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Abstract

This study proposes a bivariate index vector to concurrently analyze both the degree
and direction of departure from the quasi-symmetry (QS) model for ordinal square contin-
gency tables. The QS model and extended QS (EQS) models identify the symmetry and
asymmetry between the probabilities of normal circulation and reverse circulation when
the order exists for arbitrary three categories. The asymmetry parameter of the EQS
model implies the degree of departure from the QS model; the EQS model is equivalent to
the QS model when the asymmetry parameter equals to one. The structure of the EQS
model differs depending on whether the asymmetry parameter approaches zero or infinity.
Thus, the asymmetry parameter of the EQS model also implies the direction of departure
from the QS model. The proposed bivariate index vector is constructed by combining ex-
isting and original sub-indexes that represent the degree of departure from the QS model
and its direction. These sub-indexes are expressed as functions of the asymmetry param-
eter under the EQS model. We construct an estimator of the proposed bivariate index
vector and an approximate confidence region for the proposed bivariate index vector. Us-
ing real data, we show that the proposed bivariate index vector is important to compare
degrees of departure from the QS model for plural data sets.

Keywords: asymmetry, circulation, comparison, direction, ordered categorical data, symmetry.

1. Introduction

Consider an R × R square contingency table with the same row and column ordinal clas-
sifications. We denote πij as the probability that an observation will fall in (i, j)th cell of
the table (i, j = 1, . . . , R). The quasi-symmetry (QS) model proposed by Caussinus (1965)
indicates the symmetry between the probabilities of the normal circulation πijπjkπki and the
probabilities of the reverse circulation πkjπjiπik for arbitrary i < j < k. The extended QS
(EQS) model proposed by Tomizawa (1984) indicates the asymmetry between them. The
asymmetry parameter of the EQS model implies the degree of departure from the QS model
because the EQS model is equivalent to the QS model when the asymmetry parameter equals
one. The structure of the EQS model differs depending on whether the parameter approaches
zero or infinity. Thus, the asymmetry parameter of the EQS model also implies the direction
of departure from the QS model.

When the QS model does not hold for a single data set, we may apply the EQS model or
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measure the degree of departure from the QS model. Test statistics (e.g., Pearson’s chi-
squared statistic or likelihood ratio statistic) cannot judge how much the degree of departure
from the QS model is toward the maximum departure. On the contrary, when the QS model
does not hold for plural data sets, we could compare the degrees of departure from the QS
model. Test statistics, however, may not be valuable for comparing the degrees of departure
from the model in plural data sets because the value of test statistics depends on the sample
size.

Tahata, Kozai, and Tomizawa (2014) proposed an index to measure the degree of departure
from the QS model (see Section 3 for the details of this index). This index is important to
measure and compare the degree of departure from the QS model as the range of this index
is zero to one, and the value of this index does not depend on the sample size. This index,
however, cannot distinguish directions of departure from the QS model because the value
of this index approaches one as the asymmetry parameter approaches zero or infinity under
the EQS model. To tackle this issue, we may consider a sequential estimation procedure, for
example, estimate the index, and then decide the direction though estimating the asymmetry
parameter of EQS model. This procedure, however, can only be used when the EQS model
holds. We are interested in constructing an index that can distinguish directions of departure
from the QS model even when the EQS model does not hold.

For measuring the degree of departure from the symmetry (S) model, Tomizawa, Miyamoto,
and Hatanaka (2001) proposed an index that can judge whether or not the S model holds, and
Tahata, Miyazawa, and Tomizawa (2010) proposed an index that can distinguish directions
of departure from the S model. The index of Tahata et al. (2010), however, cannot judge
whether or not the S model holds. To concurrently analyze both the degree and direction of
departure from the S model, Ando, Tahata, and Tomizawa (2017) proposed a bivariate index
vector with the above indexes as elements.

This study proposes (1) an index that can distinguish directions of departure from the QS
model, and (2) a bivariate index vector that can concurrently analyze both the degree and
direction of departure from the QS model in a manner similar to Ando et al. (2017). The
proposed bivariate index vector can be visually comparing the degrees of departure from the
QS model in plural data sets using confidence region. This is useful to produce results easier
to interpret than the existing index.

This paper is organized as follows. Section 2 introduces the QS and EQS models. Section 3
defines the proposed bivariate index vector. Section 4 derives an estimator and approximate
confidence region for the proposed bivariate index vector. Section 5 demonstrates the utility of
the proposed index vector using application to real data sets. Section 6 closes with concluding
remarks.

