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Abstract

Linear regression with distributed-lags is a consolidated methodology in time series
analysis to assess the impact of several explanatory variables on an outcome that may
persist over several periods. Finite polynomial distributed-lags have a long tradition due
to a good flexibility accompanied by the advantage of a linear representation, which allows
parameter estimation through Ordinary Least Squares (OLS). However, they require to
specify polynomial degree and lag length, and entail the loss of some initial observations.
Gamma distributed-lags overcome these problems and represents a good compromise be-
tween flexibility and number of parameters, however they have not a linear representation
in the parameters and currently available estimation methods, like OLS-based grid search
and non-linear least squares, are unsatisfactory in the case of multiple explanatory va-
riables. For these reasons, the Gamma lag distribution has not been able to replace
finite polynomial lags in applied time series analysis, and it has been mostly employed
in the case of a single explanatory variable. In this paper, we propose a hill climbing
algorithm for maximum likelihood estimation of multiple linear regression with Gamma
distributed-lags. The proposed algorithm is applied to assess the dynamic relationship
between Bitcoin’s price and three composite indices of the US stock market.

Keywords: infinite distributed-lags, grid search, multiple dynamic impacts, ordinary least
squares, time series regression.

1. Introduction

Linear regression with distributed-lags is a consolidated methodology in time series analysis
to assess the impact of several explanatory variables on an outcome that may persist over
several periods. In order to achieve efficiency in the estimation and to eventually comply with
scientific theory, the distributed-lags are often constrained to a functional form in empirical
applications.

Polynomial distributed-lags (Almon 1965; Andrews and Fair 1992) have a long tradition in
applied time series analysis due to a good flexibility accompanied by the advantage of a linear
representation, which allows the regression model to be estimated through Ordinary Least
Squares (OLS). However, they require the specification of the polynomial degree and of the

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v51i2.1244
www.osg.or.at


Austrian Journal of Statistics 41

maximum lag length, and entail the loss of some initial observations. These limitations are
overcome by infinite distributed-lags. The first proposal of infinite lag distribution was the
geometric lag, assuming exponentially decreasing weights. Koyck (1954) showed that the
geometric lag can be represented as a linear model with first order autoregressive term and
first order autocorrelated errors. Unfortunately, despite its desirable statistical properties,
the geometric lag distribution has been criticized to be too restrictive for several applications,
mainly because the weights do not increase towards a peak before decreasing to zero. In fact,
the existence of a peak in the lag distribution is particularly motivated by several scientific
theories, for instance, in the economic field, the reaction to factors like income, price level,
investments and money supply.

The Pascal lag (Solow 1960) was proposed as an extension of the geometric lag, involving an
additional integer parameter which allows to represent unimodal and right-skewned lag distri-
butions. The family of rational distributed-lags (Jorgenson 1966) was suggested as a further
extension of both the geometric and the Pascal lag, also including polynomial distributed-lags
as a special case. A rational lag is defined by the ratio of two finite polynomial lags, and can
be represented as an autoregressive distributed-lag linear model with autocorrelated errors,
for which Dhrymes, Klein, and Steiglitz (1970) proposed a procedure for Maximum Likeli-
hood Estimation (MLE). Rational lags overcome the problem of specifying the number of lags,
but still maintain the problem of specifying the degrees of the polynomials, which cannot be
treated as parameters to be estimated, thus requiring the comparison among models specified
with different degrees.

In order to overcome the limitations of rational distributed-lags, Tsurumi (1971) proposed a
single-parameter Gamma lag, extending the geometric lag to unimodal and right-skewned lag
distributions. The model was applied to estimate an investment function for the Canadian
manufacturing industry, with capital investments as response variable and capital stock as
the only explanatory variable with lags. Since the model is not linear in the parameters,
Non-linear Least Squares (NLS, Hartley and Booker 1965) estimation was employed.

Schmidt (1974) re-elaborated the Gamma lag proposed by Tsurumi (1971) into a formulation
with two parameters varying between 0 and 1, and, as an alternative to NLS estimation,
proposed an OLS-based Grid Search (OLS-GS) for MLE estimation, consisting in applying
OLS to a grid of values for the two parameters and in selecting the estimate with the lowest
residual sum of squares. The model was applied to estimate the impact of capital appropri-
ations (the only explanatory variable with lags) on research expenditure (response variable),
using the dataset on 602 US companies analyzed by Almon (1965).

Tserkezos (1998) exploited the Gamma-distributed lag model to perform quarterly disaggre-
gation of the gross national product in some OECD countries. This is the first application
considering more than one explanatory variable with lags, specifically the index of industrial
production, retail sales and total employment. However, it is not clear whether the Gamma
lag distributions are specified a-priori or estimated.

