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Abstract

This study proposes a new marginal asymmetry model which can infer the relation
between marginal ridits of row and column variables for ordinal square contingency tables.
When the marginal homogeneity model does not hold, we will apply marginal asymme-
try models (e.g., the marginal cumulative logistic and extended marginal homogeneity
models). On the other hand, we may measure the degree of departure from the marginal
homogeneity model. To measure the degree of that, multiple indexes were proposed. Some
of them correspond to the marginal cumulative logistic and extended marginal homogene-
ity models. The proposed model corresponds to the index, which represents the degree of
departure from the MH model, using marginal ridits. We compare the proposed model
with the existing marginal asymmetry models and show that the proposed model provides
better fit performance than them for real data.

Keywords: marginal homogeneity, marginal ridits, ordered categorical data, symmetry.

1. Introduction

This study focuses on comparing marginal distributions for matched pair of ordered categor-
ical data with same classifications. Denote two ordinal outcomes (X1, X2) with C categories.
These can be summarized as an C × C square contingency table. We regard the cell obser-
vations nij (= npij) with joint sample proportions pij as a multinomial sample with sample
size n and parameters πij for i, j = 1, . . . , C.

The marginal homogeneity (MH) model satisfies the following condition

P (X1 = i) = P (X2 = i) for i = 1, . . . , C,

see Stuart (1955). Using the joint probabilities πij , this model is expressed as

πi+ = π+i for i = 1, . . . , C,

where πi+ =
∑C

l=1 πil and π+i =
∑C

k=1 πki. Let cumulative marginal distributions of X1 and
X2 denote as

FX1
i =

i∑
k=1

πk+ and FX2
i =

i∑
l=1

π+l for i = 1, . . . , C − 1,
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respectively. The MH model is also expressed as

FX1
i = FX2

i for i = 1, . . . , C − 1.

By considering the difference FX1
i − FX2

i , the MH model is further expressed as

G1(i) = G2(i) for i = 1, . . . , C − 1,

where G1(i) =
∑i

k=1

∑C
l=i+1 πkl and G2(i) =

∑C
k=i+1

∑i
l=1 πkl, see, for example, Tahata and

Tomizawa (2008).

When the MH model does not hold for data, we will apply the marginal asymmetry models.
On the other hand, we may measure the degree of departure from the MH model. We
introduce first the marginal asymmetry models, second the relation between the marginal
asymmetry models and indexes to measure the degree of departure from the MH model.

As the marginal asymmetry models, the m-additional marginal homogeneity (MH(m)) and
m-additional marginal cumulative logistic (MCL(m)) models were proposed by Tahata and
Tomizawa (2008) and Kurakami, Tahata, and Tomizawa (2013), respectively. For a given
m (m = 1, . . . , C − 1), the MH(m) model satisfies the following condition

G1(i) =

m−1∏
k=0

ψi
k

k G2(i) for i = 1, . . . , C − 1. (1)

We note that (i) the MH(m) model with ψ0 = · · · = ψm−1 = 1 is equivalent to the MH model,
(ii) the MH(1) model is equivalent to the extended marginal homogeneity model proposed
by Tomizawa (1993), and (iii) the MH(2) model is equivalent to the generalized marginal
homogeneity model proposed by Tomizawa (1995), see Tahata and Tomizawa (2008). For a
given m (m = 1, . . . , C − 1), the MCL(m) model satisfies the following condition

LX1
i = LX2

i +
m−1∑
k=0

ik logψk for i = 1, . . . , C − 1,

where

LX1
i = log

(
FX1
i

1− FX1
i

)
and LX2

i = log

(
FX2
i

1− FX2
i

)
.

The MCL(m) model is also expressed as

H1(i) =
m−1∏
k=0

ψi
k

k H2(i) for i = 1, . . . , C − 1, (2)

where H1(i) = FX1
i (1 − FX2

i ) and H2(i) = (1 − FX1
i )FX2

i , see Kurakami et al. (2013). From
Equations (1) and (2), we see that the MH(m) and MCL(m) models are expressed as similar
multiplicative forms. We note that (i) the MCL(m) with ψ0 = · · · = ψm−1 = 1 is equivalent
to the MH model, (ii) the MCL(1) is equivalent to the marginal cumulative logistic model
proposed by McCullagh (1977), and (iii) the MCL(2) is equivalent to the extended marginal
cumulative logistic model proposed by Kurakami, Tahata, and Tomizawa (2010).

