains on their fingers which was censored in case of death before the closure
date;the lifetime T2 is the survival time of the patient with tobacco-tar stain on their fingers.
There was 26% censored data in T1 and 48% censored data in T2.

Table 5 shows the ML and Bayesian estimates for the parameters of the BDGD model consid-
ering the tobacco-stained fingers. In this application, it was needed assume more informative
uniform prior distributions for the parameters α1 and βi (i = 1, 2) for better inferences. In
addition, the obtained estimates obtained considering the ML and Bayesian approach pro-
duced similar values, except for the parameter φ, where the Bayesian estimates were higher
than the ML estimates. The value of τs obtained from ML estimates by copulas functions is
equal to the empirical correlation (τe = 0.4998 (0.2658, 0.6782)). Bayesian estimates of τs are
contained in the 95% confidence interval for τe. Similar results were obtained by de Oliveira
et al. (2019).

Figure 12 shows the Kaplan-Meier plot from where we can notice that the T1 has low cure rate
and T2 shows moderate cure rate (upper panels). The survival and hazard curves produced
by ML estimates and Bayesian estimates are very similar. Based on the Kaplan-Meier curve
for the empirical survival function, it is noted that the estimated curves were satisfactory
fitted for T1 and T2. The BDGD model adequately estimated a cure rate in both ML and
Bayesian approaches. Observing the estimated hazard function, we see that the proposed
model captures in a good way , the decreasing shape of the hazard function. However, the
hazard function estimated for T2 based on the proposed BDGD model does not fully follow
the behavior of the hazard function obtained from the package “bshazard” (panel (d)). It may
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be needed a more flexible distribution for a perfect fit of the hazard function in T2.

Table 5: Maximum likelihood estimates for the parameters of the BDGD model for the tobacco
data

Parameters
Maximum Likelihood Estimators Bayesian Estimators

Estimate
Standard

Error
95% CI Median 95% CrI

α1 0.6662 0.0923 (0.5739, 0.7585) 0.6648 (0.5095, 0.7937)
α2 0.1990 0.0376 (0.1614, 0.2367) 0.2062 (0.1532, 02479)
β1 0.3141 0.0715 (0.2426, 0.3856) 0.3242 (0.2538, 0.3962)
β2 0.2444 0.0625 (0.1819, 0.3070 ) 0.2500 (0.1549, 0.3450)
ρ1 0.1199 0.0590 (0.0041, 0.2357) 0.1303 (0.0552, 0.2445)
ρ2 0.4428 0.1148 (0.2177, 0.6681) 0.4419 (0.2381, 0.6075)
φ 1.0477 0.2795 (0.4998, 1.5955) 1.3635 (0.5574, 7.9728)

τk 0.3437 0.0315 (0.2820 0.4056) 0.3889 (0.2179, 0.4965)
τs 0.4921 - - 0.5463 (0.3204, 0.6784)

95%CI: 95% confidence interval; 95%CrI: 95% credible interval.
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Figure 12: Plots of the survival functions estimated by Kaplan-Meier method and from the
BDGD (upper panels) and respective hazard functions (lower panels) for first time hospital
readmission (panels (a) and (c)) and survival time (panels (b) and (d)), considering the
tobacco-stained fingers data

5. Concluding remarks

A new bivariate lifetime distribution model was proposed in this paper based on a defective
Gompertz distribution and using the Clayton copula function in presence of cure fraction. As-
suming the proposed new model, we performed a comprehensive simulation study to describe
the performance of the inference results under the ML approach. This model is efficient to fit
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data with weak and strong correlation between lifetimes the T1 and T2 in several scenarios.
However, in the situations where there is a high proportion of cure fraction and small sample
sizes (n < 100)a careful use of this model is required. It was observed that the estimates are
more easily obtained if the lifetime variables have values lower than 20, which demands some
transformation in the data in some applications. In the application studies it was verified
that both the ML and Bayesian methods are suitable approaches to estimate the parameters
of the BDGD model. It is important to point out that a suitable choice for the initial values
in the ML iterative estimation procedure is required, as well for the Bayesian method that
depends on adequate hyperparameter values for the prior probability distributions for the
parameters of the BDGD model. In conclusion, the applications in simulated and real data
evidenced that the BDGD model can be satisfactorily fitted in most cases, considering both
the ML and Bayesian approaches. Moreover, the proposed model can be easily implemented
using R or Rjags softwares, which is a great advantage.
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https://publications.polymtl.ca/2454/.

Vaupel JW, Manton KG, Stallard E (1979). “The Impact of Heterogeneity in Individual Frailty
on the Dynamics of Mortality.” Demography, 16(3), 439–454. doi:10.2307/2061224.

Wienke A (2010). Frailty Models in Survival Analysis. CRC press. ISBN 978-1420073911.

Wienke A, Lichtenstein P, Yashin AI (2003). “A Bivariate Frailty Model with a Cure Fraction
for Modeling Familial Correlations in Diseases.” Biometrics, 59(4), 1178–1183. doi:10.

2307/3695360.

Wienke A, Locatelli I, Yashin AI (2006). “The Modelling of a Cure Fraction in Bivariate
Time-to-event Data.” Austrian Journal of Statistics, 35(1), 67–76. doi:10.17713/ajs.

v35i1.349.

Yu B, Peng Y (2008). “Mixture Cure Models for Multivariate Survival Data.” Computational
Statistics & Data Analysis, 52(3), 1524–1532. doi:10.1016/j.csda.2007.04.018.

Affiliation:

Marcos Vinicius de Oliveira Peres
Ribeirão Preto Medical School
University of São Paulo (USP)
Ribeirão Preto, SP, Brazil
E-mail: mvperes1991@alumni.usp.br

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 51 Submitted: 2020-12-30
January 2022 Accepted: 2021-03-30

http://dx.doi.org/10.2307/30045351
https://publications.polymtl.ca/2454/
http://dx.doi.org/10.2307/2061224
http://dx.doi.org/10.2307/3695360
http://dx.doi.org/10.2307/3695360
http://dx.doi.org/10.17713/ajs.v35i1.349
http://dx.doi.org/10.17713/ajs.v35i1.349
http://dx.doi.org/10.1016/j.csda.2007.04.018
mailto:mvperes1991@alumni.usp.br
http://www.ajs.or.at/
http://www.osg.or.at/

	Introduction
	Statistical methods
	Univariate defective Gompertz distribution
	Copula functions
	Bivariate defective Gompertz distribution
	Inference methods
	Maximum likelihood estimation
	Bayesian analysis


	Simulation study
	Results

	Applications to real data sets
	Application to a breast cancer data set
	Application to a diabetic retinopathy data set
	Application to a cervical cancer data set
	Application to a tobacco-stained fingers data set

	Concluding remarks