The problem of estimating the impact of public research expenditure on agricultural produc-
tivity was the field where the Gamma distributed-lag model found the major employment.
Thirtle, Piesse, and Schimmelpfennig (2008) applied several families of lag distributions to
the UK case, including the Gamma distributed-lag, that was estimated through NLS. Bal-
combe and Rapsomanikis (2010), focusing on United States of America (USA), assumed a
Gamma lag distribution for public research expenditure and proposed a Bayesian model ave-
raging approach for its estimation. Alston, Andersen, James, and Pardey (2011) inspired a
long series of empirical works on USA leading to a consolidation of a Gamma lag for public
research expenditure with length equal to 50 years and peak at 24 years (Andersen and Song
2013; Wang, Heisey, Huffman, and Fuglie 2013; Jin and Hiuffman 2016; Baldos, Viens, Hertel,
and Fuglie 2018). Bervejillo, Alston, and Tumber (2012) applied the same lag distribution to
Uruguayan data and found similar results. Instead, using Czech data, Ratinger and Kristkova
(2015) found a lag distribution for public research expenditure with length equal to 15 years
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and peak at 5 years. All these applications considered a multi-factor productivity index as
response variable, and, as explanatory variables with lags, public research expenditure and
an estimated foreign knowledge stock. Further drivers of productivity like meteorological
conditions were also included in the model, but with no lags. OLS-GS estimation was used
in all of these applications, excepting Thirtle et al. (2008), who employed NLS estimation,
and Balcombe and Rapsomanikis (2010); Baldos et al. (2018), who exploited Markov Chain
Monte Carlo simulation.

From the analysis of the literature it is apparent that, since its first proposal, the Gamma
lag distribution has found relatively little application compared to the finite polynomial one.
Also, it has been employed mostly in the case of a single explanatory variable, with a predomi-
nant use of OLS-GS compared to NLS estimation and Markov Chain Monte Carlo (MCMC)
simulation. We believe that the Gamma lag outperforms existing lag distributions for what
concerns flexibility, but linear regression with Gamma-distributed lags, known as Gamma-
distributed lag model, has been mostly used in the case of a single explanatory variable due
to the unavailability of effective estimation methods. In fact, on one hand, OLS-based grid
search proposed by Schmidt (1974) has an exponential time complexity with respect to the
number of explanatory variables, thus it may become infeasible for more than two of them.
On the other hand, NLS estimation represents an alternative with good properties, but, as
noted by Tsurumi (1971), it may entail problems of convergence and particular care should
be placed in the selection of initial values to avoid getting stuck at a local maximum.

Although it is true that even MLE of linear regression with finite polynomial distributed-lags
requires to compare several different models with an exponential time complexity in order to
select degree and lag length, several shortcuts are in use to effectively reduce the number of
comparisons, like assuming that degree and lag length are the same for all the explanatory
variables. We believe that this is the main reason that made finite polynomial distributed-lags
very popular, despite their limitations. In this paper, we propose a hill climbing algorithm
for MLE of the Gamma distributed-lag model, which is able to find a local maximum of the
likelihood function in a reasonable time for an arbitrary number of explanatory variables.
Performing multiple restarts from different random initial values allows to hopefully find the
global maximum.

This paper is structured as follows. In Section 2, we formalize the Gamma distributed-
lag model and review its currently available parameter estimation methods. In Section 3, we
present our algorithm for MLE of the Gamma distributed-lag model with multiple explanatory
variables. Section 4 includes a Monte Carlo experiment to assess the statistical properties
of our algorithm. In Section 5, the proposed algorithm is applied to assess the dynamic
relationship between Bitcoin’s price and three composite indices of the US stock market.
Section 6 includes concluding remarks and considerations on future developments.

2. The Gamma distributed-lag model

In this section, we provide a formalization of the linear regression model with Gamma
distributed-lags, known as Gamma distributed-lag model (Subsection 2.1) and review its
currently available parameter estimation methods (Subsection 2.2).

2.1. Formalization

Let Y be the response variable and X be an explanatory variable. Also, let yt and xt be the
value of Y and X, respectively, at time t. Denote xt−k as the value of X before k periods from
t; k is called time lag. We assume that time is discrete (t = 1, . . . , T ) and that the time series
of Y and X are weakly stationary, i.e., their expected value and autocorrelation function
do not depend on time. The (simple) linear regression model with infinite distributed-lags
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explaining Y from X is defined as:

yt = α+ θ

∞∑
k=0

wkxt−k + εt (1)

where α is the intercept, θ is a coefficient defining the scale of the lag distribution of X, wk
is the weight of X at time lag k, and εt is the random error at time t, which is assumed to
have null expected value and to be linearly uncorrelated with X at any time lag. Note that
βk = θwk represents the linear regression coefficient of X at time lag k, often called dynamic
coefficient, while β∗ = θ

∑∞
k=0wk represents the cumulative linear regression coefficient of X

after a large number of time lags, often called long-term coefficient.

In the original formulation of the Gamma distributed-lag (Schmidt 1974), the weights wk are
defined as:

wk = (k + 1)δ/(1−δ)λk (2)

where 0 ≤ δ < 1 and 0 ≤ λ < 1 are two real-valued parameters. In order to ease the
interpretation of parameter θ, we force the weights in (2) to have sum 1:

wk =
(k + 1)δ/(1−δ)λk

c(δ, λ)

c(δ, λ) =
∞∑
l=0

(l + 1)δ/(1−δ)λl
(3)

Note that the normalization constant c(δ, λ) has not an analytical expression, but it can be
easily computed through numerical approximation. The weights in (3) are the same proposed
by Alston et al. (2011), with the difference that the summation is not truncated to a finite
time lag. Thus, the (simple) linear regression model with Gamma distributed-lags explaining
Y from X has the form:

yt = α+
θ

c(δ, λ)

∞∑
k=0

(k + 1)δ/(1−δ)λk xt−k + εt (4)

where, since the weights wk sum to 1, the long-term coefficient β∗ = θ
∑∞

k=0wk is equal to
parameter θ.