The MH model is equivalent to the MH(m) and MCL(m) models with ψ0 = · · · = ψm−1 = 1,
however the MH(m) and MCL(m) models generally has a different structure from the MH
model. Tahata and Tomizawa (2008) considered what a structure is necessary to obtain the
MH model in addition to the MH(m) model. Kurakami et al. (2013) also considered what a
structure is necessary to obtain the MH model in addition to the MCL(m) model.

To measure the degree of departure from the MH model, multiple indexes were proposed, for
example, Tomizawa, Miyamoto, and Ashihara (2003), Tahata, Tajima, and Tomizawa (2006),
Iki, Tahata, and Tomizawa (2012), and the references therein. The index of Tomizawa et al.
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(2003) corresponds to the MH(m) model because it is expressed as the function of
∏m−1
k=0 ψ

ik

k

under the MH(m) model. The index of Iki et al. (2012) corresponds to the MCL(m) model

because it is expressed as the function of
∏m−1
k=0 ψ

ik

k under the MCL(m) model. These relations

are natural since the parameters
∏m−1
k=0 ψ

ik

k express the degree of departure from the MH
model. The index of Tahata et al. (2006) is a function of marginal ridits, it does not correspond
to the MH(m) and MCL(m) models.

This study proposes a new marginal asymmetry model using marginal ridits that corresponds
to the index of Tahata et al. (2006). Thus, under the proposed model, the index of Tahata
et al. (2006) is expressed as the function of asymmetry parameters. We are interested in what
a structure is necessary to obtain the MH model in addition to the proposed model, in the
similar to Tahata and Tomizawa (2008) and Kurakami et al. (2013).

This paper is organized as follows. Section 2 defines the proposed model. Section 3 describes
the relation between the proposed model and the index of Tahata et al. (2006). Section 4
introduces the relation between the MH and proposed models. Section 5 demonstrates the
utility of the proposed model using application to real data. Section 6 extends the proposed
model to multi-way contingency tables. Section 7 closes with concluding remarks.

2. Proposed model

The marginal ridits of X1 and X2 are denoted by

rX1
i =

i−1∑
k=1

πk+ +
1

2
πi+ and rX2

i =
i−1∑
l=1

πl +
1

2
π+i for i = 1, . . . , C,

respectively, see Bross (1958) and Agresti (2010, Sec. 8.1.3.). Using the marginal ridits, the
MH model is expressed as

RX1
i = RX2

i for i = 1, . . . , C − 1, (3)

where

RX1
i =

rX1
i

rX1
C

and RX2
i =

rX2
i

rX2
C

,

see Tahata et al. (2006).

Assume that the ordered categories of the both row and column variables represent intervals
of an underlying continuous distribution. When the underlying distribution is uniform over
each interval, the rX1

i (or rX2
i ) would be equal to the probability that the row (or column)

value of a randomly selected individual falls below the midpoint of category i for i = 1, . . . , C,
see Agresti (1984, p. 168). We are interested in the form of the Equation (3) in addition
to the Equations (1) and (2) for ordinal square contingency tables such that are assumed an
underlying bivariate continuous distribution.

In a similar way Tahata and Tomizawa (2008) and Kurakami et al. (2013), for a given m (m =
1, . . . , C − 1), we propose a m-additional marginal ridits (MR(m)) model that satisfies the
following condition

RX1
i =

m−1∏
k=0

ψi
k

k R
X2
i for i = 1, . . . , C − 1.