2. Quasi-symmetry model

Caussinus (1965) considered the QS model defined by

πij = αiβjψij for i, j = 1, . . . , R,

where ψij = ψji. The QS model with {αi = βi} is equivalent to the S model proposed by
Bowker (1948). The QS model is also expressed as

πijπjkπki = πkjπjiπik for i < j < k,

see, for example, Tomizawa (1984), Tahata et al. (2014), and Altun (2019). The QS model
indicates that the probabilities of the normal circulation πijπjkπki are equal to the probabilities
of the reverse circulation πkjπjiπik for arbitrary i < j < k.

Tomizawa (1984) considered the EQS model defined by

πijπjkπki = γπkjπjiπik for i < j < k.
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The EQS model indicates that the probabilities of the normal circulation πijπjkπki are γ
times higher than the probabilities of the reverse circulation πkjπjiπik for arbitrary i < j < k.
The number of degrees of freedom for the QS and EQS models are (R − 1)(R − 2)/2 and
R(R− 3)/2.

The parameter γ of the EQS model implies the degree of departure from the QS model because
the EQS model with γ = 1 is equivalent to the QS model. The γ also implies the direction of
departure from the QS model because the structure of the EQS model differs depending on
whether the γ approaches zero or infinity.

The QS model is a typical model among many models for the square contingency table. The
issues related to the QS model have been analyzed in many studies, for example, Kateri and
Papaioannou (1997), Kateri and Agresti (2007), Saigusa, Tahata, and Tomizawa (2015), Ka-
teri, Gottard, and Tarantola (2017), Altun (2019), Tahata (2019), and the references therein.

3. Proposed methods

In this section, we propose a bivariate index vector that can concurrently analyze both the
degree and direction of departure from the QS model.

3.1. Existing index of quasi-symmetry model

Let
Aijk = πijπjkπki and Akji = πkjπjiπik for i < j < k.

Assume that Aijk +Akji > 0 for i < j < k, Tahata et al. (2014) proposed the index φ defined
by

φ =
1

log 2

∑
i<j<k

[
Bijk log

(
Bijk
Cijk

)
+Bkji log

(
Bkji
Cijk

)]
,

where

Bijk =
Aijk
∆

, Bkji =
Akji
∆

, Cijk =
Bijk +Bkji

2
and ∆ =

∑
i<j<k

(Aijk +Akji) .

The φ has the following characteristics: (1) the range of φ is zero to one, (2) φ = 0 if and
only if the QS model holds, and (3) φ = 1 if and only if there is maximum departure from
the QS model. The maximum departure from the QS model implies Aijk = 0 or Akji = 0 for
i < j < k.

Under the EQS model, the φ is also expressed as

φ =
1

log 2

[
γ

γ + 1
log

(
2γ

γ + 1

)
+

1

γ + 1
log

(
2

γ + 1

)]
.

We see that if the γ approaches zero or infinity then the φ approaches both one. We are
interested in considering the index that can take a difference value when the γ approaches
zero and infinity because the structure differs depending on whether the γ approaches zero
and infinity.

3.2. Directional index of quasi-symmetry model

We propose a new directional index that can distinguish directions of departure from the QS
model. This index can take a difference value when the γ approaches zero or infinity under
the EQS model.

Assume that Aijk +Akji > 0 for i < j < k, we define the directional index ϕ as

ϕ =
4

π

∑
i<j<k

(Bijk +Bkji)
(
θijk −

π

4

)
,
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where

θijk = arccos

 Aijk√
(Aijk)

2 + (Akji)
2

 .

The ϕ has the following characteristics: (1) the range of ϕ is minus one to one, (2) ϕ = −1
if and only if Akji equals to zero for i < j < k (say, maximum reverse circulation), (3) ϕ = 1
if and only if Aijk equals to zero for i < j < k (say, maximum normal circulation), and (4) if
the QS model holds then ϕ = 0, but the converse does not hold. We refer to the structure of
ϕ = 0 as average circulation. From the above property (4), we note that the ϕ concurrently
cannot analyze both the degree and direction of departure from the QS model.

Under the EQS model, the ϕ is also expressed as

ϕ =
4

π
arccos

(
γ√

1 + γ2

)
− 1.

We see that if the γ approaches infinity then the ϕ approaches minus one, and if the γ
approaches zero then the ϕ approaches one. The ϕ can take a difference value when the γ
approaches zero or infinity.