Some remarks about the lag distribution implied by the weights in (3) are needed. First, it
has a unique maximum (peak), which occurs at time lag:

k =

{
δ

(δ−1) log λ − 1 λ > 0

0 λ = 0
(5)

Second, if λ = 0 we get w0 = 1 and wk = 0 ∀k 6= 0 whichever the value of δ, thus a contem-
poraneous relationship between X and Y is obtained. Third, the geometric lag distribution
is obtained for δ = 0. Figure 1 shows the weights implied by three Gamma lag distributions,
while Table 1 reports peak and quantiles of several Gamma lag distributions.

Now we generalize model (4) to the case of multiple explanatory variables. Let Y be the
response variable and X1, . . . , XJ be a set of J explanatory variables. Also, let yt and xj,t
(j = 1, . . . , J) be the value of Y and Xj , respectively, at time t. The multiple linear regression
model with infinite distributed-lags explaining Y from X1, . . . , XJ is defined as:

yt = α+

J∑
j=1

θj

∞∑
k=0

wj,kxj,t−k + εt (6)

where θj is a coefficient defining the scale of the lag distribution of Xj , wj,k is the weight of
Xj at time lag k, and εt is the random error at time t, which is assumed to have null expected
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Figure 1: Weights implied by several Gamma lag distributions. Line with dots: δ = 0.4,
λ = 0.35. Line with triangles: δ = 0.65, λ = 0.45. Line with crosses: δ = 0.8, λ = 0.5.

Table 1: Peak and quantiles of several Gamma lag distributions

δ λ Peak 50% 95% 99%

0.60 0.25 0.1 1 3 4
0.55 0.50 0.8 2 6 9
0.45 0.65 0.9 3 9 14
0.50 0.70 1.8 4 12 18
0.60 0.70 3.2 5 15 20
0.55 0.75 3.2 6 17 23
0.60 0.75 4.2 7 18 25
0.55 0.80 4.5 8 22 31
0.60 0.80 5.7 9 24 33
0.55 0.85 6.5 11 30 42
0.60 0.85 8.2 12 33 45

δ λ Peak 50% 95% 99%

0.50 0.90 8.5 15 44 62
0.55 0.90 10.6 17 47 66
0.60 0.90 13.2 20 52 71
0.50 0.95 18.5 32 91 128
0.65 0.95 35.2 48 118 158
0.70 0.95 44.5 58 131 174
0.75 0.95 57.5 71 150 195
0.80 0.95 77.0 90 177 225
0.95 0.85 115.9 120 171 195
0.95 0.90 179.3 186 264 301
0.95 0.95 369.4 382 543 620

value and to be linearly uncorrelated with X1, . . . , XJ at any time lag. The multiple linear
regression with Gamma distributed-lags is obtained for:

wj,k =
(k + 1)δj/(1−δj)λkj

c(δj , λj)

c(δj , λj) =

∞∑
l=0

(l + 1)δj/(1−δj)λlj

(7)

leading to the following formulation:

yt = α+

J∑
j=1

θj
c(δj , λj)

∞∑
k=0

(k + 1)δj/(1−δj)λkj xj,t−k + εt (8)

where α is the intercept, βj,k = θjwj,k is the linear regression coefficient of Xj at time lag k,
and β∗j = θj

∑∞
w=0wj,k = θj is the linear regression coefficient of Xj after a large number of

time lags, i.e., the long-term coefficient of Xj .
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2.2. Parameter estimation methods

Maximum Likelihood Estimation (MLE) of model (8) is challenging because, for j = 1, . . . , J ,
parameters δj and λj enter non-linearly. First of all, note that model (6) can be written as:

yt = α+
J∑
j=1

θjZj,t +
J∑
j=1

Wj,t + εt

Zj,t =

t−1∑
k=0

wj,kxj,t−k

Wj,t = θj

∞∑
k=t

wj,kxj,t−k

(9)

where, for j = 1, . . . , J , the term Wj,t is asymptotically negligible and its omission does not
affect the asymptotic properties of MLE, although estimates in small samples are significantly
more efficient when Wj,t is estimated rather than dropped (Schmidt 1975; Baltagi and Ferry
1985). The decomposition in (9) allows to estimate any infinite distributed-lag model in finite
samples without loosing observations for the sake of considering several lags of the explanatory
variables.

We begin the discussion on parameter estimation from the case of one explanatory variable,
thus, for the moment, we focus on model (4). Observing that it is linear in both α and θ if
both δ and λ are held constant, Schmidt (1974) proposed to apply OLS to a grid of values
for δ and λ and to select the estimate with the lowest residual sum of squares. This method,
here referred as OLS-based Grid Search (OLS-GS), returns the maximum likelihood estimate
given the considered grid resolution, i.e., the number of equally-spaced values of δ and λ.
OLS-GS in the case of one explanatory variable requires to run OLS q2 times, where q is the
grid resolution, while, in the general case of J explanatory variables, OLS should be run q2J

times. Actually, if value 0 is considered for δ and λ, we have a total of [q(q − 1) + 1]J unique
combinations, as all the Gamma lag distributions with λ = 0 are identical. For example, if
q is set to 20, then all the values of δ and λ from 0 to 0.95 differing by 0.05 are considered,
and the case J = 1 requires 381 runs of OLS, while the cases J = 2 and J = 3 require,
respectively, 145161 and 55.3 million runs. It is clear that OLS-GS may result practically
infeasible for J > 2 even for a low grid resolution.