The MR(m) model indicates that the log-odds, log(RX1
i /RX2

i ) for i = 1, . . . , C−1, is expressed
as the polynomial function of categories i as

∑m−1
k=0 i

k logψk. The number of degree of freedom
for testing the goodness of fit of the MR(m) is C−1−m. We note that (i) the MR(m) model
with ψ0 = · · · = ψm−1 = 1 is equivalent to the MH model, (ii) the MR(C − 1) model is
saturated, and (iii) there is an inclusion relation as follows:

MH ⊆ MR(1) ⊆ MR(2) ⊆ · · · ⊆ MR(C − 1).
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Thus, the MR(m) model provides a m-additional parameters class of alternatives to the
MH model. Let denote the likelihood ratio test statistic for testing the goodness-of-fit the
MR(m) model as G2(MR(m)). When we test that the values of m-additional parameters
equal one (i.e., the MH model holds) assuming that the MR(m) model holds, we use the
likelihood ratio statistic G2(MH|MR(m)) = G2(MH) − G2(MR(m)). Under the MH model,
the G2(MH|MR(m)) has an asymptotic chi-squared distribution with m degrees of freedom.
We could obtain an appropriate m (i.e., the appropriate MR(m) model) for the data using
these conditional tests.

Under the MR(m) model,
∏m−1
k=0 ψ

ik

k > 1 is imply to rX1
i > rX2

i . Thus, the parameters∏m−1
k=0 ψ

ik

k of the MR(m) model are useful to infer the relation between marginal ridits of X1

and X2.

3. Relation between proposed model and existing index

Tahata et al. (2006) proposed an index Λ(λ) to measure the degree of departure from the MH
model. Assume that π1+ + π+1 6= 0, the index Λ(λ) is defined as

Λ(λ) = 1− λ2λ

2λ − 1

C−1∑
i=1

RX1
i +RX2

i∑C−1
j=1 (RX1

j +RX2
j )

I
(λ)
i for λ > −1,

where

I
(λ)
i =

1

λ

1−

(
RX1
i

RX1
i +RX2

i

)λ+1

−

(
RX2
i

RX1
i +RX2

i

)λ+1
 .

We note that the index Λ(λ) is a function of the marginal ridits of X1 and X2. For each λ, the
index Λ(λ) satisfies the following characteristics: (i) the index Λ(λ) lies between zero to one,
(ii) Λ(λ) = 0 if and only if the MH model holds, (iii) the degree of departure from the MH
model is maximum, in the sense that RX1

i = 0 (then RX2
i 6= 0) and RX2

i = 0 (then RX1
i 6= 0)

for all i = 1, . . . , C − 1, see Tahata et al. (2006).

Under the MR(m) model, the index Λ(λ) is expressed as

Λ(λ) = 1− 2λ

2λ − 1

1−

( ∏m−1
k=0 ψ

ik

k∏m−1
k=0 ψ

ik
k + 1

)λ+1

−

(
1∏m−1

k=0 ψ
ik
k + 1

)λ+1
 for λ > −1. (4)

From Equation (4), the index Λ(λ) corresponds to the MR(m) model because it is expressed

as the function of
∏m−1
k=0 ψ

ik

k under the MR(m) model. Figure 1 shows the values of the index

Λ(λ) corresponding to
∏m−1
k=0 ψ

ik

k in the range 0.1 ≤
∏m−1
k=0 ψ

ik

k ≤ 10. From Figure 1, we see

that the index Λ(λ) increases monotonically as
∏m−1
k=0 ψ

ik

k approaches zero or infinity.

4. Relation between models

The MH model is equivalent to the MR(m) model with ψ0 = · · · = ψm−1 = 1, however the
MR(m) model generally has a different structure from the MH model. We are interested in
what a structure is necessary to obtain the MH model in addition to the MR(m) model.

For a given k (k = 0, 1, . . . , C − 2), we consider a k-th marginal ridits equality (MRE(k))
model satisfied the following condition

C−1∑
i=1

ikRX1
i =

C−1∑
i=1

ikRX2
i .

The number of degree of freedom for testing the goodness of fit of the MRE(k) is one.

We obtain the following theorem:
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Figure 1: This figure shows the values of the index Λ(λ) corresponding to
∏m−1
k=0 ψ

ik

k under
the MR(m) model.
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Theorem 1. For a given m (m = 1, . . . , C− 1), the MH model holds if and only if the MR(m)
and MRE(k), for all k = 0, 1, . . . ,m− 1, models hold.

Proof. For a given m (m = 1, . . . , C − 1), if the MH model holds, then the MR(m) and
MRE(k), for all k = 1, . . . ,m, models hold. Assuming that the MR(m) and MRE(k), for all
k = 1, . . . ,m, models hold, we show that the MH model hold.