3.3. Bivariate index vector of the quasi-symmetry model

To concurrently analyze both the degree and direction of departure from the QS model, we
propose the bivariate index vector as Φ = (φ, ϕ)′. Note that the symbol “ ′ ” denotes the
transpose.

The proposed bivariate index vector Φ satisfies the following properties.

(1) Φ = (0, 0)′ if and only if the QS model holds;

(2) Φ = (1,−1)′ if and only if the structure of maximum reverse circulation exists;

(3) Φ = (1, 1)′ if and only if the structure of maximum normal circulation exists.

From the above properties, the bivariate index vector Φ concurrently can analyze both the
degree and direction of departure from the QS model.

4. Approximate confidence region for the bivariate index vector

Let nij denote the observed frequency in the (i, j)th cell of the table (i, j = 1, . . . , R). Assume
that a multinomial distribution applies to the R×R table. Let pij = nij/N (i, j = 1, . . . , R)

and N =
∑∑

nij . We estimate Φ by Φ̂ = (φ̂, ϕ̂)′, where φ̂ and ϕ̂ are given by φ and ϕ with
{πij} being replaced by {pij}, respectively. Using the delta method (see, e.g., Agresti 2013,

p. 591),
√
N(Φ̂ − Φ) asymptotically (as N → ∞) has a bivariate normal distribution with

zero mean and covariance matrix Σ[ Φ̂ ],

Σ[ Φ̂ ] =
1

∆2

R−1∑
s=1

R∑
t=s+1

(
pst (αst)

2 + pts (αts)
2 pstαstβst + ptsαtsβts

pstαstβst + ptsαtsβts pst (βst)
2 + pts (βts)

2

)
,
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where

αst =
1

log 2

∑
i<j<k

[
∂Aijk
∂πst

log

(
2Aijk

Aijk +Akji

)
+
∂Akji
∂πst

log

(
2Akji

Aijk +Akji

)]

−φ
∑
i<j<k

(
∂Aijk
∂πst

+
∂Akji
∂πst

)
,

αts =
1

log 2

∑
i<j<k

[
∂Aijk
∂πts

log

(
2Aijk

Aijk +Akji

)
+
∂Akji
∂πts

log

(
2Akji

Aijk +Akji

)]

−φ
∑
i<j<k

(
∂Aijk
∂πts

+
∂Akji
∂πts

)
,

βst =
4

π

∑
i<j<k

[(
∂Aijk
∂πst

+
∂Akji
∂πst

)
θijk + (Aijk +Akji)

∂θijk
∂πst

]

−(ϕ+ 1)
∑
i<j<k

(
∂Aijk
∂πst

+
∂Akji
∂πst

)
,

βts =
4

π

∑
i<j<k

[(
∂Aijk
∂πts

+
∂Akji
∂πts

)
θijk + (Aijk +Akji)

∂θijk
∂πts

]

−(ϕ+ 1)
∑
i<j<k

(
∂Aijk
∂πts

+
∂Akji
∂πts

)
,

with

∂θijk
∂πst

=

∂Akji
∂πst

Aijk −
∂Aijk
∂πst

Akji

(Aijk)2 + (Akji)2
,

∂θijk
∂πts

=

∂Akji
∂πts

Aijk −
∂Aijk
∂πts

Akji

(Aijk)2 + (Akji)2
,

∂Aijk
∂πst

= I(i = s, j = t)πjkπki + I(j = s, k = t)πijπki,

∂Aijk
∂πts

= I(k = t, i = s)πijπjk,

∂Akji
∂πst

= I(i = s, k = t)πkjπji,

∂Akji
∂πts

= I(k = t, j = s)πjiπik + I(j = t, i = s)πkjπik,

and I(·) is the indicator function. We note that the asymptotic normal distribution of
√
N(Φ̂−

Φ) is not applicable when φ = 0 and φ = 1 because the variance of φ̂ equals zero, and also
not applicable when ϕ = −1 and ϕ = 1 because the variance of ϕ̂ equals zero.

Let Σ̂[ Φ ] denote Σ[ Φ̂ ] with {πij} being replaced by {pij}. An approximate 100(1 − α)
percent confidence region for Φ is obtained by

N
(
Φ̂−Φ

)′(
Σ̂[ Φ ]

)−1(
Φ̂−Φ

)
≤ χ2

(1−α;2),

where χ2
(1−α;2) is the 1−α quantile of the chi-square distribution with two degrees of freedom.