Non-linear Least Squares (NLS) estimation represents an alternative with good properties,
as it equates to maximize a Gaussian likelihood, thus it has the property of consistency and
asymptotic normality (Hartley and Booker 1965). However, as noted by Tsurumi (1971), it
may entail problems of convergence and great effort should be placed in the selection of initial
values to avoid getting stuck at a local maximum. Among the empirical applications of the
Gamma distributed-lag model, Thirtle et al. (2008) complained the lack of convergence of
NLS, and concluded that the Gamma lag distribution was not appropriate for their problem.

MCMC simulation is an alternative to MLE methods which also allows to take into account
prior information on the parameters, if available, but it may take very much time to achieve
convergence (see Balcombe and Rapsomanikis 2010; Baldos et al. 2018).

3. Hill climbing algorithm for maximum likelihood estimation

Since model (8) is not linear in the parameters, the likelihood may have several local ma-
xima. OLS-GS is able to discover the global maximum, but, when the number of explanatory
variables increases, it becomes infeasible and only a heuristic search is practicable. At this pur-
pose, we exploit the hill climbing scheme (Russell and Norvig 2003, pages 111–114), a widely
adopted strategy in artificial intelligence to heuristically explore high dimensional spaces. The
hill climbing is an iterative algorithm which starts from an arbitrary solution, then attempts
to find a better one by making all the possible incremental changes. If a change produces a
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better solution, then the procedure is repeated until no further improvements are possible.
In our case, the space to be explored is composed of all the models that can be generated
by instantiating δ and λ parameters in model (8), and the objective function is their residual
sum of squares (to be minimized).

Let q be the grid resolution. As a consequence, 1/q is the distance between the values of
the grid. Given a combination of δ and λ parameters, the proposed algorithm considers, for
one explanatory variable Xj at a time, all the possible changes by ±1/q to the pair (δj , λj).
Given a combination of δ and λ parameters, there are 8 possible changes that can be made
for one explanatory variable (see Table 2), for a total of 8J possible changes. OLS estimation
is performed for all of them and the one with the lowest residual sum of squares is selected.
Then, if such residual sum of squares is lower than the one of the current position, then
the change is performed and the procedure is repeated; otherwise, a local maximum of the
likelihood is found and the algorithm stops. Full details are provided in Algorithm 1.

Table 2: All the possible changes by ±1/q to the pair (δj , λj) allowed by Algorithm 1

Change δj λj
1 +0 +1/q
2 +0 −1/q
3 +1/q +0
4 +1/q +1/q
5 +1/q −1/q
6 −1/q +0
7 −1/q +1/q
8 −1/q −1/q

Algorithm 1 Maximum likelihood estimation of the Gamma distributed-lag model with mul-
tiple explanatory variables.

• Take as inputs vector delta.best containing the initial values for δ1, . . . , δJ , and vector
lambda.best containing the initial values for λ1, . . . , λJ .

• Define delta.current as a copy of delta.best and lambda.current as a copy of
lambda.best. Initialize theta.best, theta.current and theta.test as empty vectors
of length J . Initialize rss.best and rss.current as +∞.

• For j = 1, . . . , J :

– For k = 1, . . . , 8:

∗ Define delta.test as a copy of delta.current, and lambda.test as a copy
of lambda.current. Set position j of delta.test and lambda.test according
to Change k in Table 2.

∗ Use OLS to fit a linear regression model with Gamma distributed-lags given
delta.test and lambda.test. Set theta.test as the estimates of θ1, . . . , θJ ,
and rss.test as the residual sum of squares.

∗ If rss.test is less than rss.current, then set theta.current as theta.test,
delta.current as delta.test, lambda.current as lambda.test and
rss.current as rss.test.

– If rss.current is less than rss.best, then set theta.best as theta.current,
delta.best as delta.current, lambda.best as lambda.current and rss.best

as rss.current.

• Return theta.best, delta.best and lambda.best.
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In order to discover eventual other local maxima and hopefully converge to the global one (the
maximum likelihood estimate), the algorithm is restarted several times from different random
initial values. We implemented the algorithm in an R (R Core Team 2020) package available
on Github at https://github.com/alessandromagrini/gammadlm. The package can be
installed from the R console by typing install_github("alessandromagrini/gammadlm")

after loading the devtools package.

4. Monte Carlo experiment

A Monte Carlo experiment was performed to assess the statistical properties of our hill clim-
bing algorithm. We considered seven data-generating models obtained by combining the three
lag distributions shown in Figure 1 under the case of one, two and three explanatory variables
(see Table 3). The choice of these three lag distributions was motivated by their representa-
tiveness for the population of Gamma lag distributions with length between 10 and 20, which
is expected to cover a good part of real-world applications. We tested three different numbers
of periods T ∈ {30, 50, 100} and two values for the first-order autocorrelation of the random
errors ρ ∈ {0, 0.25}. For each combination of T , and ρ, we performed 500 Monte Carlo
replications. For each replication, explanatory variables were simulated from a multivariate
Normal distribution with null mean, unit variance and 0.5 correlation, and the algorithm was
run two times: one time with 100 and the other time with 500 random restarts, both with
grid resolution q = 20. Throughout the experiment, we set α = 0 and error variance equal to
1 for all the data-generating models. The Monte Carlo experiment was run on a laptop with
Intel® i5 processor. The average processing time for a single run of Algorithm 1 is reported
in Table 4, while the mean squared error of the estimates are shown in Tables 5 and 6.