Let

α1(i) =
RX1
i∑C−1

l=1 (RX1
l +RX2

l )
and α2(i) =

RX2
i∑C−1

l=1 (RX1
l +RX2

l )
for i = 1, . . . , C − 1.

Using α1(i) and α2(i), the MR(m) model is also expressed as

α1(i) =

m−1∏
k=0

ψi
k

k β1(i) and α2(i) = β2(i) for i = 1, . . . , C − 1,

where β1(i) and β2(i) are parameters that satisfy the restriction β1(i) = β2(i).

Let π∗ij denote the (i, j) cell probabilities that satisfy the MR(m) and MRE(k), for all k =
1, . . . ,m, models. And let α∗

1(i) and α∗
2(i) be α1(i) and α2(i) with πij replaced by π∗ij . Since

the MR(m) model holds,

logα∗
1(i) =

m−1∑
k=0

ik logψk + log β1(i) and logα∗
2(i) = log β2(i) for i = 1, . . . , C − 1.

Let γ1(i) = ε−1β1(i) and γ2(i) = ε−1β2(i) (i = 1, . . . , C − 1), where ε =
∑C−1

i=1 (β1(i) + β2(i)).
The MR(m) model is further expressed as

log

(
α∗
1(i)

γ1(i)

)
=

m−1∑
k=0

ik logψk + log ε and log

(
α∗
2(i)

γ2(i)

)
= log ε for i = 1, . . . , C − 1. (5)

Since the MRE(k) models,

C−1∑
i=1

ikα∗
1(i) =

C−1∑
i=1

ikα∗
2(i) = µ(k) for k = 0, 1, . . . ,m− 1. (6)

Consider arbitrary cell probabilities πij that satisfy the following condition

C−1∑
i=1

ikα1(i) =
C−1∑
i=1

ikα2(i) = µ(k) for k = 0, 1, . . . ,m− 1. (7)

From Equations (5) to (7),

C−1∑
i=1

(
α1(i) − α∗

1(i)

)
log

(
α∗
1(i)

γ1(i)

)
−
C−1∑
i=1

(
α2(i) − α∗

2(i)

)
log

(
α∗
2(i)

γ2(i)

)
= 0. (8)

Consider the Kullback-Leibler information such as follows:

K(α, γ) =

C−1∑
i=1

α1(i) log

(
α1(i)

γ1(i)

)
+

C−1∑
i=1

α2(i) log

(
α2(i)

γ2(i)

)
and

K(α∗, γ) =
C−1∑
i=1

α∗
1(i) log

(
α∗
1(i)

γ1(i)

)
+
C−1∑
i=1

α∗
2(i) log

(
α∗
2(i)

γ2(i)

)
.
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From Equation (8),
K(α, γ) = K(α∗, γ) +K(α, α∗),

where

K(α, α∗) =
C−1∑
i=1

α1(i) log

(
α1(i)

α∗
1(i)

)
+
C−1∑
i=1

α2(i) log

(
α2(i)

α∗
2(i)

)
.

Since γ is fixed,
min
α
K(α, γ) = K(α∗, γ),

and then α∗
1(i) and α∗

2(i) (i = 1, . . . , C−1) uniquely minimize K(α, γ), see Darroch and Ratcliff

(1972). Thus, we obtain

α1(i) = α∗
1(i) and α2(i) = α∗

2(i) for i = 1, . . . , C − 1. (9)

Let π∗∗ij = π∗ji for i, j = 1, . . . , C, and let α∗∗
1(i) = α∗

2(i) and α∗∗
2(i) = α∗

1(i) for i = 1, . . . , C − 1.
In the same manner,

min
α
K(α, γ) = K(α∗∗, γ),

where

K(α∗∗, γ) =

C−1∑
i=1

α∗∗
1(i) log

(
α∗∗
1(i)

γ1(i)

)
+

C−1∑
i=1

α∗∗
2(i) log

(
α∗∗
2(i)

γ2(i)

)
,

and then α∗∗
1(i) and α∗∗

2(i) (i = 1, . . . , C − 1) uniquely minimize K(α, γ). Therefore, we obtain

α1(i) = α∗∗
1(i) = α∗

2(i) and α2(i) = α∗∗
2(i) = α∗

1(i) for i = 1, . . . , C − 1. (10)

From Equations (9) and (10),

α∗
1(i) = α∗

2(i) for i = 1, . . . , C − 1.