Consider comparing the degrees of departure from the QS model between independent Tables
A and B (with sample sizes NA and NB, respectively). For Tables A and B, the Φ are
denoted by ΦA and ΦB, respectively. We also denote estimators of ΦA and ΦB by Φ̂A and
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Φ̂B, respectively. When NA and NB are large, Φ̂A − Φ̂B − (ΦA −ΦB) approximately has a
bivariate normal distribution with zero mean and covariance matrix V, where

V =
1

NA
Σ[ Φ̂A ] +

1

NB
Σ[ Φ̂B ].

Therefore, an approximate 100(1− α) percent confidence region for ΦA −ΦB is obtained by(
Φ̂A − Φ̂B − (ΦA −ΦB)

)′
V̂−1

(
Φ̂A − Φ̂B − (ΦA −ΦB)

)
≤ χ2

(1−α;2),

where V̂ is given by V with Σ[ Φ̂A ] and Σ[ Φ̂B ] replaced by Σ̂[ ΦA ] and Σ̂[ ΦB ], respectively.

We note that (i) if the confidence region for ΦA −ΦB is included within the first quadrant,
then the degree of departure from the QS model in Table A is greater than that in Table B,
and the degree of normal circulation in Table A is greater than that in Table B; (ii) if the
confidence region is included within the second quadrant, then the degree of departure from
the QS model in Table A is greater than that in Table B, and the degree of reverse circulation
in Table A is smaller than that in Table B; (iii) if the confidence region is included within the
third quadrant, then the degree of departure from the QS model in Table A is smaller than
that in Table B, and the degree of reverse circulation in Table A is smaller than that in Table
B; and (iv) if the confidence region is included within the fourth quadrant, then the degree
of departure from the QS model in Table A is smaller than that in Table B, and the degree
of normal circulation in Table A is greater than that in Table B.

5. Application to data

5.1. Application to artificial data

We point out that the bivariate index vector Φ is useful for visually comparing the degrees
of departure from the QS model. For instance, we consider the three artificial data sets in
Tables 1a, 1b, and 1c.

Table 1: Three artificial data sets having a difference structure for the direction of the depar-
ture from the QS model.

(1) (2) (3) (4) Total

(a) Normal circulation
(1) 1000 50 200 200 1450
(2) 200 1000 200 200 1600
(3) 200 50 1000 50 1300
(4) 50 200 200 1000 1450

Total 1450 1300 1600 1450 5800

(b) Reverse circulation
(1) 1000 200 200 50 1450
(2) 50 1000 50 200 1300
(3) 200 200 1000 200 1600
(4) 200 200 50 1000 1450

Total 1450 1600 1300 1450 5800

(c) Average circulation
(1) 1000 50 200 50 1300
(2) 200 1000 200 50 1450
(3) 200 200 1000 200 1600
(4) 200 200 50 1000 1450

Total 1600 1450 1450 1300 5800
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From Tables 2a, 2b, and 2c, we see that all of the values φ̂ for Tables 1a, 1b, and 1c are
equal, but the data sets in Tables 1a, 1b, and 1c have different structures for the direction
of the departure from the QS model. The value of ϕ̂ for Table 1c equals zero, but the data
set in Table 1c does not have the structure of the QS model. From Figure 1, we see that
the proposed bivariate index vector Φ can concurrently analyze the degree and direction of
departure from the QS model. Thus, we see that (i) the data set in Table 1a tends to have
the structure of normal circulation; (ii) the data set in Table 1b tends to have the structure
of reverse circulation; and (iii) the data set in Table 1c tends to have the structure of average
circulation.

Table 2: Estimates of φ and ϕ, approximate standard errors for φ̂ and ϕ̂, and approximate
95% confidence intervals for φ and ϕ, applied to Tables 1a, 1b and 1c.

Estimated Standard Confidence
index error interval

(a) For Table 1a
φ 0.461 0.042 (0.378, 0.543)
ϕ 0.626 0.050 (0.528, 0.724)

(b) For Table 1b
φ 0.461 0.042 (0.378, 0.543)
ϕ −0.626 0.050 (−0.724, −0.528)

(c) For Table 1c
φ 0.461 0.042 (0.379, 0.542)
ϕ 0.000 0.068 (−0.132, 0.132)

5.2. Application to real data

We used the cross-classification of father’s and son’s occupational social class data in Japan.
We took the two data sets from Hashimoto (2003, p. 142) and Tominaga (1979, p. 132)
summarized in Tables 3 and 4. These data sets were examined in 1955 and 1975.