Table 3: Data-generating models considered in the Monte Carlo experiment

Model J Parameters

M1a 1 δ1 = 0.4 λ1 = 0.35 θ1 = 1

M1b 1 δ1 = 0.65 λ1 = 0.45 θ1 = 1

M1c 1 δ1 = 0.8 λ1 = 0.5 θ1 = 1

M2a 2
δ1 = 0.4 λ1 = 0.35 θ1 = 1
δ2 = 0.65 λ2 = 0.45 θ2 = 1

M2b 2
δ1 = 0.4 λ1 = 0.35 θ1 = 1
δ2 = 0.8 λ2 = 0.5 θ2 = 1

M2c 2
δ1 = 0.65 λ1 = 0.45 θ1 = 1
δ2 = 0.8 λ2 = 0.5 θ2 = 1

δ1 = 0.4 λ1 = 0.35 θ1 = 1
M3 3 δ2 = 0.65 λ2 = 0.45 θ2 = 1

δ3 = 0.8 λ3 = 0.5 θ3 = 1

From Table 4, we see that the processing time increases less than proportionally with T and,
at constant T , it is practically the same for all the tested values of ρ. This holds for both 100
and 500 random restarts of the algorithm, with the difference that the processing time in the
latter case is higher with an almost proportional relationship, as it is reasonable. Instead, the
number of explanatory variables J is a great source of computation burden: the processing
time for J = 2 is almost 7 times the one for J = 1, and the processing time for J = 3 is
almost 2.5 times the one for J = 2. Note that the processing time is bounded to the minimum
between the number of possible models and the number of random restarts, case in which
Algorithm 1 equates to OLS-GS. Thus, the case T = 30 and J = 1 represents an exception
where 500 random restarts reduce to 381, according to the calculus made in Section 2.

https://github.com/alessandromagrini/gammadlm
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Table 4: Average processing time (seconds) for a single run of Algorithm 1 on a laptop with
Intel® i5 processor

100 random restarts
T ρ M1a M1b M1c M2a M2b M2c M3

30 0.00 3.25 3.26 3.27 24.27 23.59 23.67 56.81
50 0.00 3.28 3.30 3.30 25.48 24.59 25.18 57.07

100 0.00 3.36 3.36 3.36 28.03 27.45 27.69 59.39
30 0.25 3.26 3.26 3.26 23.73 23.65 23.57 56.86
50 0.25 3.29 3.28 3.29 25.37 25.16 25.27 57.61

100 0.25 3.35 3.38 3.36 28.10 27.07 27.55 59.11

500 random restarts
T ρ M1a M1b M1c M2a M2b M2c M3

30 0.00 3.47 3.47 3.48 131.36 132.26 132.44 283.83
50 0.00 3.49 3.50 3.50 140.64 141.80 141.37 324.18

100 0.00 3.57 3.57 3.58 148.54 147.76 148.46 348.23
30 0.25 3.46 3.47 3.49 131.80 132.25 132.72 286.58
50 0.25 3.49 3.49 3.50 141.42 141.68 141.09 326.02

100 0.25 3.56 3.57 3.57 147.21 148.02 147.69 346.98

From Tables 5 and 6, we see that the root mean squared error of the estimates always decreases
with the increase of the sample size T , as expected, and it is generally higher when the first
order autocorrelation of the errors is not null. Also, root mean squared errors based on 500
random restarts are near to those based on 100 restarts for most data-generating models
and experimental combinations, suggesting a similar performance of the algorithm in the two
cases. Thus, we aimed at assessing whether the algorithm with 100 random restarts has good
chances to find the local maximum. At this purpose, we used the root mean squared errors
based on 500 random restarts for data-generating models with one explanatory variable (M1a,
M1b andM1c) as benchmark for the precision of the estimates (Table 6, first block). This is
justified by the fact that, in the case J = 1, our algorithm with 500 random restarts equates
OLS-GS estimation. For instance, the root mean squared errors from M1a can be compared
with those for the first explanatory variable inM2a,M2c andM3 (see Table 3 for a detailed
correspondence). Clearly, the comparison is only indicative, because the precision of the
estimates is expected to further decrease when the number of explanatory variables increases.
By observing the results, it is apparent that root mean squared errors for data-generating
models with two and three explanatory variables are comparable to those for data-generating
models with one explanatory variable, suggesting a good ability of the algorithm to find the
global maximum with 100 random restarts.