Namely, the MH model holds. The proof is completed.

5. Application to real data

5.1. Application to occupational status data

Table 1, taken from Agresti (2010, p. 230), relates father’s and son’s occupational status
category for a British sample. We are interested in comparing marginal distributions for
these data.

Except for the (n13, n31) combination, the cell observation satisfies nij > nji for i < j.
Moreover, the marginal observations for categories from (1) to (4) are father’s greater than
son’s. Thus, the MH(m), MCL(m) and MR(m) models may be preferable to the MH model.

A quick methods for choosing the best-fitting model among applied models are to use the
Akaike information criterion (AIC) and Bayesian information criterion (BIC), which are de-
fined as

AIC = −2× (the maximum log likelihood) + 2× (the number of parameters),

BIC = −2× (the maximum log likelihood) + log n× (the number of parameters),

see Akaike (1974) and Schwarz (1978). The AIC and BIC give the best-fitting model as
the one with the minimum AIC and minimum BIC, respectively. Since only the difference
between AICs is required when two models are compared, it is possible to ignore the common
constant of AIC, and we may use a modified AIC defined as

AIC+ = G2 − 2× (the number of degree of freedom).
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Table 1: Occupational status for British father–son pairs; taken from Agresti (2010, p. 230).
The parenthesized values are the maximum likelihood estimates of expected frequencies under
the MR(1) model.

Son’s status

Father’s status (1) (2) (3) (4) (5) Total

(1) 50 45 8 18 8 129
(50.34) (39.99) (7.49) (16.30) (7.30) (121.40)

(2) 28 174 84 154 55 495
(32.19) (173.68) (88.89) (156.97) (56.52) (508.24)

(3) 11 78 110 223 96 518
(11.92) (73.93) (110.20) (215.62) (93.54) (505.22)

(4) 14 150 185 714 447 1510
(15.74) (146.87) (191.81) (713.63) (450.36) (1518.42)

(5) 3 42 72 320 411 848
(3.35) (40.83) (74.08) (317.47) (411.00) (846.72)

Total 106 489 459 1429 1017 3500
(113.53) (475.30) (472.47) (1419.99) (1018.72)

Note: Occupational status is (1) lowest status; (5) highest status.

Similarly, we may use a modified BIC defined as

BIC+ = G2 − log n× (the number of degree of freedom).

Thus, for the data, the model with the minimum AIC+ (i.e., the minimum AIC) or minimum
BIC+ (i.e., the minimum BIC) may be the best-fitting model.

Table 2 shows the values of likelihood ratio statistic (G2), AIC+ and BIC+ for each model.

Table 2: The values of likelihood ratio statistic (G2), AIC+ and BIC+ for each model applied
to Table 1

Models Degree of freedom G2 AIC+ BIC+

MH 4 32.80∗ 24.80 0.16
MH(1) 3 7.30 1.30 −17.18
MH(2) 2 4.25 0.25 −12.07
MH(3) 1 1.04 −0.96 −7.12

MCL(1) 3 9.75∗ 3.75 −14.75
MCL(2) 2 5.22 1.22 −11.10
MCL(3) 1 0.71 −1.29 −7.45
MR(1) 3 3.11 −2.89 −21.37
MR(2) 2 3.08 −0.92 −13.24
MR(3) 1 3.06 1.06 −5.10

The ∗ means significant at the 0.05 level.

As supposed, the MH model fits these data poorly, and the MH(m), MCL(m) and MR(m)
models fits these data well except for the MCL(1) model. According to the test based on the
differences between G2 values for (i) the MR(1) and MR(2) models, (ii) the MR(2) and MR(3)
models, the MR(1) model is preferable to the MR(2) and MR(3) models. Moreover, since the
MR(1) model has minimum AIC+ and BIC+ values, it is the best fitted model among applied
models.