Table 3: Cross-classification of the Japanese father’s and son’s occupational status categories
in 1955; taken from Hashimoto (2003, p. 142). Status is (1) capitalist, (2) new middle, (3)
working, (4) self-employed, and (5) farming.

Father’s Son’s status
status (1) (2) (3) (4) (5) Total

(1) 39 39 39 57 23 197
(2) 12 78 23 23 37 173
(3) 6 16 78 23 20 143
(4) 18 80 79 126 31 334
(5) 28 106 136 122 628 1020

Total 103 319 355 351 739 1867

First, we tested the goodness-of-fit of the QS model for Tables 3 and 4. The QS model
is a poor fit for these data sets because the values of likelihood ratio statistic for Tables 3
and 4 are 22.13 and 8.30, respectively. The EQS model is also a poor fit for these data
sets because its values are 13.59 and 8.28. From the above results, we cannot judge how
much the degree of departure from the QS model is toward the maximum reverse or normal
circulation. Furthermore, since these data sets differ in sample size and number of categories,
it is not appropriate to compare the degrees of departure from the QS model using the values
of likelihood ratio statistic.

Second, we measured the degree of departure from the QS model using the confidence region
for Φ. For Tables 3 and 4, estimates of Φ are
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Figure 1: Approximate 95% confidence regions for the bivariate index vector Φ = (φ, ϕ)′,
applied to Tables 1a, 1b, and 1c.

Table 4: Cross-classification of the Japanese father’s and son’s occupational status categories
in 1975; taken from Tominaga (1979, p. 132). Status is (1) professional and managers, (2)
clerical and sales, (3) skilled manual and semiskilled manual, and (4) unskilled manual and
farmers.

Father’s Son’s status
status (1) (2) (3) (4) Total

(1) 127 101 54 12 294
(2) 86 207 125 13 431
(3) 78 124 310 24 536
(4) 109 206 437 325 1077

Total 400 638 926 374 2338
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Φ̂3 =

(
0.156
0.401

)
and Φ̂4 =

(
0.050
0.001

)
,

respectively, and estimates of Σ[ Φ̂ ] are

Σ̂[ Φ3 ] =

(
6.777 8.176
8.176 16.715

)
and Σ̂[ Φ4 ] =

(
2.735 0.588
0.588 35.107

)
,

respectively. From Figure 2, we can see that the data sets in Tables 3 and 4 tend to have the
structure of normal circulation and average circulation, respectively.

Finally, we compared the degrees of departure from the QS model in Tables 3 and 4 using the
confidence region for Φ3 −Φ4. From Figure 3, the confidence region for Φ3 −Φ4 is included
within both the first and fourth quadrants. We can infer that the degree of normal circulation
in Table 3 is greater than that in Table 4, although we cannot conclude that the degree of
departure from the QS model in Table 3 is greater than that in Table 4.
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Figure 2: Approximate 95% confidence regions for the bivariate index vector Φ = (φ, ϕ)′,
applied to Tables 3 and 4.
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Figure 3: An approximate 95% confidence region for the bivariate index vector Φ3 −Φ4.
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6. Concluding remarks

For the analysis of square contingency tables with ordered categories, the index φ was proposed
to measure the degree of departure from the QS model based on the probabilities for the
normal circulation πijπjkπki and the probabilities for the reverse circulation πkjπjiπik for
arbitrary i < j < k. The index φ can judge whether or not the QS model holds, but cannot
distinguish the direction of departure from the QS model (i.e., maximum reverse circulation
or maximum normal circulation). This study proposed the new index, ϕ, to distinguish the
directions of departure from the QS model. The index ϕ can distinguish the directions of
departure from the QS model, but cannot judge whether or not the QS model holds. To
tackle these issues, this study also proposed the bivariate index vector Φ = (φ, ϕ)′ in order
to concurrently analyze both the degree and direction of departure from the QS model. We
derived the approximate confidence region for the bivariate index vector Φ. The utility of the
bivariate index vector Φ was verified by being applied to real data. The proposed bivariate
index vector Φ can be visually comparing the degree of departure from the QS model in plural
tables. This is useful to produce results easier to interpret than the existing index.

The indexes φ and ϕ can measure the degree of departure from the QS model corresponding
to the EQS model since these indexes are expressed as the function of γ under the EQS
model. On the contrary, Kateri et al. (2017) proposed the conditional QS (CQS) model as
another extension of the QS model. The reader may be interested in measuring the degree
of departure from the QS model corresponding to the CQS model, which is a matter to be
considered in future studies.
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