5. Real-world application

We apply our hill climbing algorithm to estimate the parameters of a Gamma distributed-
lag model explaining Bitcoin’s exchange rate (BTC) based on three composite indices of
the US stock market: Dow Jones Industrial Average (DJA), Nasdaq Composite (IXIC) and
Standard&Poor 500 (GSPC). The correlation between Bitcoin’s exchange rate and the US
stock market is of great interest for financial analysts, as a negative sign could indicate that
investors consider cryptocurrencies as a safe-haven in times of financial turmoil. Our purpose
is neither to provide new findings nor to develop a new theory on the relationship between
Bitcoin’s exchange rate and the US stock market, but rather to illustrate the application of
Algorithm 1 in the case of multiple explanatory variables. Thus, the relationship between
Bitcoin’s exchange rate and the US stock market assessed here should be interpreted in a
predictive sense, rather than causally.
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Table 5: Root mean squared errors for Algorithm 1 with 100 random restarts (500 Monte
Carlo replications)

M1a M1b M1c

T ρ δ̂1 λ̂1 θ̂1 δ̂1 λ̂1 θ̂1 δ̂1 λ̂1 θ̂1
30 0.00 0.378 0.259 1.113 0.281 0.293 1.895 0.277 0.334 1.914
50 0.00 0.367 0.243 0.646 0.258 0.275 0.904 0.263 0.300 1.132

100 0.00 0.352 0.219 0.307 0.255 0.240 0.417 0.206 0.266 0.538
30 0.25 0.392 0.253 1.887 0.282 0.282 2.304 0.267 0.322 2.395
50 0.25 0.371 0.247 0.936 0.266 0.263 1.330 0.196 0.298 1.454

100 0.25 0.350 0.234 0.405 0.205 0.237 0.775 0.189 0.276 0.766

M2a

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2
30 0.00 0.367 0.224 2.316 0.302 0.242 2.125
50 0.00 0.351 0.217 0.798 0.242 0.231 0.923

100 0.00 0.337 0.206 0.316 0.217 0.216 0.468
30 0.25 0.360 0.234 2.381 0.280 0.249 2.441
50 0.25 0.329 0.222 1.049 0.257 0.233 1.616

100 0.25 0.330 0.212 0.500 0.222 0.219 0.723

M2b

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2
30 0.00 0.351 0.237 2.277 0.279 0.271 2.689
50 0.00 0.330 0.219 0.741 0.208 0.256 1.116

100 0.00 0.331 0.211 0.305 0.200 0.219 0.501
30 0.25 0.368 0.223 3.182 0.247 0.257 2.860
50 0.25 0.346 0.227 1.260 0.229 0.262 1.482

100 0.25 0.327 0.215 0.462 0.186 0.221 0.809

M2c

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2
30 0.00 0.281 0.234 2.920 0.261 0.279 2.795
50 0.00 0.237 0.227 1.268 0.250 0.266 1.344

100 0.00 0.200 0.210 0.548 0.205 0.250 0.601
30 0.25 0.251 0.225 3.254 0.225 0.269 3.193
50 0.25 0.226 0.218 1.818 0.203 0.256 1.670

100 0.25 0.204 0.209 0.767 0.156 0.245 0.889

M3

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2 δ̂3 λ̂3 θ̂3
30 0.00 0.340 0.225 2.599 0.246 0.208 2.929 0.298 0.244 2.949
50 0.00 0.320 0.215 1.135 0.233 0.206 1.491 0.273 0.231 1.529

100 0.00 0.315 0.198 0.441 0.207 0.207 0.585 0.191 0.205 0.684
30 0.25 0.344 0.233 2.625 0.250 0.216 3.033 0.234 0.234 3.239
50 0.25 0.329 0.214 1.431 0.241 0.209 1.849 0.220 0.225 1.981

100 0.25 0.320 0.205 0.569 0.200 0.198 0.798 0.210 0.207 0.879

We considered daily close exchange rates in US dollars from April to September 2020 available
on Yahoo Finance, for a total of 127 observations. All the time series appear definitely non-
stationary in level (Figure 2, left column), as confirmed by the augmented Dickey-Fuller test
(Dickey and Fuller 1981) that was unable to reject the hypothesis of unit root for all of them.
Instead, the hypothesis of unit root was rejected for all the time series taken in log return,
i.e., after applying first order difference of logarithmic values (Figure 2, right column). Data
summaries are shown in Table 7.
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Table 6: Root mean squared errors for Algorithm 1 with 500 random restarts (500 Monte
Carlo replications)

M1a M1b M1c

T ρ δ̂1 λ̂1 θ̂1 δ̂1 λ̂1 θ̂1 δ̂1 λ̂1 θ̂1
30 0.00 0.376 0.248 1.295 0.285 0.288 1.891 0.277 0.323 2.057
50 0.00 0.364 0.243 0.512 0.266 0.274 0.904 0.234 0.304 1.151

100 0.00 0.351 0.214 0.278 0.255 0.246 0.487 0.204 0.259 0.575
30 0.25 0.394 0.257 2.284 0.305 0.284 2.338 0.259 0.315 2.567
50 0.25 0.365 0.246 0.878 0.263 0.262 1.401 0.216 0.301 1.373

100 0.25 0.353 0.232 0.440 0.237 0.251 0.704 0.216 0.271 0.786

M2a

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2
30 0.00 0.394 0.252 2.209 0.337 0.277 2.242
50 0.00 0.371 0.245 1.150 0.277 0.258 0.946

100 0.00 0.359 0.239 0.326 0.270 0.241 0.443
30 0.25 0.398 0.266 2.320 0.285 0.281 2.449
50 0.25 0.388 0.257 1.267 0.274 0.269 1.689