Under the MR(1) model, the maximum likelihood estimate of ψ0 is 1.04. Thus, we can
infer that the son’s occupational status is higher than the father’s one by comparing between
marginal ridits.
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The MRE(0) model fits these data poorly since G2 = 6.63. From Theorem 1, we can consider
that the poor fit of the MH model is caused by the influence of the lack of structure of the
MRE(0) model rather than the MR(1) model.

5.2. Application to vision data

We consider the data in Table 3, taken from Tomizawa (1985). Table 3 is the data of the
of 4746 university students aged 18 to about 25, including about 10% of the women of the
Faculty of Science and Technology, Tokyo University of Science examined in 1982. We are
interested in comparing marginal distributions for these data.

Table 3: Unaided distance vision of 4746 university students aged 18 to about 25, including
about 10% of the women of the Faculty of Science and Technology, Tokyo University of
Science examined in 1982; source Tomizawa (1985). The parenthesized values from above
are the maximum likelihood estimates of expected frequencies under the MR(1) and MH(1)
models, respectively.

Left eye grade

Right eye grade (1) (2) (3) (4) Total

(1) 1291 130 40 22 1483
(1291.17) (134.38) (40.13) (22.14) (1487.82)
(1291.00) (130.13) (38.74) (21.88) (1481.75)

(2) 149 221 114 23 507
(144.24) (220.88) (110.69) (22.40) (498.21)
(148.88) (221.00) (110.31) (22.85) (503.04)

(3) 64 124 660 185 1033
(63.81) (127.76) (660.05) (185.63) (1037.24)
(65.73) (127.47) (660.00) (190.09) (1043.29)

(4) 20 25 249 1429 1723
(19.87) (25.67) (248.18) (1429.00) (1722.72)
(20.09) (25.14) (243.69) (1429.00) (1717.92)

Total 1524 500 1063 1659 4746
(1519.09) (508.69) (1059.04) (1659.18)
(1525.70) (503.73) (1052.75) (1663.82)

Note: Eye grade is (1) highest grade; (4) lowest grade.

Except for the (n14, n41) combination, the cell observation satisfies nij < nji for i < j.
Moreover, the marginal observations for categories from (1) to (3) are left’s greater than
right’s. Thus, the MH(m), MCL(m) and MR(m) models may be preferable to the MH model.

Table 4 shows the values of G2, AIC+ and BIC+ for each model.

As supposed, the MH model fits these data poorly, and the MH(m), MCL(m) and MR(m)
models fits these data well. According to the test based on the differences between G2 values
for the MR(1) and MR(2) models, the MR(1) model is preferable to the MR(2) model.
Moreover, since the MR(1) model has minimum AIC+ and BIC+ values, it is the best fitted
model among applied models.

The reader may point out that there is almost no the differences between AIC+ (or BIC+)
values for the MR(1) and MH(1) models. We observe that the MH(m) model is saturated
on the main diagonal cells of the C × C table (see the maximum likelihood estimates of the
expected frequencies for the MH(1) model in Table 3). On the other hand, we observe that
the MR(m) model is saturated on only the (C,C)th cell of the C×C table (see the maximum
likelihood estimates of the expected frequencies for the MR(1) model in Table 3). As the
characteristic of square contingency tables, many observations tend to concentrate the main
diagonal cells. In Table 3, 3601 (= 1291 + 221 + 660 + 1429) observations fall on the main
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Table 4: The values of likelihood ratio statistic (G2), AIC+ and BIC+ for each model applied
to Table 3

Models Degree of freedom G2 AIC+ BIC+

MH 3 11.18∗ 5.18 −14.22
MH(1) 2 0.56 −3.44 −16.37
MH(2) 1 0.41 −1.59 −8.06

MCL(1) 2 1.41 −2.59 −15.52
MCL(2) 1 1.12 −0.88 −7.35
MR(1) 2 0.55 −3.45 −16.38
MR(2) 1 0.24 −1.76 −8.23

The ∗ means significant at the 0.05 level.

diagonal cells, corresponding to approximately 76% of the sample size. Thus, utilizing the
information on the main diagonal cells is important. From these points, when we want to
use more observations, we consider that the MR(1) model may be preferred over the MH(1)
model.