100 0.25 0.364 0.248 0.518 0.226 0.250 0.724

M2b

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2
30 0.00 0.360 0.216 2.431 0.323 0.329 2.373
50 0.00 0.350 0.235 0.817 0.307 0.300 1.151

100 0.00 0.337 0.240 0.324 0.285 0.268 0.537
30 0.25 0.378 0.229 2.601 0.276 0.309 3.081
50 0.25 0.360 0.250 1.281 0.247 0.291 1.834

100 0.25 0.341 0.211 0.669 0.185 0.215 1.046

M2c

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2
30 0.00 0.285 0.274 3.149 0.326 0.314 2.775
50 0.00 0.245 0.261 1.452 0.224 0.294 1.335

100 0.00 0.214 0.255 0.571 0.199 0.273 0.657
30 0.25 0.252 0.275 3.271 0.288 0.292 2.983
50 0.25 0.237 0.263 1.977 0.221 0.267 1.907

100 0.25 0.201 0.245 0.793 0.171 0.247 0.587

M3

T ρ δ̂1 λ̂1 θ̂1 δ̂2 λ̂2 θ̂2 δ̂3 λ̂3 θ̂3
30 0.00 0.361 0.286 2.641 0.293 0.226 3.191 0.338 0.297 3.208
50 0.00 0.343 0.263 1.410 0.271 0.219 1.666 0.330 0.272 1.616

100 0.00 0.327 0.255 0.530 0.239 0.205 0.766 0.216 0.257 0.730
30 0.25 0.372 0.297 2.978 0.309 0.259 3.281 0.386 0.276 3.369
50 0.25 0.356 0.267 1.647 0.264 0.234 1.726 0.353 0.260 2.028

100 0.25 0.335 0.263 0.635 0.205 0.214 0.881 0.231 0.245 0.926

In order to avoid spurious regression due to non-stationarity (Granger and Newbold 1974), we
worked with the variables in log return. We applied model (8) and estimated the parameters
using Algorithm 1 with grid resolution q = 20 and the constraint that the peak of each lag
distribution should not occur before time lag 0. Such constraint equates to disregard, for
j = 1, . . . , J , the combinations of δj and λj values implying a negative peak according to (5).
Under this constraint, the number of possible models is almost 13.6 millions, a quite large
number that clearly cannot be handled by OLS-GS estimation. We ran the algorithm with
100, 500 and 1000 random restarts, obtaining the same result. The processing time for 100,
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Figure 2: Daily close exchange rate in US dollars of BTC, DJA, IXIC and GSPC from April
to September 2020. Left column: time series in level. Right column: time series in log return.

Table 7: Data summaries: daily close exchange rates in US dollars from April to September
2020 in level and in log return

BTC DJA IXIC GSPC
level log return level log return level log return level log return

Minimum 6607 −0.135 6828 −0.068 7361 −0.054 2470 −0.061
1st quartile 9148 −0.011 7869 −0.005 9169 −0.006 2930 −0.006
Median 9528 0.002 8421 0.004 10095 0.006 3149 0.004
Mean 9668 0.004 8435 0.002 9989 0.003 3122 0.002
3rd quartile 10826 0.019 9048 0.011 10905 0.013 3322 0.011
Maximum 12254 0.142 9500 0.079 12056 0.071 3581 0.068

500 and 1000 restarts was 87, 452 and 980 seconds, respectively, on a laptop with Intel® i5
processor.

After parameter estimation, we checked the presence of auto-correlation and heteroscedas-
ticity in the residuals by performing Durbin-Watson (Durbin and Watson 1971) and White
(White 1980) tests. They did not reject the null hypothesis of no auto-correlation and of ho-
moscedasticity, respectively, thus no correction for consistency was applied to the estimated
standard errors. The summary of parameter estimation is provided in Table 8, while the
implied dynamic coefficients are shown in Table 9 and displayed in Figure 3.
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According to the R-squared, the model explains 21.8% of the variability of BTC on the
logarithmic scale, with a mean absolute percentage error of prediction on the original scale
equal to 2.8% (Figure 4), confirming the predictive relevance of the three US stock market
indices, even if other predictors may exist besides them. Our results show that: (i) the lag
distribution of DJA has negative sign and 99th percentile equal to 4; (ii) the lag distribution
of IXIC has negative sign and 99th percentile equal to 9; (iii) the lag distribution of GSPC
has positive sign and 99th percentile equal to 8. Since all the variables are in log return, the
dynamic coefficients approximate dynamic elasticities. For instance, βj,k = θjwj,k represents
the expected percentage variation in Bitcoin’s exchange rate after k time lags (days) that
variable Xj increased its value by 1%. Thus, based on our results, we deduce that, in the
long-term: (i) a 1% increase in DJA is expected to decrease BTC by 2.72%; (ii) a 1% increase
in IXIC is expected to decrease BTC by 3.45%; (iii) a 1% increase in GSPC is expected to
increase BTC by 6.22%. The estimated effects of the considered US stock market indices
on Bitcoin’s exchange rate are quite large, but they appear plausible because financial time
series are typically characterized by high variability, thus variations tend to have different
sign and to generate effects which counterbalance each other rapidly. Also, note that the
effects of the three composite indices here considered have different sign, thus, in the typical
case when they vary in the same direction (as the most stock market indices are positively
correlated in the long-term), the total effect on Bitcoin’s exchange rate may be low or null.
For instance, if DJA, IXIC and GSPC increase all by 1%, then BTC is expected to vary only
by −2.72%− 3.45% + 6.22% = +0.05% in the next 11 days.

Table 8: Summary of parameter estimation. Standard errors are shown within brackets.

Xj δ̂j λ̂j θ̂j Peak 50% 95% 99%

DJA 0.85 0.05 −2.718 (0.579) 0.9 1 3 4
IXIC 0.75 0.35 −3.455 (0.747) 1.9 2 6 9
GSPC 0.55 0.45 6.228 (1.114) 0.5 1 5 8

α̂ = 0.006 (0.003). Residual std. dev.: 0.031. R-squared: 0.218

Table 9: Estimated dynamic coefficients. Standard errors are shown within brackets.

Time lag DJA IXIC GSPC

0 −0.523 (0.112) −0.245 (0.053) 1.570 (0.281)
1 −1.329 (0.283) −0.685 (0.148) 1.649 (0.295)
2 −0.661 (0.141) −0.809 (0.175) 1.218 (0.218)
3 −0.169 (0.036) −0.671 (0.145) 0.779 (0.139)
4 −0.030 (0.006) −0.459 (0.099) 0.460 (0.082)
5 −0.004 (0.001) −0.277 (0.060) 0.259 (0.046)
6 −0.001 (0.000) −0.154 (0.033) 0.141 (0.025)
7 0.000 (0.000) −0.081 (0.017) 0.075 (0.013)
8 0.000 (0.000) −0.040 (0.009) 0.039 (0.007)
9 0.000 (0.000) −0.019 (0.004) 0.020 (0.004)
10 0.000 (0.000) −0.009 (0.002) 0.010 (0.002)
11 0.000 (0.000) −0.004 (0.001) 0.005 (0.001)

0 to 11 −2.718 (0.579) −3.452 (0.746) 6.223 (1.113)
0 to ∞ −2.718 (0.579) −3.455 (0.747) 6.228 (1.114)

6. Concluding remarks

We have proposed a hill climbing algorithm for maximum likelihood estimation of the Gamma
distributed-lag model with multiple explanatory variables. The Gamma lag is a very flexible
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Figure 3: Estimated lag distributions with interpolation on non-integer time lags. Shaded
regions indicate 95% asymptotic confidence bands.

infinite lag distribution, but it has found little popularity in empirical applications mostly
due to the difficulty of performing parameter estimation in the case of multiple explanatory
variables. Existing applications exploit OLS-based grid search, but such approach may result
infeasible for more than two explanatory variables. Our algorithm guarantees only a local
maximum, but, compared to OLS-based grid search, it makes maximum likelihood estimation
feasible for an arbitrary number of explanatory variables, and can be restarted several times
from different random initial values to hopefully find the global maximum.

In principle, the number of random restarts providing good chances to find the global maxi-
mum depends on the length of lag distributions and on the number of explanatory variables.
The Monte Carlo experiment reported in this paper suggests that 100 random restarts are
sufficient in the case of three lag distributions of length between 10 and 20. The experiment
could be extended to longer lag distributions and to higher numbers of explanatory variables
at the purpose of deriving rules of thumb for the choice of the number of restarts. A fruitful
development of our algorithm is represented by the implementation of a sampling scheme
generating overdispersed starting values, which could improve the effectiveness of the restart
strategy.

Using our algorithm, constraints on peak and length of the lag distributions can be easily
imposed by restricting the search on a subspace of the possible values of δ and λ parameters.
This feature has a high applicative relevance, as it makes possible to take into account prior
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Figure 4: Observed (black line) versus predicted (grey line) values of BTC. The mean absolute
percentage error of prediction is 2.8%.

knowledge in the estimation.

The Gamma lag distribution can be extended by adding a positive offset specified a-priori to
represent a gestation lag, as in Alston et al. (2011). Our algorithm can be straightforwardly
applied to the general situation where the offset is greater than zero, and such functionality
is still implemented in our R package. Note that, specifying an offset greater than zero, the
Gamma lag distribution can also be applied to the response itself in order to model the
autoregressive effect.

Inference on θ parameters and on dynamic coefficients βj,k performed in the real-world appli-
cation is conditioned to δ and λ parameters, i.e., it is assumed that they are known without
uncertainty. As a consequence, the standard errors may be underestimated. This is a typical
issue of estimation methods based on model selection, which clearly affects OLS-GS estima-
tion and our hill climbing algorithm, as well. The problem was raised for the first time by
Schmidt (1974), who proposed to derive standard errors from the full information matrix,
but, to our knowledge, no empirical application of the Gamma-distributed lag model went
beyond inference conditioned to δ and λ parameters. Block bootstrap methods (Radovanov
and Marcikić 2014) represent a potential solution to correctly take into account uncertainty
on δ and λ parameters. Unfortunately, the application of bootstrap techniques to our algo-
rithm could be very time consuming, thus it has not been performed here, but we plan to
direct future work towards its implementation.

Due to the flexibility of the Gamma lag distribution, our proposal may ease time series re-
gression analysis involving multiple explanatory variables, for both assessment and predictive
purposes. Also, our proposal naturally applies to dynamic simultaneous equation models.
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