Under the MR(1) model, the maximum likelihood estimate of ψ0 is 0.99. Thus, we can infer
that the left eye is better than the right eye by comparing between marginal ridits.

6. Extension to multi-way contingency tables

In the previous section, we have dealt in the case of two ordinal outcomes (X1, X2) with C cat-
egories. In this section, we will deal in the case of multiple ordinal outcome (X1, X2, . . . , XT )
with C categories.

We consider a multi-way CT contingency table. The MH model satisfies the following condi-
tion

P (X1 = i) = P (X2 = i) = · · ·P (XT = i) for i = 1, . . . , C,

see Stuart (1955). Let cumulative marginal distributions of X1, X2, . . . , XT denote as

FXt
i = P (Xt ≤ i) for i = 1, . . . , C − 1; t = 1, . . . , T,

respectively.

Kurakami et al. (2013) proposed the MCL(m) model for a multi-way CT contingency table
with same ordinal classifications. For a given m (m = 1, . . . , C − 1), the MCL(m) model
satisfies the following condition

LX1
i = LXt

i +

m−1∑
k=0

ik logψ
(t)
k for i = 1, . . . , C − 1; t = 2, . . . , T,

where

LXt
i = log

(
FXt
i

1− FXt
i

)
.

The MCL(m) model is also expressed as

H
(t)
1(i) =

m−1∏
k=0

(
ψ
(t)
k

)ik
H

(t)
2(i) for i = 1, . . . , C − 1; t = 2, . . . , T,

where H
(t)
1(i) = FX1

i (1− FXt
i ) and H

(t)
2(i) = (1− FX1

i )FXt
i , see Kurakami et al. (2013).
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In a similar way Kurakami et al. (2013), for a given m (m = 1, . . . , C − 1), we propose the
MR(m) model that satisfies the following condition

RX1
i =

m−1∏
k=0

(
ψ
(t)
k

)ik
RXt
i for i = 1, . . . , C − 1; t = 2, . . . , T.

The MR(m) model indicates that the log-odds, log(RX1
i /RXt

i ) for i = 1, . . . , C−1, is expressed

as the polynomial function of categories i as
∑m−1

k=0 i
k logψ

(t)
k . The number of degree of

freedom for testing the goodness of fit of the MR(m) is (T − 1)(C − 1−m).

The MH model is equivalent to the MR(m) model with ψ
(t)
0 = · · · = ψ

(t)
m−1 = 1 for all

t = 2, . . . , T , however the MR(m) model generally has a different structure from the MH
model. In a similar way the case of two ordinal outcomes, we are interested in what a
structure is necessary to obtain the MH model in addition to the MR(m) model.

For a given k (k = 0, 1, . . . , C − 2), we consider a k-th marginal ridits equality (MRE(k))
model satisfied the following condition

C−1∑
i=1

ikRX1
i =

C−1∑
i=1

ikRX2
i = · · · =

C−1∑
i=1

ikRXT
i .

The number of degree of freedom for testing the goodness of fit of the MRE(k) is T − 1.

From Theorem 1, by considering the relationship between the X1 and Xt for t = 2, . . . , T , we
obtain the following theorem:

Theorem 2. For a given m (m = 1, . . . , C− 1), the MH model holds if and only if the MR(m)
and MRE(k), for all k = 0, 1, . . . ,m− 1, models hold.

7. Concluding remarks

This study proposed the MR(m) model which can compare two marginal ridits for matched
pair of ordered categorical data with same classifications. The proposed model was covered
from the saturated model to the MH model. We could select an appropriate m (i.e., the
appropriate MR(m)) for the data using conditional tests G2(MH|MR(m)). The MH model
is equivalent to the MR(m) model with ψ0 = · · · = ψm−1 = 1, however the MR(m) model
generally has a different structure from the MH model. We gave the theorem that the MH
model holds if and only if the MR(m) and MRE(k), for all k = 0, 1, . . . ,m− 1, models hold.
We demonstrated the utility of the MR(m) model using application to real data.

In Section 6, we dealt the MR(m) corresponding to the multi-way CT contingency table.
However, we have not demonstrated the utility of the MR(m) model using application to real
data for the multi-way CT contingency table. These are a matter to be considered in future
studies.
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